1
|
Schnack-Petersen AK, Moitra T, Folkestad SD, Coriani S. New Implementation of an Equation-of-Motion Coupled-Cluster Damped-Response Framework with Illustrative Applications to Resonant Inelastic X-ray Scattering. J Phys Chem A 2023; 127:1775-1793. [PMID: 36763003 DOI: 10.1021/acs.jpca.2c08181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We present an implementation of a damped response framework for calculating resonant inelastic X-ray scattering (RIXS) at the equation-of-motion coupled-cluster singles and doubles (CCSD) and second-order approximate coupled-cluster singles and doubles (CC2) levels of theory in the open-source program eT. This framework lays the foundation for future extension to higher excitation methods (notably, the coupled-cluster singles and doubles with perturbative triples, CC3) and to multilevel approaches. Our implementation adopts a fully relaxed ground state and different variants of the core-valence separation projection technique to address convergence issues. Illustrative results are compared with those obtained within the frozen-core core-valence separated approach, available in Q-Chem, as well as with experiment. The performance of the CC2 method is evaluated in comparison with that of CCSD. It is found that, while the CC2 method is noticeably inferior to CCSD for X-ray absorption spectra, the quality of the CC2 RIXS spectra is often comparable to that of the CCSD level of theory, when the same valence excited states are probed. Finally, we present preliminary RIXS results for a solvated molecule in aqueous solution.
Collapse
Affiliation(s)
| | - Torsha Moitra
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiTThe Arctic University of Norway, 9037 Tromsø, Norway
| | - Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
2
|
Bauer K, Schmidt JS, Eggenstein F, Decker R, Ruotsalainen K, Pietzsch A, Blume T, Liu CY, Weniger C, Siewert F, Buchheim J, Gwalt G, Senf F, Bischoff P, Schwarz L, Effland K, Mast M, Zeschke T, Rudolph I, Meißner A, Föhlisch A. The meV XUV-RIXS facility at UE112-PGM1 of BESSY II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:908-915. [PMID: 35511024 PMCID: PMC9070711 DOI: 10.1107/s1600577522003551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Resonant inelastic X-ray scattering in the XUV-regime has been implemented at BESSY II, pushing for a few-meV bandwidth in inelastic X-ray scattering at transition metal M-edges, rare earth N-edges and the K-edges of light elements up to carbon with full polarization control. The new dedicated low-energy beamline UE112-PGM1 has been designed to provide 1 µm vertical and 20 µm horizontal beam dimensions that serve together with sub-micrometre solid-state sample positioning as the source point for a high-resolution plane grating spectrometer and a high-transmission Rowland spectrometer for rapid overview spectra. The design and commissioning results of the beamline and high-resolution spectrometer are presented. Helium autoionization spectra demonstrate a resolving power of the beamline better than 10 000 at 64 eV with a 300 lines mm-1 grating while the measured resolving power of the spectrometer in the relevant energy range is 3000 to 6000.
Collapse
Affiliation(s)
- Karl Bauer
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Jan-Simon Schmidt
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Frank Eggenstein
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Régis Decker
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Kari Ruotsalainen
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Thomas Blume
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Chun-Yu Liu
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Frank Siewert
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Jana Buchheim
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Grzegorz Gwalt
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Friedmar Senf
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Peter Bischoff
- Department for Experiment Control and Data Acquisition (IT-ED), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Lisa Schwarz
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Klaus Effland
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Matthias Mast
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Thomas Zeschke
- Department for Optics and Beamlines (WI-AOS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Ivo Rudolph
- Department for Precision Gratings (WI-APG), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Andreas Meißner
- Department for Accelerator Operation and Technology (BE-IA-AOT), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research (PS-ISRR), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein Straße 15, 12489 Berlin, Germany
| |
Collapse
|
3
|
Agåker M, Englund CJ, Sjöblom P, Wassdahl N, Fredriksson P, Såthe C. An ultra-high-stability four-axis ultra-high-vacuum sample manipulator. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1059-1068. [PMID: 34212869 PMCID: PMC8284401 DOI: 10.1107/s1600577521004859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
A report on a four-axis ultra-high-stability manipulator developed for use at the Veritas and Species RIXS beamlines at MAX IV Laboratory, Lund, Sweden, is presented. The manipulator consists of a compact, light-weight X-Y table with a stiffened Z tower carrying a platform with a rotary seal to which a manipulator rod holding the sample can be attached. Its design parameters have been optimized to achieve high eigen-frequencies via a light-weight yet stiff construction, to absorb forces without deformations, provide a low center of gravity, and have a compact footprint without compromising access to the manipulator rod. The manipulator system can house a multitude of different, easily exchangeable, manipulator rods that can be tailor-made for specific experimental requirements without having to rebuild the entire sample positioning system. It is shown that the manipulator has its lowest eigen-frequency at 48.5 Hz and that long-term stability is in the few tens of nanometres. Position accuracy is shown to be better than 100 nm. Angular accuracy is in the 500 nrad range with a long-term stability of a few hundred nanoradians.
Collapse
Affiliation(s)
- Marcus Agåker
- Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala, Sweden
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| | - Carl-Johan Englund
- Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala, Sweden
- Englund Engineering AB, Kättinge 25, 755 92 Uppsala, Sweden
| | - Peter Sjöblom
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| | - Nial Wassdahl
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| | - Pierre Fredriksson
- Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala, Sweden
| | - Conny Såthe
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Stamps R. Probing a mesoscopic elephant. NATURE MATERIALS 2021; 20:127-128. [PMID: 33462467 DOI: 10.1038/s41563-020-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Robert Stamps
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Nanda KD, Krylov AI. A simple molecular orbital picture of RIXS distilled from many-body damped response theory. J Chem Phys 2020; 152:244118. [PMID: 32611000 DOI: 10.1063/5.0010295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ab initio calculations of resonant inelastic x-ray scattering (RIXS) often rely on damped response theory, which prevents the divergence of response solutions in the resonant regime. Within the damped response theory formalism, RIXS moments are expressed as the sum over all electronic states of the system [sum-over-states (SOS) expressions]. By invoking resonance arguments, this expression can be reduced to a few terms, an approximation commonly exploited for the interpretation of computed cross sections. We present an alternative approach: a rigorous formalism for deriving a simple molecular orbital picture of the RIXS process from many-body calculations using the damped response theory. In practical implementations, the SOS expressions of RIXS moments are recast in terms of matrix elements between the zero-order wave functions and first-order frequency-dependent response wave functions of the initial and final states such that the RIXS moments can be evaluated using complex response one-particle transition density matrices (1PTDMs). Visualization of these 1PTDMs connects the RIXS process with the changes in electronic density. We demonstrate that the real and imaginary components of the response 1PTDMs can be interpreted as contributions of the undamped off-resonance and damped near-resonance SOS terms, respectively. By analyzing these 1PTDMs in terms of natural transition orbitals, we derive a rigorous, black-box mapping of the RIXS process into a molecular orbital picture. We illustrate the utility of the new tool by analyzing RIXS transitions in the OH radical, benzene, para-nitroaniline, and 4-amino-4'-nitrostilbene. These examples highlight the significance of both the near-resonance and off-resonance channels.
Collapse
Affiliation(s)
- Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
6
|
Chuang YD, Feng X, Glans-Suzuki PA, Yang W, Padmore H, Guo J. A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:695-707. [PMID: 32381770 PMCID: PMC7206552 DOI: 10.1107/s1600577520004440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The optical design of a Hettrick-Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump-probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick-Underwood optical scheme, expanding their capabilities in materials research.
Collapse
Affiliation(s)
- Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Per-Anders Glans-Suzuki
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Howard Padmore
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
8
|
Temperton RH, Skowron ST, Handrup K, Gibson AJ, Nicolaou A, Jaouen N, Besley E, O'Shea JN. Resonant inelastic X-ray scattering of a Ru photosensitizer: Insights from individual ligands to the electronic structure of the complete molecule. J Chem Phys 2019; 151:074701. [PMID: 31438696 DOI: 10.1063/1.5114692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), known as "N3." In order to interpret these data, crystalline powder samples of the bipyridine-dicarboxylic acid ligand ("bi-isonicotinic acid") and the single ring analog "isonicotinic acid" were studied separately using the same method. Clear evidence for intermolecular hydrogen bonding is observed for each of these crystalline powders, along with clear vibronic coupling features. For bi-isonicotinic acid, these results are compared to those of a physisorbed multilayer, where no hydrogen bonding is observed. The RIXS of the "N3" dye, again prepared as a bulk powder sample, is interpreted in terms of the orbital contributions of the bi-isonicotinic acid and thiocyanate ligands by considering the two different nitrogen species. This allows direct comparison with the isolated ligand molecules where we highlight the impact of the central Ru atom on the electronic structure of the ligand. Further interpretation is provided through complementary resonant photoemission spectroscopy and density functional theory calculations. This combination of techniques allows us to confirm the localization and relative coupling of the frontier orbitals and associated vibrational losses.
Collapse
Affiliation(s)
- Robert H Temperton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephen T Skowron
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Karsten Handrup
- Synchrotron Radiation Research, Department of Physics, Box 118, SE-221 00 Lund, Sweden
| | - Andrew J Gibson
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Nicolas Jaouen
- Synchrotron SOLEIL, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Elena Besley
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - James N O'Shea
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
9
|
Hahn AW, Van Kuiken BE, Chilkuri VG, Levin N, Bill E, Weyhermüller T, Nicolaou A, Miyawaki J, Harada Y, DeBeer S. Probing the Valence Electronic Structure of Low-Spin Ferrous and Ferric Complexes Using 2p3d Resonant Inelastic X-ray Scattering (RIXS). Inorg Chem 2018; 57:9515-9530. [PMID: 30044087 DOI: 10.1021/acs.inorgchem.8b01550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states. These limitations derive in part from parity and spin-selection rules, as well as from the limited energy range of many standard laboratory instruments. Herein, we demonstrate the ability of 2p3d resonant inelastic X-ray scattering (RIXS) to obtain detailed insights into the many particle spectrum of simple inorganic molecular iron complexes. The present study focuses on low-spin ferrous and ferric iron complexes, including [FeIII/II(tacn)2]3+/2+ and [FeIII/II(CN)6]3-/4-. This series thus allows us to assess the contribution of d-count and ligand donor type, by comparing the purely σ-donating tacn ligand to the π-accepting cyanide. In order to highlight the conceptual difference between RIXS and traditional optical spectroscopy, we compare first RIXS results with UV-vis and magnetic circular dichroism spectroscopy. We then highlight the ability of 2p3d RIXS to (1) separate d-d transitions from charge transfer transitions and (2) to determine the many particle d-d spectrum over a much wider energy range than is possible by optical spectroscopy. Our experimental results are correlated with semiempirical multiplet simulations and ab initio complete active space self-consistent field calculations in order to obtain detailed assignments of the excited states. These results show that Δ S = 1, and possibly Δ S = 2, transitions may be observed in 2p3d RIXS spectra. Hence, this methodology has great promise for future applications in all areas of transition metal inorganic chemistry.
Collapse
Affiliation(s)
- Anselm W Hahn
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Benjamin E Van Kuiken
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Vijay Gopal Chilkuri
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhem-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Alessandro Nicolaou
- Synchrotron SOLEIL , L'Orme des Merisiers, Saint-Aubin , Boîte Postale 48, 91191 Gif-sur-Yvette Cedex, France
| | - Jun Miyawaki
- Institute for Solid State Physics (ISSP) , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP) , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
10
|
Chuang YD, Shao YC, Cruz A, Hanzel K, Brown A, Frano A, Qiao R, Smith B, Domning E, Huang SW, Wray LA, Lee WS, Shen ZX, Devereaux TP, Chiou JW, Pong WF, Yashchuk VV, Gullikson E, Reininger R, Yang W, Guo J, Duarte R, Hussain Z. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:013110. [PMID: 28147697 DOI: 10.1063/1.4974356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (∼1μm) and detector pixels (∼5μm) with high line density gratings (∼3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.
Collapse
Affiliation(s)
- Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yu-Cheng Shao
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Alejandro Cruz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kelly Hanzel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adam Brown
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alex Frano
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Smith
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Edward Domning
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, SE221-00 Lund, Sweden
| | - L Andrew Wray
- Department of Physics, New York University, New York, New York 10003, USA
| | - Wei-Sheng Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhi-Xun Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jaw-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Valeriy V Yashchuk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Gullikson
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ruben Reininger
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert Duarte
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser. Sci Rep 2016; 6:38796. [PMID: 27941842 PMCID: PMC5150230 DOI: 10.1038/srep38796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/21/2022] Open
Abstract
In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.
Collapse
|
12
|
Dvorak J, Jarrige I, Bisogni V, Coburn S, Leonhardt W. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:115109. [PMID: 27910402 DOI: 10.1063/1.4964847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.
Collapse
Affiliation(s)
- Joseph Dvorak
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ignace Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Scott Coburn
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - William Leonhardt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
13
|
Van Kuiken BE, Hahn AW, Maganas D, DeBeer S. Measuring Spin-Allowed and Spin-Forbidden d–d Excitations in Vanadium Complexes with 2p3d Resonant Inelastic X-ray Scattering. Inorg Chem 2016; 55:11497-11501. [DOI: 10.1021/acs.inorgchem.6b02053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin E. Van Kuiken
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Anselm W. Hahn
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, D-45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Schreck S, Pietzsch A, Kennedy B, Såthe C, Miedema PS, Techert S, Strocov VN, Schmitt T, Hennies F, Rubensson JE, Föhlisch A. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering. Sci Rep 2016; 7:20054. [PMID: 26821751 PMCID: PMC4731820 DOI: 10.1038/srep20054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.
Collapse
Affiliation(s)
- Simon Schreck
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.,Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Brian Kennedy
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Conny Såthe
- Max IV Laboratory, Box 118, 22100 Lund, Sweden
| | - Piter S Miedema
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Simone Techert
- FS-Structural Dynamics in (Bio)chemistry, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany.,Max Planck Institute for Biophysical Chemistry, Am Faß berg 11, 37077 Göttingen, Germany.,Institute for X-ray Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.,Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Hirsch O, Kvashnina KO, Luo L, Süess MJ, Glatzel P, Koziej D. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO₂. Proc Natl Acad Sci U S A 2015; 112:15803-8. [PMID: 26668362 PMCID: PMC4702991 DOI: 10.1073/pnas.1516192113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure-functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.
Collapse
Affiliation(s)
- Ofer Hirsch
- Department of Materials, Laboratory for Multifunctional Materials, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
| | - Kristina O Kvashnina
- European Synchrotron Radiation Facility, 38000 Grenoble, France; Helmholtz Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01314 Dresden, Germany
| | - Li Luo
- Department of Materials, Laboratory for Multifunctional Materials, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
| | - Martin J Süess
- Department of Physics, Laboratory for Quantum Optoelectronics, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Dorota Koziej
- Department of Materials, Laboratory for Multifunctional Materials, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland;
| |
Collapse
|
16
|
Rubensson JE, Söderström J, Binggeli C, Gråsjö J, Andersson J, Såthe C, Hennies F, Bisogni V, Huang Y, Olalde P, Schmitt T, Strocov VN, Föhlisch A, Kennedy B, Pietzsch A. Rydberg-resolved resonant inelastic soft x-ray scattering: dynamics at core ionization thresholds. PHYSICAL REVIEW LETTERS 2015; 114:133001. [PMID: 25884123 DOI: 10.1103/physrevlett.114.133001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.
Collapse
Affiliation(s)
- J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - J Söderström
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - C Binggeli
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - J Gråsjö
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - J Andersson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - C Såthe
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - F Hennies
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - V Bisogni
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Y Huang
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - P Olalde
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - T Schmitt
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - A Föhlisch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - B Kennedy
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - A Pietzsch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
17
|
Eriksson M, van der Veen JF, Quitmann C. Diffraction-limited storage rings - a window to the science of tomorrow. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:837-42. [PMID: 25177975 DOI: 10.1107/s1600577514019286] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 05/20/2023]
Abstract
This article summarizes the contributions in this special issue on Diffraction-Limited Storage Rings. It analyses the progress in accelerator technology enabling a significant increase in brightness and coherent fraction of the X-ray light provided by storage rings. With MAX IV and Sirius there are two facilities under construction that already exploit these advantages. Several other projects are in the design stage and these will probably enhance the performance further. To translate the progress in light source quality into new science requires similar progress in aspects such as optics, beamline technology, detectors and data analysis. The quality of new science will be limited by the weakest component in this value chain. Breakthroughs can be expected in high-resolution imaging, microscopy and spectroscopy. These techniques are relevant for many fields of science; for example, for the fundamental understanding of the properties of correlated electron materials, the development and characterization of materials for data and energy storage, environmental applications and bio-medicine.
Collapse
Affiliation(s)
- Mikael Eriksson
- MAX IV Laboratory, Lund University, POB 118, Lund 22100, Sweden
| | | | | |
Collapse
|
18
|
Frenkel AI, van Bokhoven JA. X-ray spectroscopy for chemical and energy sciences: the case of heterogeneous catalysis. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1084-1089. [PMID: 25177997 DOI: 10.1107/s1600577514014854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Heterogeneous catalysis is the enabling technology for much of the current and future processes relevant for energy conversion and chemicals synthesis. The development of new materials and processes is greatly helped by the understanding of the catalytic process at the molecular level on the macro/micro-kinetic time scale and on that of the actual bond breaking and bond making. The performance of heterogeneous catalysts is inherently the average over the ensemble of active sites. Much development aims at unravelling the structure of the active site; however, in general, these methods yield the ensemble-average structure. A benefit of X-ray-based methods is the large penetration depth of the X-rays, enabling in situ and operando measurements. The potential of X-ray absorption and emission spectroscopy methods (XANES, EXAFS, HERFD, RIXS and HEROS) to directly measure the structure of the catalytically active site at the single nanoparticle level using nanometer beams at diffraction-limited storage ring sources is highlighted. The use of pump-probe schemes coupled with single-shot experiments will extend the time range from the micro/macro-kinetic time domain to the time scale of bond breaking and making.
Collapse
Affiliation(s)
- Anatoly I Frenkel
- Department of Physics, Yeshiva University, 245 Lexington Avenue, New York, NY 10016, USA
| | - Jeroen A van Bokhoven
- Department of Chemistry and Bioengineering, ETH Zürich, Wolfgang-Paulistrasse 10, Zürich 8093, Switzerland
| |
Collapse
|