1
|
Crain CA, Stone KH, Troxel C, Shulda S, Ginley DS, Strange NA. Design of a robot-automated flat plate/reflection geometry x-ray diffraction setup for accelerated materials discovery and structural screening. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:023904. [PMID: 39969237 DOI: 10.1063/5.0198335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
We report the design, construction, and automation of a flat plate sample loading, alignment, and data acquisition system for x-ray diffraction measurements in reflection geometry implemented at the Stanford Synchrotron Radiation Lightsource. The system is built onto a single platform, enabling facile transferability, and is compartmentalized into sample storage, sample transfer, and sample position/alignment segments. The core feature of this system is a six-axis robotic arm that offers a large range of highly reproducible and programmable movements. The degrees of freedom of the robot arm enable adaptability in which movements can be modified to fit various beamline environments and sample configurations. The samples are housed on 3D printed sample mounts, which are arranged onto a 6 × 2 array of sample cassettes capable of holding seven samples. Using sample mounts designed for solid oxide electrolysis button cells (SOECs), the maximum tray capacity is 84 samples, which can be aligned and run in ∼24 h with long exposure scans. The sample array is additionally capable of accommodating a range of sample sizes and geometries due to the rapid 3D printed fabrication. The components of the setup will be described in detail and performance will be demonstrated with a set of representative SOEC and XRD standard samples. Opportunities for future developments and integration with the automated setup are summarized.
Collapse
Affiliation(s)
- Christopher A Crain
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Charles Troxel
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sarah Shulda
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - David S Ginley
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Nicholas A Strange
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Hopkins JB. BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis. J Appl Crystallogr 2024; 57:194-208. [PMID: 38322719 PMCID: PMC10840314 DOI: 10.1107/s1600576723011019] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and D max finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.
Collapse
Affiliation(s)
- Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
3
|
Hopkins JB. BioXTAS RAW 2: new developments for a free open-source program for small angle scattering data reduction and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559353. [PMID: 37808703 PMCID: PMC10557611 DOI: 10.1101/2023.09.25.559353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BioXTAS RAW is a free, open-source program for reduction, analysis and modelling of biological small angle scattering data. Here, the new developments in RAW version 2 are described. These include: improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. SEC-SAXS) buffer and sample region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using REGALS; creation of electron density reconstructions via DENSS; a comparison window showing residuals, ratios, and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. In addition, there is now a RAW API, which can be used without the GUI, providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.
Collapse
Affiliation(s)
- Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W, Singh S, Gakhar L, Schnicker NJ, Pierce BG, Whitelegge JP, Doray B, Orban J, Gallagher T, Hasan SS. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023; 14:8358. [PMID: 38102143 PMCID: PMC10724246 DOI: 10.1038/s41467-023-44076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Benjamin Jennings
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- PAQ Therapeutics, Burlington, MA, 01803, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Balraj Doray
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
5
|
Ozgulbas DY, Jensen D, Butler R, Vescovi R, Foster IT, Irvin M, Nakaye Y, Chu M, Dufresne EM, Seifert S, Babnigg G, Ramanathan A, Zhang Q. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. LIGHT, SCIENCE & APPLICATIONS 2023; 12:196. [PMID: 37596264 PMCID: PMC10439219 DOI: 10.1038/s41377-023-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-6-103 s /10-10-10-6 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.
Collapse
Affiliation(s)
- Doga Yamac Ozgulbas
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Don Jensen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Rory Butler
- Departement of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Michael Irvin
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yasukazu Nakaye
- XRD Design and Engineering Department, Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gyorgy Babnigg
- Bioscience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
6
|
Schneider DK, Soares AS, Lazo EO, Kreitler DF, Qian K, Fuchs MR, Bhogadi DK, Antonelli S, Myers SS, Martins BS, Skinner JM, Aishima J, Bernstein HJ, Langdon T, Lara J, Petkus R, Cowan M, Flaks L, Smith T, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Jakoncic J. AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1480-1494. [PMID: 36345756 PMCID: PMC9641562 DOI: 10.1107/s1600577522009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 1012 photons s-1), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline. AMX saw first light in March 2016 and started general user operation in February 2017. At AMX, emphasis has been placed on high throughput, high capacity, and automation to enable data collection from the most challenging projects using an intense micro-focus beam. Here, the current state and capabilities of the beamline are reported, and the different macromolecular crystallography experiments that are routinely performed at AMX/17-ID-1 as well as some plans for the near future are presented.
Collapse
Affiliation(s)
| | | | - Edwin O. Lazo
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Kun Qian
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Martin R. Fuchs
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Dileep K. Bhogadi
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Steve Antonelli
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Stuart S. Myers
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - John M. Skinner
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jun Aishima
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Herbert J. Bernstein
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
- Ronin Institute, Montclair, New Jersey, USA
| | - Thomas Langdon
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - John Lara
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert Petkus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Matt Cowan
- CSI, Brookhaven National Laboratory, Upton, New York, USA
| | - Leonid Flaks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas Smith
- Physics Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Mourad Idir
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lei Huang
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Chubar
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert M. Sweet
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lonny E. Berman
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Sean McSweeney
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jean Jakoncic
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
7
|
Vance TDR, Yip P, Jiménez E, Li S, Gawol D, Byrnes J, Usón I, Ziyyat A, Lee JE. SPACA6 ectodomain structure reveals a conserved superfamily of gamete fusion-associated proteins. Commun Biol 2022; 5:984. [PMID: 36115925 PMCID: PMC9482655 DOI: 10.1038/s42003-022-03883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
SPACA6 is a sperm-expressed surface protein that is critical for gamete fusion during mammalian sexual reproduction. Despite this fundamental role, little is known about how SPACA6 specifically functions. We elucidated the crystal structure of the SPACA6 ectodomain at 2.2-Å resolution, revealing a two-domain protein containing a four-helix bundle and Ig-like β-sandwich connected via a quasi-flexible linker. This structure is reminiscent of IZUMO1, another gamete fusion-associated protein, making SPACA6 and IZUMO1 founding members of a superfamily of fertilization-associated proteins, herein dubbed the IST superfamily. The IST superfamily is defined structurally by its distorted four-helix bundle and a pair of disulfide-bonded CXXC motifs. A structure-based search of the AlphaFold human proteome identified more protein members to this superfamily; remarkably, many of these proteins are linked to gamete fusion. The SPACA6 structure and its connection to other IST-superfamily members provide a missing link in our knowledge of mammalian gamete fusion.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patrick Yip
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elisabet Jiménez
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Diana Gawol
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Isabel Usón
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ahmed Ziyyat
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
- Service d'Histologie, d'Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014, Paris, France
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Liu Y, Cao H, Rosenkranz S, Frost M, Huegle T, Lin JYY, Torres P, Stoica A, Chakoumakos BC. PIONEER, a high-resolution single-crystal polarized neutron diffractometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:073901. [PMID: 35922293 DOI: 10.1063/5.0089524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
PIONEER is a high Q-resolution, single-crystal, polarized neutron diffractometer at the Second Target Station (STS), Oak Ridge National Laboratory. It will provide the unprecedented capability of measuring tiny crystals (0.001 mm3, i.e., x-ray diffraction size), ultra-thin films (10 nm thickness), and weak structural and magnetic transitions. PIONEER benefits from the increased peak brightness of STS cold-neutron sources and uses advanced Montel mirrors that are able to deliver a focused beam with a high brilliance transfer, a homogeneous profile, and a low background. Monte Carlo simulations suggest that the optimized instrument has a high theoretical peak brilliance of 2.9 × 1012 n cm-2 sr-1 Å-1 s-1 at 2.5 Å at the sample position, within a 5 × 5 mm2 region and a ±0.3° divergence range. The moderator-to-sample distance is 60 m, providing a nominal wavelength band of 4.3 Å with a wavelength resolution better than 0.2% in the wavelength range of 1.0-6.0 Å. PIONEER is capable of characterizing large-scale periodic structures up to 200 Å. With a sample-to-detector distance of 0.8 m, PIONEER accommodates various sample environments, including low/high temperature, high pressure, and high magnetic/electric field. A large cylindrical detector array (4.0 sr) with a radial collimator is planned to suppress the background scattering from sample environments. Bottom detector banks provide an additional 0.4 sr coverage or can be removed if needed to accommodate special sample environments. We present virtual experimental results to demonstrate the scientific performance of PIONEER in measuring tiny samples.
Collapse
Affiliation(s)
- Yaohua Liu
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huibo Cao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephan Rosenkranz
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Matthew Frost
- Neutron Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Thomas Huegle
- Neutron Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jiao Y Y Lin
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Peter Torres
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexandru Stoica
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bryan C Chakoumakos
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
9
|
Lazo EO, Antonelli S, Aishima J, Bernstein HJ, Bhogadi D, Fuchs MR, Guichard N, McSweeney S, Myers S, Qian K, Schneider D, Shea-McCarthy G, Skinner J, Sweet R, Yang L, Jakoncic J. Robotic sample changers for macromolecular X-ray crystallography and biological small-angle X-ray scattering at the National Synchrotron Light Source II. Corrigendum. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:280. [PMID: 34985446 PMCID: PMC8733988 DOI: 10.1107/s1600577521013205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
A correction in the paper by Lazo et al. [(2021). J. Synchrotron Rad. 28, 1649-1661] is made.
Collapse
Affiliation(s)
- Edwin O. Lazo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stephen Antonelli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dileep Bhogadi
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stuart Myers
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dieter Schneider
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Grace Shea-McCarthy
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert Sweet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|