1
|
Skog AE, Jones NC, Månsson LK, Morth JP, Vrønning Hoffmann S, Gerelli Y, Skepö M. Assessing the interaction between the N-terminal region of the membrane protein magnesium transporter A and a lipid bilayer. J Colloid Interface Sci 2025; 683:663-674. [PMID: 39706085 DOI: 10.1016/j.jcis.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
This study investigates the interaction of KEIF, the intrinsically disordered N-terminal region of the magnesium transporter MgtA, with lipid bilayers mimicking cell membranes. Combining experimental techniques such as neutron reflectometry (NR), quartz-crystal microbalance with dissipation monitoring (QCM-D), synchrotron radiation circular dichroism (SRCD), and oriented circular dichroism (OCD), with molecular dynamics (MD) simulations, we characterized KEIF's adsorption behavior. HYPOTHESIS KEIF undergoes conformational changes upon interacting with lipid bilayers, potentially influencing MgtA's function within the plasma membrane. EXPERIMENTS The study assessed KEIF's structural transitions and position within lipid bilayers under various conditions, including zwitterionic versus anionic bilayers and different salt concentrations. The techniques analyzed adsorption-induced structural shifts and peptide localization within the bilayer. FINDINGS KEIF transitions from a disordered to a more structured state, notably increasing α-helical content upon adsorption to lipid bilayers. The peptide resides primarily in the hydrophobic tail region of the bilayer, where it may displace lipids. Electrostatic interactions, modulated by bilayer charge and ionic strength, play a critical role. These results suggest that KEIF's conformational changes and bilayer interactions can be integral to its potential modulatory role in MgtA function within the plasma membrane. This research highlights the importance of surface-induced structural transitions in intrinsically disordered proteins and their implications for membrane protein modulation.
Collapse
Affiliation(s)
- Amanda Eriksson Skog
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Nykola C Jones
- ISA, Department of Physics & Astronomy, Aarhus University, Aarhus C, 8000, Denmark
| | - Linda K Månsson
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Jens Preben Morth
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | | | - Yuri Gerelli
- Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, Roma, 00185, Italy; Department of Physics, Sapienza University of Rome,Piazzale Aldo Moro 2, Roma, 00185, Italy
| | - Marie Skepö
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden.
| |
Collapse
|
2
|
Villanueva ME, Bar L, Porcar L, Gerelli Y, Losada-Pérez P. Resolving the interactions between hydrophilic CdTe quantum dots and positively charged membranes at the nanoscale. J Colloid Interface Sci 2025; 677:620-631. [PMID: 39116560 DOI: 10.1016/j.jcis.2024.07.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The use of quantum dot nanoparticles (QDs) in bio-applications has gained quite some interest and requires a deep understanding of their interactions with model cell membranes. This involves assessing the extent of nanoparticle disruption of the membrane and how it depends on both nanoparticle and membrane physicochemical properties. Surface charge plays an important role in nanoparticle adsorption, which is primarily driven by electrostatic interactions; yet, once adsorbed, most reported works overlook the subsequent spatial nanoparticle insertion and location within the membrane. There is therefore a need for studies to assess the mutual role of membrane and nanoparticle charge into membrane structure and stability at the nanoscale, with a view to better design and control the functionality of these nanomaterials. In this work, we have resolved the extent of the interactions between hydrophilic, negatively charged CdTe QDs and positively charged lipid bilayers. A multiscale combination of surface-sensitive techniques enabled probing how surface charge mediates QD adsorption and membrane reorganization. Increasing membrane surface charge results into a larger adsorption of oppositely charged QDs, concomitantly inducing structural changes. Hydration of the membrane hydrophobic parts by QDs goes deeper into the inner leaflet with increasing membrane charge, resulting in supported lipid bilayers with decreased nanomechanical stability.
Collapse
Affiliation(s)
- M E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Porcar
- Large-Scale Structure Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Y Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC), and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - P Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Skog A, Paracini N, Gerelli Y, Skepö M. Translocation of Antimicrobial Peptides across Model Membranes: The Role of Peptide Chain Length. Mol Pharm 2024; 21:4082-4097. [PMID: 38993084 PMCID: PMC11304388 DOI: 10.1021/acs.molpharmaceut.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Cushioned lipid bilayers are structures consisting of a lipid bilayer supported on a solid substrate with an intervening layer of soft material. They offer possibilities for studying the behavior and interactions of biological membranes more accurately under physiological conditions. In this work, we continue our studies of cushion formation induced by histatin 5 (24Hst5), focusing on the effect of the length of the peptide chain. 24Hst5 is a short, positively charged, intrinsically disordered saliva peptide, and here, both a shorter (14Hst5) and a longer (48Hst5) peptide variant were evaluated. Experimental surface active techniques were combined with coarse-grained Monte Carlo simulations to obtain information about these peptides. Results show that at 10 mM NaCl, both the shorter and the longer peptide variants behave like 24Hst5 and a cushion below the bilayer is formed. At 150 mM NaCl, however, no interaction is observed for 24Hst5. On the contrary, a cushion is formed both in the case of 14Hst5 and 48Hst5, and in the latter, an additional thick, diffuse, and highly hydrated layer of peptide and lipid molecules is formed, on top of the bilayer. Similar trends were observed from the simulations, which allowed us to hypothesize that positively charged patches of the amino acids lysine and arginine in all three peptides are essential for them to interact with and translocate over the bilayer. We therefore hypothesize that electrostatic interactions are important for the interaction between the solid-supported lipid bilayers and the peptide depending on the linear charge density through the primary sequence and the positively charged patches in the sequence. The understanding of how, why, and when the cushion is formed opens up the possibility for this system to be used in the research and development of new drugs and pharmaceuticals.
Collapse
Affiliation(s)
- Amanda
E. Skog
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Nicolò Paracini
- Institut
Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Institute
for Complex Systems - National Research Council (ISC−CNR), Piazzale Aldo Moro 2, 00185 Roma, Italy
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
- NanoLund, Lund
University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
4
|
Gerelli Y, Camerin F, Bochenek S, Schmidt MM, Maestro A, Richtering W, Zaccarelli E, Scotti A. Softness matters: effects of compression on the behavior of adsorbed microgels at interfaces. SOFT MATTER 2024; 20:3653-3665. [PMID: 38623629 DOI: 10.1039/d4sm00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.
Collapse
Affiliation(s)
- Yuri Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Fabrizio Camerin
- Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Emanuela Zaccarelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
5
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
6
|
Armanious A, Gerelli Y, Micciulla S, Pace HP, Welbourn RJL, Sjöberg M, Agnarsson B, Höök F. Probing the Separation Distance between Biological Nanoparticles and Cell Membrane Mimics Using Neutron Reflectometry with Sub-Nanometer Accuracy. J Am Chem Soc 2022; 144:20726-20738. [DOI: 10.1021/jacs.2c08456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonius Armanious
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Yuri Gerelli
- Institut Max von Laue-Paul Langevin (ILL), 38042Grenoble, France
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131Ancona, Italy
| | | | - Hudson P. Pace
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Rebecca J. L. Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OxonOX11 0QX, United Kingdom
| | - Mattias Sjöberg
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| |
Collapse
|
7
|
Greco A, Starostin V, Edel E, Munteanu V, Rußegger N, Dax I, Shen C, Bertram F, Hinderhofer A, Gerlach A, Schreiber F. Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering. J Appl Crystallogr 2022; 55:362-369. [PMID: 35497655 PMCID: PMC8985606 DOI: 10.1107/s1600576722002230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
A Python-based analysis pipeline for the fast analysis of X-ray and neutron reflectivity data using neural networks is presented. The Python package mlreflect is demonstrated, which implements an optimized pipeline for the automated analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural network are accurate and robust enough to serve as good starting parameters for an optional subsequent least-mean-squares (LMS) fit of the data. For a large data set of 242 reflectivity curves of various thin films on silicon substrates, the pipeline reliably finds an LMS minimum very close to a fit produced by a human researcher with the application of physical knowledge and carefully chosen boundary conditions. The differences between simulated and experimental data and their implications for the training and performance of neural networks are discussed. The experimental test set is used to determine the optimal noise level during training. The extremely fast prediction times of the neural network are leveraged to compensate for systematic errors by sampling slight variations in the data.
Collapse
|
8
|
New Design of a Sample Cell for Neutron Reflectometry in Liquid–Liquid Systems and Its Application for Studying Structures at Air–Liquid and Liquid–Liquid Interfaces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge of interfacial structures in liquid–liquid systems is imperative, especially for improving two-phase biological and chemical reactions. Therefore, we developed a new sample cell for neutron reflectometry (NR), which enables us to observe the layer structure around the interface, and investigated the adsorption behavior of a typical surfactant, sodium dodecyl sulfate (SDS), on the toluene-d8-D2O interface under the new experimental conditions. The new cell was characterized by placing the PTFE frame at the bottom to produce a smooth interface and downsized compared to the conventional cell. The obtained NR profiles were readily analyzable and we determined a slight difference in the SDS adsorption layer structure at the interface between the toluene-d8-D2O and air-D2O systems. This could be owing to the difference in the adsorption behavior of the SDS molecules depending on the interfacial conditions.
Collapse
|
9
|
Holt SA, Oliver TE, Nelson ARJ. Using refnx to Model Neutron Reflectometry Data from Phospholipid Bilayers. Methods Mol Biol 2022; 2402:179-197. [PMID: 34854045 DOI: 10.1007/978-1-0716-1843-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neutron reflectometry has emerged as a powerful method for studying the structure of thin films in contact with solution at sub-molecular spatial resolution (Penfold and Thomas, J Phys Condens Matter 2:1369-1412, 1990). This type of experiment is undertaken at large international central facilities and experience in data analysis and interpretation is not always available "locally". Here, we describe the application of the refnx software suite (Nelson and Prescott, J Appl Crystallogr 52:193-200, 2019) to the analysis of a single phospholipid bilayer deposited at a silicon/buffer interface. The data is modeled such that the fitted parameters are readily interpretable by researchers working with lipid bilayers.
Collapse
Affiliation(s)
- Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia.
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Tara E Oliver
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia
| |
Collapse
|
10
|
Greco A, Starostin V, Hinderhofer A, Gerlach A, Skoda MWA, Kowarik S, Schreiber F. Neural network analysis of neutron and x-ray reflectivity data: pathological cases, performance and perspectives. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abf9b1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Neutron and x-ray reflectometry (NR and XRR) are powerful techniques to investigate the structural, morphological and even magnetic properties of solid and liquid thin films. While neutrons and x-rays behave similarly in many ways and can be described by the same general theory, they fundamentally differ in certain specific aspects. These aspects can be exploited to investigate different properties of a system, depending on which particular questions need to be answered. Having demonstrated the general applicability of neural networks to analyze XRR and NR data before (Greco et al 2019 J. Appl. Cryst.
52 1342), this study discusses challenges arising from certain pathological cases as well as performance issues and perspectives. These cases include a low signal-to-noise ratio, a high background signal (e.g. from incoherent scattering), as well as a potential lack of a total reflection edge (TRE). By dynamically modifying the training data after every mini batch, a fully-connected neural network was trained to determine thin film parameters from reflectivity curves. We show that noise and background intensity pose no significant problem as long as they do not affect the TRE. However, for curves without strong features the prediction accuracy is diminished. Furthermore, we compare the prediction accuracy for different scattering length density combinations. The results are demonstrated using simulated data of a single-layer system while also discussing challenges for multi-component systems.
Collapse
|
11
|
Koutsioubas A. anaklasis: a compact software package for model-based analysis of specular neutron and X-ray reflectometry data sets. J Appl Crystallogr 2021; 54:1857-1866. [PMID: 34963772 PMCID: PMC8662969 DOI: 10.1107/s1600576721009262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
A new software package (anaklasis) for model-based analysis of specular neutron and X-ray reflectivity is introduced. Key features include a user-friendly compact interfacial model definition scheme and a complete set of methods for co-refining data and estimating parameter uncertainty. anaklasis constitutes a set of open-source Python scripts that facilitate a range of specular neutron and X-ray reflectivity calculations, involving the generation of theoretical curves and the comparison/fitting of interfacial model reflectivity against experimental data sets. The primary focus of the software is twofold: on one hand to offer a more natural framework for model definition, requiring minimum coding literacy, and on the other hand to include advanced analysis methods that have been proposed in recent work. Particular attention is given to the ability to co-refine reflectivity data and to the estimation of model-parameter uncertainty and covariance using bootstrap analysis and Markov chain Monte Carlo sampling. The compactness and simplicity of model definition together with the streamlined analysis do not present a steep learning curve for the user, an aspect that may accelerate the generation of reproducible, easily readable and statistically accurate reports in future neutron and X-ray reflectivity related literature.
Collapse
Affiliation(s)
- Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| |
Collapse
|
12
|
Abstract
Caffeine is not only a widely consumed active stimulant, but it is also a model molecule commonly used in pharmaceutical sciences. In this work, by performing quartz-crystal microbalance and neutron reflectometry experiments we investigate the interaction of caffeine molecules with a model lipid membrane. We determined that caffeine molecules are not able to spontaneously partition from an aqueous environment, enriched in caffeine, into a bilayer. Caffeine could be however included in solid-supported lipid bilayers if present with lipids during self-assembly. In this case, thanks to surface-sensitive techniques, we determined that caffeine molecules are preferentially located in the hydrophobic region of the membrane. These results are highly relevant for the development of new drug delivery vectors, as well as for a deeper understanding of the membrane permeation role of purine molecules.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60121 Ancona, Italy
| |
Collapse
|
13
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
14
|
Andersson J, Bilotto P, Mears LLE, Fossati S, Ramach U, Köper I, Valtiner M, Knoll W. Solid-supported lipid bilayers - A versatile tool for the structural and functional characterization of membrane proteins. Methods 2020; 180:56-68. [PMID: 32920130 DOI: 10.1016/j.ymeth.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The cellular membrane is central to the development of single-and multicellular life, as it separates the delicate cellular interior from the hostile environment. It exerts tight control over entry and exit of substances, is responsible for signaling with other cells in multicellular organisms and prevents pathogens from entering the cell. In the case of bacteria and viruses, the cellular membrane also hosts the proteins enabling invasion of the host organism. In a very real sense therefore, the cellular membrane is central to all life. The study of the cell membrane and membrane proteins in particular has therefore attracted significant attention. Due to the enormous variety of tasks performed by the membrane, it is a highly complex and challenging structure to study. Ideally, membrane components would be studied in isolation from this environment, but unlike water soluble proteins, the amphiphilic environment provided by the cellular membrane is key to the structure and function of the cell membrane. Therefore, model membranes have been developed to provide an environment in which a membrane protein can be studied. This review presents a set of tools that enable the comprehensive characterization of membrane proteins: electrochemical tools, surface plasmon resonance, neutron scattering, the surface forces apparatus and atomic force microscopy are discussed, with a particular focus on experimental technique and data evaluation.
Collapse
Affiliation(s)
| | - Pierluigi Bilotto
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Laura L E Mears
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Stefan Fossati
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Ulrich Ramach
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Ingo Köper
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Markus Valtiner
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| |
Collapse
|
15
|
McCluskey AR, Cooper JFK, Arnold T, Snow T. A general approach to maximise information density in neutron reflectometry analysis. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab94c4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Neutron and x-ray reflectometry are powerful techniques facilitating the study of the structure of interfacial materials. The analysis of these techniques is ill-posed in nature requiring the application of model-dependent methods. This can lead to the over- and under- analysis of experimental data when too many or too few parameters are allowed to vary in the model. In this work, we outline a robust and generic framework for the determination of the set of free parameters that are capable of maximising the information density of the model. This framework involves the determination of the Bayesian evidence for each permutation of free parameters; and is applied to a simple phospholipid monolayer. We believe this framework should become an important component in reflectometry data analysis and hope others more regularly consider the relative evidence for their analytical models.
Collapse
|
16
|
Porcar L, Gerelli Y. On the lipid flip-flop and phase transition coupling. SOFT MATTER 2020; 16:7696-7703. [PMID: 32789357 DOI: 10.1039/d0sm01161d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We measured the passive lipid flip-flop of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in solid supported lipid bilayers across their main gel to fluid (Lβ → Lα) phase transition. By performing time and temperature resolved neutron reflectometry experiments, we demonstrated that asymmetric systems prepared in the gel phase are stable for at least 24 hours. Lipid flip-flop was found to be intrinsically linked to the amount of lipid molecules in the fluid phase. Moreover, the increase of this amount during the broad phase transition was found to be the main key factor for the timing of the flip-flop process. By measuring different temperature scan rate, we could demonstrate that, in the case of supported bilayers and for the temperature investigated, the lipid flip flop is characterised by an activation energy of 50 kJ mol-1 and a timescale on the order of few hours. Our results demonstrate the origin on the discrepancies between passive flip-flop in bulk systems and at interfaces.
Collapse
Affiliation(s)
- Lionel Porcar
- Institut Laue-Langevin, avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
17
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
18
|
Abstract
Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film.
In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.
Collapse
|
19
|
Structure of DPPC Monolayers at the Air/Buffer Interface: A Neutron Reflectometry and Ellipsometry Study. COATINGS 2020. [DOI: 10.3390/coatings10060507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine, known as DPPC, at the air/water interface are extensively used as model systems of biomembranes and pulmonary surfactant. The properties of these monolayers have been mainly investigated by surface pressure–area isotherms coupled with different complementary techniques such as Brewster angle microscopy, for example. Several attempts using neutron reflectometry (NR) or ellipsometry have also appeared in the literature. Here, we report structural information obtained by using NR and ellipsometry on DPPC monolayers in the liquid condensed phase. On one side, NR can resolve the thickness of the aliphatic tails and the degree of hydration of the polar headgroups. On the other side, ellipsometry gives information on the refractive index and, therefore, on the physical state of the monolayer. The thickness and surface excess obtained by multiple-angle-of-incidence ellipsometry (MAIE) is compared with the results from NR measurements yielding a good agreement. Besides, a novel approach is reported to calculate the optical anisotropy of the DPPC monolayer that depends on the orientation of the aliphatic chains. The results from both NR and ellipsometry are also discussed in the context of the existing results for DPPC monolayers at the air/water interface. The differences observed are rationalized by the presence of buffer molecules interacting with phospholipids.
Collapse
|
20
|
Gerelli Y, Eriksson Skog A, Jephthah S, Welbourn RJL, Klechikov A, Skepö M. Spontaneous Formation of Cushioned Model Membranes Promoted by an Intrinsically Disordered Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3997-4004. [PMID: 32212610 PMCID: PMC7311080 DOI: 10.1021/acs.langmuir.0c00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this article, it is shown that by exposing commonly used lipids for biomembrane mimicking studies, to a solution containing the histidine-rich intrinsically disordered protein histatin 5, a protein cushion spontaneously forms underneath the bilayer. The underlying mechanism is attributed to have an electrostatic origin, and it is hypothesized that the observed behavior is due to proton charge fluctuations promoting attractive electrostatic interactions between the positively charged proteins and the anionic surfaces, with concomitant counterion release. Hence, we anticipate that this novel "green" approach of forming cushioned bilayers can be an important tool to mimic the cell membrane without the disturbance of the solid substrate, thereby achieving a further understanding of protein-cell interactions.
Collapse
Affiliation(s)
- Yuri Gerelli
- Partnership
for Soft Condensed Matter, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Amanda Eriksson Skog
- Partnership
for Soft Condensed Matter, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Division
of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Stephanie Jephthah
- Partnership
for Soft Condensed Matter, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Rebecca J. L. Welbourn
- ISIS
Pulsed Neutron Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, STFC, Didcot, Oxon OX11 0QX, United Kingdom
| | - Alexey Klechikov
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120 Uppsala, Sweden
| | - Marie Skepö
- Division
of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- LINXS—Lund
Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-233 70 Lund, Sweden
| |
Collapse
|
21
|
Pospelov G, Van Herck W, Burle J, Carmona Loaiza JM, Durniak C, Fisher JM, Ganeva M, Yurov D, Wuttke J. BornAgain: software for simulating and fitting grazing-incidence small-angle scattering. J Appl Crystallogr 2020; 53:262-276. [PMID: 32047414 PMCID: PMC6998781 DOI: 10.1107/s1600576719016789] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/15/2019] [Indexed: 01/24/2023] Open
Abstract
BornAgain is a free and open-source multi-platform software framework for simulating and fitting X-ray and neutron reflectometry, off-specular scattering, and grazing-incidence small-angle scattering (GISAS). This paper concentrates on GISAS. Support for reflectometry and off-specular scattering has been added more recently, is still under intense development and will be described in a later publication. BornAgain supports neutron polarization and magnetic scattering. Users can define sample and instrument models through Python scripting. A large subset of the functionality is also available through a graphical user interface. This paper describes the software in terms of the realized non-functional and functional requirements. The web site https://www.bornagainproject.org/ provides further documentation.
Collapse
Affiliation(s)
- Gennady Pospelov
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Walter Van Herck
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Jan Burle
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Juan M. Carmona Loaiza
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Céline Durniak
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Jonathan M. Fisher
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Marina Ganeva
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Dmitry Yurov
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| | - Joachim Wuttke
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85748, Germany
| |
Collapse
|
22
|
Gochev GG, Scoppola E, Campbell RA, Noskov BA, Miller R, Schneck E. β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 3. Neutron Reflectometry Study on the Effect of pH. J Phys Chem B 2019; 123:10877-10889. [PMID: 31725291 DOI: 10.1021/acs.jpcb.9b07733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several characteristics of β-lactoglobulin (BLG) layers adsorbed at the air/water interface exhibit a strong pH dependence, but our knowledge on the underlying structure-property relations is still fragmental. Here, we therefore extend our recent studies by neutron reflectometry (NR) and provide a comprehensive overview through direct measurements of the surface excess Γ and the layers' molecular structure. This enables comparison with available literature data to draw general conclusions. The NR experiments were performed at various pH values and within a wide range of protein concentrations, CBLG. Adsorption kinetics measurements in air-contrast-matched-water and over a narrow Qz range enabled direct quantification of the dynamic surface excess Γ(t) and are found to be consistent with ellipsometry data. Near the isoelectric point, pI, the rates of adsorption and Γ are maximal but only at sufficiently high CBLG. NR data collected over a wider Qz range and in two aqueous isotopic contrasts revealed the structure of adsorbed BLG layers at a steady state close to equilibrium. Independent of the pH, BLG was found to form dense monolayers with average thicknesses of 1.1 nm, suggesting flattening of the BLG globules upon adsorption as compared with their bulk dimensions (≈3.5 nm). Near pI and at sufficiently high CBLG, a thick (≈5.5 nm) but looser secondary sublayer is additionally formed adjacent to the dense primary monolayer. The thickness of this sublayer can be interpreted in terms of disordered BLG dimers. The results obtained and notably the specific interfacial structuring of BLG near pI complement previous observations relating the impact of solution pH and CBLG on other interfacial characteristics such as surface pressure and surface dilational viscoelasticity modulus.
Collapse
Affiliation(s)
- Georgi G Gochev
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany.,Institute of Physical Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Richard A Campbell
- Institut Laue-Langevin , 71 Avenue des Martyrs, CS20156 , 38042 Grenoble , France.,Division of Pharmacy and Optometry , University of Manchester , M13 9PT Manchester , U.K
| | - Boris A Noskov
- Institute of Chemistry , St. Petersburg State University , 198504 Saint-Petersburg , Russia
| | - Reinhard Miller
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| |
Collapse
|
23
|
Mukhina T, Hemmerle A, Rondelli V, Gerelli Y, Fragneto G, Daillant J, Charitat T. Attractive Interaction between Fully Charged Lipid Bilayers in a Strongly Confined Geometry. J Phys Chem Lett 2019; 10:7195-7199. [PMID: 31679335 DOI: 10.1021/acs.jpclett.9b02804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigate the interaction between highly charged lipid bilayers in the presence of monovalent counterions. Neutron and X-ray reflectivity experiments show that the water layer between like-charged bilayers is thinner than for zwitterionic lipids, demonstrating the existence of counterintuitive electrostatic attractive interaction between them. Such attraction can be explained by taking into account the correlations between counterions within the Strong Coupling limit, which falls beyond the classical Poisson-Boltzmann theory of electrostatics. Our results show the limit of the Strong Coupling continuous theory in a highly confined geometry and are in agreement with a decrease in the water dielectric constant due to a surface charge-induced orientation of water molecules.
Collapse
Affiliation(s)
- Tetiana Mukhina
- UPR 22/CNRS, Institut Charles Sadron , Université de Strasbourg , 23 rue du Loess, BP 84047 , 67034 Strasbourg Cedex 2, France
- Institut Laue-Langevin , 71 av. des Martyrs, BP 156 , 38042 Grenoble Cedex, France
| | - Arnaud Hemmerle
- UPR 22/CNRS, Institut Charles Sadron , Université de Strasbourg , 23 rue du Loess, BP 84047 , 67034 Strasbourg Cedex 2, France
| | - Valeria Rondelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale , Universitá degli Studi di Milano , LITA, Via F.lli Cervi 93 , 20090 Segrate , Italy
| | - Yuri Gerelli
- Institut Laue-Langevin , 71 av. des Martyrs, BP 156 , 38042 Grenoble Cedex, France
| | - Giovanna Fragneto
- Institut Laue-Langevin , 71 av. des Martyrs, BP 156 , 38042 Grenoble Cedex, France
| | - Jean Daillant
- Synchrotron SOLEIL , L'Orme des Merisiers , Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- UPR 22/CNRS, Institut Charles Sadron , Université de Strasbourg , 23 rue du Loess, BP 84047 , 67034 Strasbourg Cedex 2, France
| |
Collapse
|
24
|
Pabois O, Lorenz CD, Harvey RD, Grillo I, Grundy MML, Wilde PJ, Gerelli Y, Dreiss CA. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. J Colloid Interface Sci 2019; 556:266-277. [PMID: 31450021 DOI: 10.1016/j.jcis.2019.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESES Understanding the mechanisms underlying lipolysis is crucial to address the ongoing obesity crisis and associated cardiometabolic disorders. Bile salts (BS), biosurfactants present in the small intestine, play key roles in lipid digestion and absorption. It is hypothesised that their contrasting functionalities - adsorption at oil/water interfaces and shuttling of lipolysis products away from these interfaces - are linked to their structural diversity. We investigate the interfacial films formed by two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), differing by the presence or absence of a hydroxyl group on their steroid skeleton. EXPERIMENTS Their adsorption behaviour at the air/water interface and interaction with a phospholipid monolayer - used to mimic a fat droplet interface - were assessed by surface pressure measurements and ellipsometry, while interfacial morphologies were characterised in the lateral and perpendicular directions by Brewster angle microscopy, X-ray and neutron reflectometry, and molecular dynamics simulations. FINDINGS Our results provide a comprehensive molecular-level understanding of the mechanisms governing BS interfacial behaviour. NaTC shows a higher affinity for the air/water and lipid/water interfaces, and may therefore favour enzyme adsorption, whereas NaTDC exhibits a higher propensity for desorption from these interfaces, and may thus more effectively displace hydrolysis products from the interface, through dynamic exchange.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany.
| | | | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
25
|
Gerelli Y. Phase Transitions in a Single Supported Phospholipid Bilayer: Real-Time Determination by Neutron Reflectometry. PHYSICAL REVIEW LETTERS 2019; 122:248101. [PMID: 31322398 DOI: 10.1103/physrevlett.122.248101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/06/2023]
Abstract
Time- and temperature-resolved neutron reflectometry allowed us to perform the real-time characterization of the structural changes taking place across phase transitions in solid supported-lipid bilayers (SLBs). We identified the presence of an isothermal phase transition, characterized by a symmetrical rearrangement of lipid molecules in both bilayer leaflets, followed by the main thermotropic phase transition, and characterized by an independent melting of the two leaflets. We demonstrated that the presence of a substrate increases the enthalpy of melting by the same amount for both SLB leaflets with respect to the values reported for freestanding bilayers. These results are highly relevant for the further understanding of cooperative structural dynamics in SLBs and for the investigation of thermally activated processes such as the transmembrane lipid translocation (flip flop).
Collapse
|
26
|
Lolicato F, Joly L, Martinez-Seara H, Fragneto G, Scoppola E, Baldelli Bombelli F, Vattulainen I, Akola J, Maccarini M. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805046. [PMID: 31012268 DOI: 10.1002/smll.201805046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Indexed: 05/23/2023]
Abstract
Understanding the molecular mechanisms governing nanoparticle-membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse-grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di-stearoyl-phosphatidylcholine (DSPC) and anionic di-stearoyl-phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC-DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP-membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse-grained MD simulations as a lipid-crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.
Collapse
Affiliation(s)
- Fabio Lolicato
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014, Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Loic Joly
- Laboratory of Supramolecular and BioNano Materials, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014, Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
- MEMPHYS-Center for Biomembrane Physics
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Marco Maccarini
- Laboratoire TIMC-IMAG, Université Grenoble Alpes, Domaine de la Merci, 38706, La Tronche Cedex, France
| |
Collapse
|
27
|
Koutsioubas A. Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data. J Appl Crystallogr 2019; 52:538-547. [PMID: 31236091 PMCID: PMC6557181 DOI: 10.1107/s1600576719003534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 11/22/2022] Open
Abstract
An indirect Fourier transform/simulated annealing method exploits the information content of multiple solvent contrast neutron reflectivity data and permits the model-independent recovery of interfacial structure at the air/liquid and solid/liquid interface. Neutron specular reflectivity at soft interfaces provides sub-nanometre information concerning the molecular distribution of thin films, while the application of contrast variation can highlight the scattering from different parts of the system and lead to an overall reduction in fitting ambiguity. Traditional modelling approaches involve the construction of a trial scattering length density profile based on initial speculation and the subsequent refinement of its parameters through minimization of the discrepancy between the calculated and measured reflectivity. In practice this might produce an artificial bias towards specific sets of solutions. On the other hand, direct inversion of reflectivity data, despite its ability to provide a unique solution, is subject to limitations and experimental complications. Presented here is an integrated indirect Fourier transform/simulated annealing method that, when applied to multiple solvent contrast reflectivity data and within the limits of finite spatial resolution, leads to reliable reconstructions of the interfacial structure without the need for any a priori assumptions. The generality of the method permits its straightforward application in common experimental contrast-variation investigations at the solid/liquid and air/liquid interface.
Collapse
Affiliation(s)
- Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| |
Collapse
|
28
|
Nelson ARJ, Prescott SW. refnx: neutron and X-ray reflectometry analysis in Python. J Appl Crystallogr 2019; 52:193-200. [PMID: 30800030 PMCID: PMC6362611 DOI: 10.1107/s1600576718017296] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
refnx is a model-based neutron and X-ray reflectometry data analysis package written in Python. It is cross platform and has been tested on Linux, macOS and Windows. Its graphical user interface is browser based, through a Jupyter notebook. Model construction is modular, being composed from a series of components that each describe a subset of the interface, parameterized in terms of physically relevant parameters (volume fraction of a polymer, lipid area per molecule etc.). The model and data are used to create an objective, which is used to calculate the residuals, log-likelihood and log-prior probabilities of the system. Objectives are combined to perform co-refinement of multiple data sets and mixed-area models. Prior knowledge of parameter values is encoded as probability distribution functions or bounds on all parameters in the system. Additional prior probability terms can be defined for sets of components, over and above those available from the parameters alone. Algebraic parameter constraints are available. The software offers a choice of fitting approaches, including least-squares (global and gradient-based optimizers) and a Bayesian approach using a Markov-chain Monte Carlo algorithm to investigate the posterior distribution of the model parameters. The Bayesian approach is useful for examining parameter covariances, model selection and variability in the resulting scattering length density profiles. The package is designed to facilitate reproducible research; its use in Jupyter notebooks, and subsequent distribution of those notebooks as supporting information, permits straightforward reproduction of analyses.
Collapse
Affiliation(s)
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
McCluskey AR, Sanchez-Fernandez A, Edler KJ, Parker SC, Jackson AJ, Campbell RA, Arnold T. Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers. Phys Chem Chem Phys 2019; 21:6133-6141. [DOI: 10.1039/c9cp00203k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel reflectometry analysis method reveals the structure of lipid monolayers at the air-DES interface.
Collapse
Affiliation(s)
| | | | | | | | - Andrew J. Jackson
- European Spallation Source
- SE-211 00 Lund
- Sweden
- Department of Physical Chemistry
- Lund University
| | - Richard A. Campbell
- Division of Pharmacy and Optometry
- University of Manchester
- Manchester
- UK
- Institut Laue-Langevin
| | - Thomas Arnold
- Department of Chemistry
- University of Bath
- Bath
- UK
- Diamond Light Source
| |
Collapse
|
30
|
Campbell RA, Saaka Y, Shao Y, Gerelli Y, Cubitt R, Nazaruk E, Matyszewska D, Lawrence MJ. Structure of surfactant and phospholipid monolayers at the air/water interface modeled from neutron reflectivity data. J Colloid Interface Sci 2018; 531:98-108. [DOI: 10.1016/j.jcis.2018.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
31
|
Pace HP, Hannestad JK, Armonious A, Adamo M, Agnarsson B, Gunnarsson A, Micciulla S, Sjövall P, Gerelli Y, Höök F. Structure and Composition of Native Membrane Derived Polymer-Supported Lipid Bilayers. Anal Chem 2018; 90:13065-13072. [PMID: 30350611 DOI: 10.1021/acs.analchem.8b04110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last two decades, supported lipid bilayers (SLBs) have been extensively used as model systems to study cell membrane structure and function. While SLBs have been traditionally produced from simple lipid mixtures, there has been a recent surge in compositional complexity to better mimic cellular membranes and thereby bridge the gap between classic biophysical approaches and cell experiments. To this end, native cellular membrane derived SLBs (nSLBs) have emerged as a new category of SLBs. As a new type of biomimetic material, an analytical workflow must be designed to characterize its molecular composition and structure. Herein, we demonstrate how a combination of fluorescence microscopy, neutron reflectometry, and secondary ion mass spectrometry offers new insights on structure, composition, and quality of nSLB systems formed using so-called hybrid vesicles, which are a mixture of native membrane material and synthetic lipids. With this approach, we demonstrate that the nSLB formed a continuous structure with complete mixing of the synthetic and native membrane components and a molecular stoichiometry that essentially mirrors that of the hybrid vesicles. Furthermore, structural investigation of the nSLB revealed that PEGylated lipids do not significantly thicken the hydration layer between the bilayer and substrate when on silicon substrates; however, nSLBs do have more topology than their simpler, purely synthetic counterparts. Beyond new insights regarding the structure and composition of nSLB systems, this work also serves to guide future researchers in producing and characterizing nSLBs from their cellular membrane of choice.
Collapse
Affiliation(s)
- Hudson P Pace
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Jonas K Hannestad
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden.,Biosciences and Materials , Research Institutes of Sweden , SE-501 15 Borås , Sweden
| | - Antonious Armonious
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Marco Adamo
- Institute Laue-Langevin , 38000 Grenoble , France.,Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Bjorn Agnarsson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Anders Gunnarsson
- Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Samantha Micciulla
- Institute Laue-Langevin , 38000 Grenoble , France.,Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Peter Sjövall
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden.,Biosciences and Materials , Research Institutes of Sweden , SE-501 15 Borås , Sweden
| | - Yuri Gerelli
- Institute Laue-Langevin , 38000 Grenoble , France
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| |
Collapse
|
32
|
Luchini A, Nzulumike ANO, Lind TK, Nylander T, Barker R, Arleth L, Mortensen K, Cárdenas M. Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP 3) on a lipid bilayer. Colloids Surf B Biointerfaces 2018; 173:202-209. [PMID: 30292933 DOI: 10.1016/j.colsurfb.2018.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Phosphoinositide (PIP) lipids are anionic phospholipids playing a fundamental role for the activity of several transmembrane and soluble proteins. Among all, phosphoinositol-3',4',5'-trisphosphate (PIP3) is a secondary signaling messenger that regulates the function of proteins involved in cell growth and gene transcription. The present study aims to reveal the structure of PIP-containing lipid membranes, which so far has been little explored. For this purpose, supported lipid bilayers (SLBs) containing 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3',4',5'-trisphosphate (DOPIP3) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used as mimics of biomembranes. Surface sensitive techniques, i.e. Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), Atomic Force Microscopy (AFM) and Neutron Reflectometry (NR), provided detailed information on the formation of the SLB and the location of DOPIP3 in the lipid membrane. Specifically, QCM-D and AFM were used to identify the best condition for lipid deposition and to estimate the total bilayer thickness. On the other hand, NR was used to collect experimental structural data on the DOPIP3 location and orientation within the lipid membrane. The two bilayer leaflets showed the same DOPIP3 concentration, thus suggesting the formation of a symmetric bilayer. The headgroup layer thicknesses of the pure POPC and the mixed POPC/DOPIP3 bilayer suggest that the DOPIP3-headgroups have a preferred orientation, which is not perpendicular to the membrane surface, but instead it is close to the surrounding lipid headgroups. These results support the proposed PIP3 tendency to interact with the other lipid headgroups as PC, so far exclusively suggested by MD simulations.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Achebe N O Nzulumike
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Tania K Lind
- Nano-Science Center and Institute of Chemistry, Copenhagen University, Universitetsparken 5, 2100, Copenhagen, Denmark; Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Robert Barker
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden.
| |
Collapse
|
33
|
Michel JP, Wang YX, Kiesel I, Gerelli Y, Rosilio V. Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11028-11039. [PMID: 28921990 DOI: 10.1021/acs.langmuir.7b02864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is a complex and asymmetric bilayer that antimicrobial peptides must disrupt in order to provoke the cell lysis. The inner and external leaflets of the OM are mainly composed of phospholipids (PL), and lipopolysaccharide (LPS), respectively. Supported lipid bilayers are interesting model systems to mimic the lipid asymmetric scaffold of the OM and determine the quantitative and mechanistic effect of antimicrobial agents, using complementary physicochemical techniques. We report the formation of asymmetric PL/LPS bilayers using the Langmuir-Blodgett/Langmuir-Schaefer technique on two different surfaces (sapphire and mica) with synthetic phospholipids constituting the inner leaflet and bacteria-extracted mutant LPS making up the outer one. The combination of neutron reflectometry and atomic force microscopy techniques allowed the examination of the asymmetric scaffold structure along the normal to the interface and its surface morphology in buffer conditions. Our results allow discrimination of two structurally related peptides, one neutral and inactive, and the other cationic and active. The active cationic plasticin PTCDA1-KF disrupts the asymmetric OM at relevant concentrations through a carpeting scenario characterized by a dramatic removal of lipid molecules from the surface.
Collapse
Affiliation(s)
- J P Michel
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| | - Y X Wang
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| | - I Kiesel
- Institut Laue-Langevin , 71 avenue des Martyrs, 38000, Grenoble, France
| | - Y Gerelli
- Institut Laue-Langevin , 71 avenue des Martyrs, 38000, Grenoble, France
| | - V Rosilio
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| |
Collapse
|
34
|
Blachon F, Harb F, Munteanu B, Piednoir A, Fulcrand R, Charitat T, Fragneto G, Pierre-Louis O, Tinland B, Rieu JP. Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2444-2453. [PMID: 28219008 DOI: 10.1021/acs.langmuir.6b03276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.
Collapse
Affiliation(s)
- Florence Blachon
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Frédéric Harb
- Doctoral School for Science and Technology, Platform for Research in NanoSciences and Nanotechnology, Campus Pierre Gemayel, Lebanese University , Fanar-Metn BP 90239 Beirut, Lebanon
| | - Bogdan Munteanu
- CNRS, INSA de Lyon, LaMCoS, UMR5259, Université de Lyon , 69621 Lyon, France
| | - Agnès Piednoir
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Rémy Fulcrand
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Thierry Charitat
- Université de Strasbourg, Institut Charles Sadron , UPR22, CNRS, 67034 Strasbourg Cedex 2, France
| | - Giovanna Fragneto
- Institut Laue-Langevin , 71 Avenue des Martyrs, F-38042 Grenoble, France
| | - Olivier Pierre-Louis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Bernard Tinland
- CINaM-CNRS, Aix-Marseille Université , UMR7325, 13288 Marseille, France
| | - Jean-Paul Rieu
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
35
|
Biological Structures. NEUTRON SCATTERING - APPLICATIONS IN BIOLOGY, CHEMISTRY, AND MATERIALS SCIENCE 2017. [DOI: 10.1016/b978-0-12-805324-9.00001-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Martel A, Antony L, Gerelli Y, Porcar L, Fluitt A, Hoffmann K, Kiesel I, Vivaudou M, Fragneto G, de Pablo JJ. Membrane Permeation versus Amyloidogenicity: A Multitechnique Study of Islet Amyloid Polypeptide Interaction with Model Membranes. J Am Chem Soc 2016; 139:137-148. [PMID: 27997176 DOI: 10.1021/jacs.6b06985] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Islet amyloid polypeptide (IAPP) is responsible for cell depletion in the pancreatic islets of Langherans, and for multiple pathological consequences encountered by patients suffering from type 2 Diabetes Mellitus. We have examined the amyloidogenicity and cytotoxic mechanisms of this peptide by investigating model-membrane permeation and structural effects of fragments of the human IAPP and several rat IAPP mutants. In vitro experiments and molecular dynamics simulations reveal distinct physical segregation, membrane permeation, and amyloid aggregation processes that are mediated by two separate regions of the peptide. These observations suggest a "detergent-like" mechanism, where lipids are extracted from the bilayer by the N-terminus of IAPP, and integrated into amyloid aggregates. The amyloidogenic aggregation would kinetically compete with the process of membrane permeation and, therefore, inhibit it. This hypothesis represents a new perspective on the mechanism underlying the membrane disruption by amyloid peptides, and could influence the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anne Martel
- The Institut Laue Langevin , 38042 Grenoble, France
| | - Lucas Antony
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Yuri Gerelli
- The Institut Laue Langevin , 38042 Grenoble, France
| | | | - Aaron Fluitt
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Kyle Hoffmann
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Irena Kiesel
- The Institut Laue Langevin , 38042 Grenoble, France
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS , 38044 Grenoble, France
| | | | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Luchini A, Gerelli Y, Fragneto G, Nylander T, Pálsson GK, Appavou MS, Paduano L. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Colloids Surf B Biointerfaces 2016; 151:76-87. [PMID: 27987458 DOI: 10.1016/j.colsurfb.2016.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar K Pálsson
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France; Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Luigi Paduano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy.
| |
Collapse
|
38
|
Abstract
An incorrect statement in the paper by Gerelli [J. Appl. Cryst. (2016), 49, 330–339] is corrected.
Collapse
|