1
|
McCubbin Stepanic O, Pollock CJ, Zielinski KA, Foschi W, Rice DB, Pollack L, DeBeer S. Implementation of simultaneous ultraviolet/visible and x-ray absorption spectroscopy with microfluidics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:015107. [PMID: 39791973 DOI: 10.1063/5.0218572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra. Implementation of a fiber optic UV/Vis spectrometer and parabolic mirror setup inside the dual array valence emission spectrometer allowing for simultaneous measurement of microfluidic flow and mixing samples at the Photon-In Photon-Out X-ray Spectroscopy beamline is described, and initial results on ferricyanide and a dilute iron protein are presented. In conjunction with advanced microfluidic mixing techniques, this will allow for the measurement and quantification of highly reactive catalytic intermediates at reaction-relevant temperatures on the millisecond timescale while avoiding potential complications induced by freeze quenching samples.
Collapse
Affiliation(s)
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Kara A Zielinski
- School of Applied Engineering and Physics, Cornell University, Ithaca, New York 14853, USA
| | - William Foschi
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Derek B Rice
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Lois Pollack
- School of Applied Engineering and Physics, Cornell University, Ithaca, New York 14853, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
2
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death. Commun Biol 2024; 7:982. [PMID: 39134806 PMCID: PMC11319651 DOI: 10.1038/s42003-024-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA.
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA.
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
3
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
4
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Defining the conformational states that enable transglutaminase 2 to promote cancer cell survival versus cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578794. [PMID: 38370687 PMCID: PMC10871292 DOI: 10.1101/2024.02.04.578794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - William P. Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Stuart DI, Oksanen HM, Abrescia NGA. Integrative Approaches to Study Virus Structures. Subcell Biochem 2024; 105:247-297. [PMID: 39738949 DOI: 10.1007/978-3-031-65187-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus particle must work as a strongroom to protect its genome, but at the same time it must undergo dramatic conformational changes to infect the cell in order to replicate and assemble progeny. Thus, viruses are miniaturized wonders whose structural complexity requires investigation by a combination of different techniques that can tackle both static and dynamic processes. In this chapter, we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid approaches is discussed through a number of examples.
Collapse
Affiliation(s)
- David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|