1
|
Berberich TB, Molodtsov SL, Kurta RP. A workflow for single-particle structure determination via iterative phasing of rotational invariants in fluctuation X-ray scattering. J Appl Crystallogr 2024; 57:324-343. [PMID: 38596737 PMCID: PMC11001396 DOI: 10.1107/s1600576724000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Fluctuation X-ray scattering (FXS) offers a complementary approach for nano- and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting structural information from correlations in scattered XFEL pulses. Here a workflow is presented for single-particle structure determination using FXS. The workflow includes procedures for extracting the rotational invariants from FXS patterns, performing structure reconstructions via iterative phasing of the invariants, and aligning and averaging multiple reconstructions. The reconstruction pipeline is implemented in the open-source software xFrame and its functionality is demonstrated on several simulated structures.
Collapse
Affiliation(s)
- Tim B. Berberich
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- I. Institute of Theoretical Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Serguei L. Molodtsov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany
- Center for Efficient High Temperature Processes and Materials Conversion (ZeHS), TU Bergakademie Freiberg, Winklerstrasse 5, 09599 Freiberg, Germany
| | | |
Collapse
|
2
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Staniscia F, Truskinovsky L. Passive viscoelastic response of striated muscles. SOFT MATTER 2022; 18:3226-3233. [PMID: 35388379 DOI: 10.1039/d1sm01527c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscle cells with sarcomeric structure exhibit highly non trivial passive mechanical response. The difficulty of its continuum modeling is due to the presence of long-range interactions transmitted by extended protein skeleton. To build a rheological model for muscle 'material', we use a stochastic micromodel, and derive a linear response theory for a half-sarcomere, which can be extended to the whole fibre. Instead of the first order rheological equation, anticipated by Hill on the phenomenological grounds, we obtain a novel second order equation which shows that tension depends not only on its current length and the velocity of stretching, but also on its acceleration. Expressing the model in terms of elementary rheological elements, we show that one contribution to the visco-elastic properties of the fibre originates in cross-bridges, while the other can be linked to inert elements which move in the sarcoplasm. We apply this model to explain the striking qualitative difference between the relaxation in experiments involving perturbation of length vs. those involving perturbation of force, and we use the values of the microscopic parameters for frog muscles to show that the model is in excellent quantitative agreement with physiological experiments.
Collapse
Affiliation(s)
| | - Lev Truskinovsky
- PMMH, CNRS - UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
4
|
Niozu A, Kumagai Y, Nishiyama T, Fukuzawa H, Motomura K, Bucher M, Asa K, Sato Y, Ito Y, Takanashi T, You D, Ono T, Li Y, Kukk E, Miron C, Neagu L, Callegari C, Di Fraia M, Rossi G, Galli DE, Pincelli T, Colombo A, Owada S, Tono K, Kameshima T, Joti Y, Katayama T, Togashi T, Yabashi M, Matsuda K, Nagaya K, Bostedt C, Ueda K. Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays. IUCRJ 2020; 7:276-286. [PMID: 32148855 PMCID: PMC7055387 DOI: 10.1107/s205225252000144x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.
Collapse
Affiliation(s)
- Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Toshiyuki Nishiyama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hironobu Fukuzawa
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Kazuki Asa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuhiro Sato
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuta Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
| | - Liviu Neagu
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor PO Box MG-36, 077125 Magurele, Jud. Ilfov, Romania
| | - Carlo Callegari
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Giorgio Rossi
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Davide E. Galli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Tommaso Pincelli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, 14195 Berlin, Germany
| | - Alessandro Colombo
- Department of Physics, ETH Zürich, Stefano-Franscini-Platz 5, 8049 Zürich, Switzerland
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | | | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
- Laboratory for Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Lehmkühler F, Schulz F, Schroer MA, Frenzel L, Lange H, Grübel G. Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719007568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An X-ray cross-correlation study of the local orientational order in self-assembled films made from PEGylated gold nanoparticles is presented. The local structure of this model system is dominated by four- and sixfold order. Coadsorption of shorter ligands in the particle's ligand layer and variation of salt concentration in the suspension prior to self-assembly result in a change of local orientational order. The degree of sixfold order is reduced after salt addition. This decrease of order is less pronounced for the fourfold symmetry. The results presented here suggest complex symmetry-selective order formation upon ligand exchange and salt addition and demonstrate the versatility of X-ray cross-correlation methods for nanoparticle superlattices.
Collapse
|
6
|
Kurta RP, Wiegart L, Fluerasu A, Madsen A. Fluctuation X-ray scattering from nanorods in solution reveals weak temperature-dependent orientational ordering. IUCRJ 2019; 6:635-648. [PMID: 31316808 PMCID: PMC6608627 DOI: 10.1107/s2052252519005499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Higher-order statistical analysis of X-ray scattering from dilute solutions of polydisperse goethite nanorods was performed and revealed structural information which is inaccessible by conventional small-angle scattering. For instance, a pronounced temperature dependence of the correlated scattering from suspension was observed. The higher-order scattering terms deviate from those expected for a perfectly isotropic distribution of particle orientations, demonstrating that the method can reveal faint orientational order in apparently disordered systems. The observation of correlated scattering from polydisperse particle solutions is also encouraging for future free-electron laser experiments aimed at extracting high-resolution structural information from systems with low particle heterogeneity.
Collapse
Affiliation(s)
| | - Lutz Wiegart
- Brookhaven National Laboratory, Photon Sciences Directorate, Upton, NY 11973, USA
| | - Andrei Fluerasu
- Brookhaven National Laboratory, Photon Sciences Directorate, Upton, NY 11973, USA
| | - Anders Madsen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
7
|
Abstract
Grazing-incidence small-angle X-ray scattering (GISAXS) is a powerful technique for measuring the nanostructure of coatings and thin films. However, GISAXS data are plagued by distortions that complicate data analysis. The detector image is a warped representation of reciprocal space because of refraction, and overlapping scattering patterns appear because of reflection. A method is presented to unwarp GISAXS data, recovering an estimate of the true undistorted scattering pattern. The method consists of first generating a guess for the structure of the reciprocal-space scattering by solving for a mutually consistent prediction from the transmission and reflection sub-components. This initial guess is then iteratively refined by fitting experimental GISAXS images at multiple incident angles, using the distorted-wave Born approximation (DWBA) to convert between reciprocal space and detector space. This method converges to a high-quality reconstruction for the undistorted scattering, as validated by comparing with grazing-transmission scattering data. This new method for unwarping GISAXS images will broaden the applicability of grazing-incidence techniques, allowing experimenters to inspect undistorted visualizations of their data and allowing a broader range of analysis methods to be applied to GI data.
Collapse
Affiliation(s)
- Jiliang Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
8
|
Pande K, Donatelli JJ, Malmerberg E, Foucar L, Poon BK, Sutter M, Botha S, Basu S, Bruce Doak R, Dörner K, Epp SW, Englert L, Fromme R, Hartmann E, Hartmann R, Hauser G, Hattne J, Hosseinizadeh A, Kassemeyer S, Lomb L, Montero SFC, Menzel A, Rolles D, Rudenko A, Seibert MM, Sierra RG, Schwander P, Ourmazd A, Fromme P, Sauter NK, Bogan M, Bozek J, Bostedt C, Schlichting I, Kerfeld CA, Zwart PH. Free-electron laser data for multiple-particle fluctuation scattering analysis. Sci Data 2018; 5:180201. [PMID: 30277481 PMCID: PMC6167951 DOI: 10.1038/sdata.2018.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/09/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100 000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided.
Collapse
Affiliation(s)
- Kanupriya Pande
- Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey J. Donatelli
- Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Computational Research Division, Dept. of Mathematics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Erik Malmerberg
- Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus Sutter
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabine Botha
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- University of Hamburg, Hamburg Germany
| | - Shibom Basu
- Arizona State University, Tempe, AZ, USA
- Macromolecular Crystallography Group, Paul Scherrer Institute, 5232 Villigen – PSI, Switzerland
| | - R. Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Arizona State University, Tempe, AZ, USA
| | - Katerina Dörner
- Arizona State University, Tempe, AZ, USA
- European XFEL GmbH, Schenefeld, Germany
| | - Sascha W. Epp
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg, Germany
| | - Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
- Carl von Ossietzky Universität Oldenburg, Department of Physics, Oldenburg, Germany
| | | | - Elisabeth Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | | | - Guenter Hauser
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | - Johan Hattne
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, 3135N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Stephan Kassemeyer
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Lukas Lomb
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Sebastian F. Carron Montero
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
- Department of Physics, California Lutheran University, Thousand Oaks, CA, USA
| | - Andreas Menzel
- Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, 5232 Villigen – PSI, Switzerland
| | - Daniel Rolles
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
- James R Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - Artem Rudenko
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- James R Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - Marvin M. Seibert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
| | - Raymond George Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, 3135N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, 3135N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Petra Fromme
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Bogan
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
- Traction on Demand, Burnaby, BC, Canada
| | - John Bozek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, CA, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
- Atomic, Molecular and Optical Physics, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Cheryl A. Kerfeld
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Petrus H. Zwart
- Center for Advanced Mathematics in Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Lehmkühler F, Schulz F, Schroer MA, Frenzel L, Lange H, Grübel G. Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations. IUCRJ 2018; 5:354-360. [PMID: 29755751 PMCID: PMC5929381 DOI: 10.1107/s2052252518005407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/06/2018] [Indexed: 05/04/2023]
Abstract
We report on the self-assembly of gold nanoparticles coated with a soft poly(ethylene glycol) shell studied by X-ray cross-correlation analysis. Depending on the initial concentration of gold nanoparticles used, structurally heterogeneous films were formed. The films feature hot spots of dominating four- and sixfold local order with patch sizes of a few micrometres, containing 104-105 particles. The amplitude of the order parameters suggested that a minimum sample amount was necessary to form well ordered local structures. Furthermore, the increasing variation in order parameters with sample thickness demonstrated a high degree of structural heterogeneity. This wealth of information cannot be obtained by the conventional microscopy techniques that are commonly used to study nanocrystal superstructures, as illustrated by complementary scanning electron microscopy measurements.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Florian Schulz
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Martin A. Schroer
- European Molecular Biology Laboratory EMBL c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lara Frenzel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Holger Lange
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Kurta RP, Donatelli JJ, Yoon CH, Berntsen P, Bielecki J, Daurer BJ, DeMirci H, Fromme P, Hantke MF, Maia FRNC, Munke A, Nettelblad C, Pande K, Reddy HKN, Sellberg JA, Sierra RG, Svenda M, van der Schot G, Vartanyants IA, Williams GJ, Xavier PL, Aquila A, Zwart PH, Mancuso AP. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses. PHYSICAL REVIEW LETTERS 2017; 119:158102. [PMID: 29077445 PMCID: PMC5757528 DOI: 10.1103/physrevlett.119.158102] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 05/19/2023]
Abstract
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Jeffrey J Donatelli
- Mathematics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Peter Berntsen
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Benedikt J Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hasan DeMirci
- Biosciences Division, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Max Felix Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
- Division of Scientific Computing, Science for Life Laboratory, Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Kanupriya Pande
- Center for Advanced Mathematics for Energy Research Applications, 1 Cyclotron Road, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Hemanth K N Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Jonas A Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Garth J Williams
- NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973, USA
| | - P Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22607 Hamburg, Germany
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Peter H Zwart
- Center for Advanced Mathematics for Energy Research Applications, 1 Cyclotron Road, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | | |
Collapse
|
11
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
12
|
Small Angle Scattering: Historical Perspective and Future Outlook. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:1-10. [DOI: 10.1007/978-981-10-6038-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lehmkühler F, Fischer B, Müller L, Ruta B, Grübel G. Structure beyond pair correlations: X-ray cross-correlation from colloidal crystals. J Appl Crystallogr 2016; 49:2046-2052. [PMID: 27980511 PMCID: PMC5139993 DOI: 10.1107/s1600576716017313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
The results of an X-ray cross-correlation analysis (XCCA) study on hard-sphere colloidal crystals and glasses are presented. The article shows that cross-correlation functions can be used to extract structural information beyond the static structure factor in such systems. In particular, the powder average can be overcome by accessing the crystals' unit-cell structure. In this case, the results suggest that the crystal is of face-centered cubic type. It is demonstrated that XCCA is a valuable tool for X-ray crystallography, in particular for studies on colloidal systems. These are typically characterized by a rather poor crystalline quality due to size polydispersity and limitations in experimental resolution because of the small q values probed. Furthermore, nontrivial correlations are observed that allow a more detailed insight into crystal structures beyond conventional crystallography, especially to extend knowledge in structure formation processes and phase transitions.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Leonard Müller
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Beatrice Ruta
- ESRF – The European Synchrotron, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
14
|
Mendez D, Watkins H, Qiao S, Raines KS, Lane TJ, Schenk G, Nelson G, Subramanian G, Tono K, Joti Y, Yabashi M, Ratner D, Doniach S. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure. IUCRJ 2016; 3:420-429. [PMID: 27840681 PMCID: PMC5094444 DOI: 10.1107/s2052252516013956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2016] [Indexed: 05/04/2023]
Abstract
During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. It is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.
Collapse
Affiliation(s)
- Derek Mendez
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Herschel Watkins
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Shenglan Qiao
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Kevin S. Raines
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Thomas J. Lane
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Gundolf Schenk
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Daniel Ratner
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Sebastian Doniach
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| |
Collapse
|
15
|
Kurta RP, Altarelli M, Vartanyants IA. STRUCTURAL ANALYSIS BY X-RAY INTENSITY ANGULAR CROSS CORRELATIONS. ADVANCES IN CHEMICAL PHYSICS 2016. [DOI: 10.1002/9781119290971.ch1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron; DESY; Hamburg Germany
- National Research Nuclear University ‘MEPhI’ (Moscow Engineering Physics Institute); Moscow Russia
| |
Collapse
|
16
|
Abstract
Fluctuation X-ray scattering (FXS) is an extension of small- and wide-angle X-ray scattering in which the X-ray snapshots are taken below rotational diffusion times. This technique, performed using a free electron laser or ultrabright synchrotron source, provides significantly more experimental information compared with traditional solution scattering methods. We develop a multitiered iterative phasing algorithm to determine the underlying structure of the scattering object from FXS data.
Collapse
|