1
|
Zhong M, He H, Ni P, Huang C, Zhang T, Chen W, Liu L, Wang C, Jiang X, Pu L, Yuan T, Liang J, Fan Y, Zhang X. Semi-quantitative scoring criteria based on multiple staining methods combined with machine learning to evaluate residual nuclei in decellularized matrix. Regen Biomater 2024; 12:rbae147. [PMID: 39886363 PMCID: PMC11780845 DOI: 10.1093/rb/rbae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
The detection of residual nuclei in decellularized extracellular matrix (dECM) biomaterials is critical for ensuring their quality and biocompatibility. However, current evaluation methods have limitations in addressing impurity interference and providing intelligent analysis. In this study, we utilized four staining techniques-hematoxylin-eosin staining, acetocarmine staining, the Feulgen reaction and 4',6-diamidino-2-phenylindole staining-to detect residual nuclei in dECM biomaterials. Each staining method was quantitatively evaluated across multiple parameters, including area, perimeter and grayscale values, to establish a semi-quantitative scoring system for residual nuclei. These quantitative data were further employed as learning indicators in machine learning models designed to automatically identify residual nuclei. The experimental results demonstrated that no single staining method alone could accurately differentiate between nuclei and impurities. In this study, a semi-quantitative scoring table was developed. With this table, the accuracy of determining whether a single suspicious point is a cell nucleus has reached over 98%. By combining four staining methods, false positives caused by impurity contamination were eliminated. The automatic recognition model trained based on nuclear parameter features reached the optimal index of the model after several iterations of training in 172 epochs. The trained artificial intelligence model achieved a recognition accuracy of over 90% for detecting residual nuclei. The use of multidimensional parameters, integrated with machine learning, significantly improved the accuracy of identifying nuclear residues in dECM slices. This approach provides a more reliable and objective method for evaluating dECM biomaterials, while also increasing detection efficiency.
Collapse
Affiliation(s)
- Meng Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Hongwei He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Can Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Tianxiao Zhang
- Neo Modulus (Suzhou) Medical Technology Co., Ltd, Suzhou 215163, China
| | - Weiming Chen
- Neo Modulus (Suzhou) Medical Technology Co., Ltd, Suzhou 215163, China
| | - Liming Liu
- Kemoshen AI Lab, Shanghai Kemosheng Medical Technology Co., Ltd, Shanghai 201700, China
| | - Changfeng Wang
- Kemoshen AI Lab, Shanghai Kemosheng Medical Technology Co., Ltd, Shanghai 201700, China
| | - Xin Jiang
- Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, Chengdu 610064, China
| | - Linyun Pu
- Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, Chengdu 610064, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Rodger A. Linear dichroism and linearly polarised luminescence spectra of oriented samples collected on a new integrated instrument. Chem Commun (Camb) 2024; 60:3850-3853. [PMID: 38497345 DOI: 10.1039/d4cc00038b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Linearly polarised luminescence (LPL) has a wide range of potential applications giving optical and geometric parameters for oriented lumiphores. In this work we present the first wavelength scanned LPL spectra. Analytes are either oriented on stretched polyethylene films or in flow. Applications of the wavelength-dependence of g-factors are illustrated.
Collapse
Affiliation(s)
- Alison Rodger
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| |
Collapse
|
3
|
Rodger A, Venkatesan K, Aldrich-Wright JR, Brodie C, Garcia-Bennett AE. Integrated Circular Dichroism and Circularly Polarized Luminescence Measurements. Anal Chem 2024; 96:3810-3816. [PMID: 38385756 DOI: 10.1021/acs.analchem.3c04916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Circularly polarized luminescent (CPL) systems have a plethora of potential applications owing to their interesting excited-state properties. However, the progress in developing new chiral luminescence systems is significantly hindered by the lack of available instrumentation for the broader chemistry and materials science community to perform routine, reproducible measurements of chiral spectroscopies. In this work, we present data from an easy-to-use custom-built instrument based on a Jasco circular dichroism (CD) spectropolarimeter coupled with a CPL emission monochromator (CD/CPL hybrid system). The hybrid system measures CPL, fluorescence, CD, and absorbance on the same part of the sample without the need to move between the CD and CPL measurements. The instrument uses a xenon arc lamp as the light source, enabling a wide range of excitation wavelengths to support flexible development of new molecules and materials. Data obtained and presented for camphor, ruthenium metal complexes, the peptide gramicidin, and a DNA-ligand (4',6-diamidino-2-phenylindole, DAPI) system in this work highlight the ease of use and reproducibility of the results. The g-factors for CD and CPL obtained for the different compounds are shown to be the same for isolated transitions and some examples of how to use variations of g-factors with wavelength are demonstrated. The reliable and excellent benchmark results obtained from a custom-built commercial wavelength scanning CPL/CD hybrid instrument open up new avenues for the broader chemical and materials science community to intensify research on chiral luminescent systems.
Collapse
Affiliation(s)
- Alison Rodger
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Research School of Chemistry, Australian National University, ACT 2601, Australia
| | - Koushik Venkatesan
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | - Craig Brodie
- School of Science, Western Sydney University, Sydney, New South Wales 2751, Australia
| | | |
Collapse
|
4
|
Pereira SAP, Romano-deGea J, Barbosa AI, Costa Lima SA, Dyson PJ, Saraiva MLMFS. Fine-tuning the cytotoxicity of ruthenium(II) arene compounds to enhance selectivity against breast cancers. Dalton Trans 2023; 52:11679-11690. [PMID: 37552495 PMCID: PMC10442743 DOI: 10.1039/d3dt02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Romano-deGea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Huber MC, Schreiber A, Stühn LG, Schiller SM. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization. Biomaterials 2023; 299:122165. [PMID: 37290157 DOI: 10.1016/j.biomaterials.2023.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
The control of supramolecular complexes in living systems at the molecular level is an important goal in life-sciences. Spatiotemporal organization of molecular distribution & flow of such complexes are essential physicochemical processes in living cells and important for pharmaceutical processes. Membraneless organelles (MO) found in eukaryotic cells, formed by liquid-liquid phase-separation (LLPS) of intrinsically disordered proteins (IDPs) control and adjust intracellular organization. Artificially designed compartments based on LLPS open up a novel pathway to control chemical flux and partition in vitro and in vivo. We designed a library of chemically precisely defined block copolymer-like proteins based on elastin-like proteins (ELPs) with defined charge distribution and type, as well as polar and hydrophobic block domains. This enables the programmability of physicochemical properties and to control adjustable LLPS in vivo attaining control over intracellular partitioning and flux as role model for in vitro and in vivo applications. Tailor-made ELP-like block copolymer proteins exhibiting IDP-behavior enable LLPS formation in vitro and in vivo allowing the assembly of membrane-based and membraneless superstructures via protein phase-separation in E. coli. Subsequently, we demonstrate the responsiveness of protein phase-separated spaces (PPSSs) to environmental physicochemical triggers and their selective, charge-dependent and switchable interaction with DNA or extrinsic and intrinsic molecules enabling their selective shuttling across semipermeable phase boundaries including (cell)membranes. This paves the road for adjustable artificial PPSS-based storage and reaction spaces and the specific transport across phase boundaries for applications in pharmacy and synthetic biology.
Collapse
Affiliation(s)
- Matthias C Huber
- Institut für Pharmazeutische Technologie, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Andreas Schreiber
- Hahn-Schickard Gesellschaft für angewandte Forschung e. V., Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
| | - Stefan M Schiller
- Institut für Pharmazeutische Technologie, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
6
|
Ling Y, Xia X, Hao L, Wang W, Zhang H, Liu L, Liu W, Li Z, Tan C, Mao Z. Simultaneous Photoactivation of cGAS‐STING Pathway and Pyroptosis by Platinum (II) Triphenylamine Complexes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2022; 61:e202210988. [DOI: 10.1002/anie.202210988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yu‐Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiao‐Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wen‐Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhi‐Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
7
|
Ling YY, Xia XY, Hao L, Wang WJ, Zhang H, Liu LY, Liu W, Li ZY, Tan CP, Mao ZW. Simultaneous Photoactivation of cGAS‐STING Pathway and Pyroptosis by Pt(II)‐Triphenylamine Complexes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu-Yi Ling
- Sun Yat-sen University School of Chemistry Sun Yat-sen University School of Chemistry CHINA
| | - Xiao-Yu Xia
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Liang Hao
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Wen-Jin Wang
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Hang Zhang
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Liu-Yi Liu
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Wenting Liu
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Zhi-Yuan Li
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Cai-Ping Tan
- Sun Yat-sen University School of Chemistry School of Chemistry CHINA
| | - Zong-Wan Mao
- Sun Yat-sen University School of Chemistry School of Chemistry No. 135 Xingang Xi Road 510006 Guangzhou CHINA
| |
Collapse
|
8
|
Wamhoff EC, Romanov A, Huang H, Read BJ, Ginsburg E, Knappe GA, Kim HM, Farrell NP, Irvine DJ, Bathe M. Controlling Nuclease Degradation of Wireframe DNA Origami with Minor Groove Binders. ACS NANO 2022; 16:8954-8966. [PMID: 35640255 PMCID: PMC9649841 DOI: 10.1021/acsnano.1c11575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hellen Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin J Read
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric Ginsburg
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyun Min Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Krzysztoń-Russjan J, Chudziak J, Bednarek M, Anuszewska EL. Development of New PCR Assay with SYBR Green I for Detection of Mycoplasma, Acholeplasma, and Ureaplasma sp. in Cell Cultures. Diagnostics (Basel) 2021; 11:diagnostics11050876. [PMID: 34068904 PMCID: PMC8156504 DOI: 10.3390/diagnostics11050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Mycoplasma, Acholeplasma, and Ureaplasma sp. are atypical bacteria responsible for in vitro cell culture contaminations that can warp the results. These bacteria also cause human and animal infections and may lead to chronic diseases. In developed polymerase chain reaction (PCR) in this study a quantitative PCR with SYBR Green I fluorochrome was applied to facilitate the Mycoplasma, Acholeplasma, and Ureaplasma sp. DNA detection and identification. Screening Test-1 v.1 (triplex qPCR) allowed for the detection of 11 species. Test-1 v.2 (three single qPCRs) pre-identified three subgroups, allowing for the reduction of using single qPCRs in Test-2 for species identification. The range of both tests was consistent with pharmacopeial requirements for microbial quality control of mammal cells and included detection of M. arginini, M. orale, M. hyorhinis, M. fermentans, M. genitalium, M. hominis, M. pneumoniae, M. salivarium, M. pirum, A. laidlawii, and U. urealyticum. Limit of detection values varied between 125–300 and 50–100 number of copies per milliliter in Test-1 and Test-2, respectively. Test-1 and Test-2 showed fully concordant results, allowed for time-saving detection and/or identification of selected species from Mycoplasma, Acholeplasma, and Ureaplasma in tested cell cultures.
Collapse
Affiliation(s)
- Jolanta Krzysztoń-Russjan
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute (NMI), 00-725 Warsaw, Poland;
- Correspondence:
| | - Jakub Chudziak
- Internship at the Department of Biochemistry and Biopharmaceuticals, NMI Chelmska 30/34 Str., 00-725 Warsaw, Poland; (J.C.); (M.B.)
| | - Małgorzata Bednarek
- Internship at the Department of Biochemistry and Biopharmaceuticals, NMI Chelmska 30/34 Str., 00-725 Warsaw, Poland; (J.C.); (M.B.)
| | - Elżbieta Lidia Anuszewska
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute (NMI), 00-725 Warsaw, Poland;
| |
Collapse
|
10
|
Benassi JC, Barbosa FAR, Grinevicius VMAS, Ourique F, Coelho D, Felipe KB, Braga AL, Filho DW, Pedrosa RC. Novel Dihydropyrimidinone-Derived Selenoesters as Potential Cytotoxic Agents to Human Hepatocellular Carcinoma: Molecular Docking and DNA Fragmentation. Anticancer Agents Med Chem 2021; 21:703-715. [PMID: 32723262 DOI: 10.2174/1871520620666200728124640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Evidence point out promising anticancer activities of Dihydropyrimidinones (DHPM) and organoselenium compounds. This study aimed to evaluate the cytotoxic and antiproliferative potential of DHPM-derived selenoesters (Se-DHPM), as well as their molecular mechanisms of action. METHODS Se-DHPM cytotoxicity was evaluated against cancer lines (HeLa, HepG2, and MCF-7) and normal cells (McCoy). HepG2 clonogenic assay allowed verifying antiproliferative effects. The propidium iodide/ orange acridine fluorescence readings showed the type of cell death induced after treatments (72h). Molecular simulations with B-DNA and 49H showed docked positions (AutoDock Vina) and trajectories/energies (GROMACS). In vitro molecular interactions used CT-DNA and 49H applying UV-Vis absorbance and fluorescence. Comet assay evaluated DNA fragmentation of HepG2 cells. Flow cytometry analysis verified HepG2 cell cycle effects. Levels of proteins (β-actin, p53, BAX, HIF-1α, γH2AX, PARP-1, cyclin A, CDK-2, and pRB) were quantified by immunoblotting. RESULTS Among Se-DHPM, 49H was selectively cytotoxic to HepG2 cells, reduced cell proliferation, and increased BAX (80%), and p53 (66%) causing apoptosis. Molecular assays revealed 49H inserted in the CT-DNA molecule causing the hypochromic effect. Docking simulations showed H-bonds and hydrophobic interactions, which kept the ligand partially inserted into the DNA minor groove. 49H increased the DNA damage (1.5 fold) and γH2AX level (153%). Besides, treatments reduced PARP-1 (60%) and reduced pRB phosphorylation (21%) as well as decreased cyclin A (46%) arresting cell cycle at the G1 phase. CONCLUSION Together all data obtained confirmed the hypothesis of disruptive interactions between Se-DHPM and DNA, thereby highlighting its potential as a new anticancer drug.
Collapse
Affiliation(s)
- Jean C Benassi
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flavio A R Barbosa
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Fabiana Ourique
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Coelho
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karina B Felipe
- Departament of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Antônio L Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Danilo W Filho
- Departament of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rozangela C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
11
|
Abstract
Obtaining high-quality models for nucleic acid structures by automated model building programs (AMB) is still a challenge. The main reasons are the rather low resolution of the diffraction data and the large number of rotatable bonds in the main chains. The application of the most popular and documented AMB programs (e.g., PHENIX.AUTOBUILD, NAUTILUS and ARP/wARP) may provide a good assessment of the state of the art. Quite recently, a cyclic automated model building (CAB) package was described; it is a new AMB approach that makes the use of BUCCANEER for protein model building cyclic without modifying its basic algorithms. The applications showed that CAB improves the efficiency of BUCCANEER. The success suggested an extension of CAB to nucleic acids—in particular, to check if cyclically including NAUTILUS in CAB may improve its effectiveness. To accomplish this task, CAB algorithms designed for protein model building were modified to adapt them to the nucleic acid crystallochemistry. CAB was tested using 29 nucleic acids (DNA and RNA fragments). The phase estimates obtained via molecular replacement (MR) techniques were automatically submitted to phase refinement and then used as input for CAB. The experimental results from CAB were compared with those obtained by NAUTILUS, ARP/wARP and PHENIX.AUTOBUILD.
Collapse
|
12
|
Holmgaard List N, Knoops J, Rubio-Magnieto J, Idé J, Beljonne D, Norman P, Surin M, Linares M. Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder. J Am Chem Soc 2017; 139:14947-14953. [DOI: 10.1021/jacs.7b05994] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nanna Holmgaard List
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
| | - Jérémie Knoops
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Julien Idé
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Patrick Norman
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
| | - Mathieu Surin
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Mathieu Linares
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
- Swedish
e-Science Research Centre, KTH Royal Institute of Technology, 104 50 Stockholm, Sweden
| |
Collapse
|