1
|
Chen R, Rey JA, Tuna IS, Tran DD, Sarntinoranont M. A Spatial Interpolation Approach to Assign Magnetic Resonance Imaging-Derived Material Properties for Finite Element Models of Adeno-Associated Virus Infusion Into a Recurrent Brain Tumor. J Biomech Eng 2024; 146:101001. [PMID: 38581376 PMCID: PMC11110824 DOI: 10.1115/1.4064966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
Adeno-associated virus (AAV) is a clinically useful gene delivery vehicle for treating neurological diseases. To deliver AAV to focal targets, direct infusion into brain tissue by convection-enhanced delivery (CED) is often needed due to AAV's limited penetration across the blood-brain-barrier and its low diffusivity in tissue. In this study, computational models that predict the spatial distribution of AAV in brain tissue during CED were developed to guide future placement of infusion catheters in recurrent brain tumors following primary tumor resection. The brain was modeled as a porous medium, and material property fields that account for magnetic resonance imaging (MRI)-derived anatomical regions were interpolated and directly assigned to an unstructured finite element mesh. By eliminating the need to mesh complex surfaces between fluid regions and tissue, mesh preparation was expedited, increasing the model's clinical feasibility. The infusion model predicted preferential fluid diversion into open fluid regions such as the ventricles and subarachnoid space (SAS). Additionally, a sensitivity analysis of AAV delivery demonstrated that improved AAV distribution in the tumor was achieved at higher tumor hydraulic conductivity or lower tumor porosity. Depending on the tumor infusion site, the AAV distribution covered 3.67-70.25% of the tumor volume (using a 10% AAV concentration threshold), demonstrating the model's potential to inform the selection of infusion sites for maximal tumor coverage.
Collapse
Affiliation(s)
- Reed Chen
- Department of Biomedical Engineering, Duke University, 407 Towerview Rd, Box 97756, Durham, NC 27708
| | - Julian A. Rey
- Department of Mechanical & Aerospace Engineering, University of Florida, 142 New Engineering Building, P.O. Box 116250, Gainesville, FL 32611
- University of Florida
| | - Ibrahim S. Tuna
- Department of Radiology, University of Florida College of Medicine, P.O. Box 100374, Gainesville, FL 32610-0374
- University of Florida
| | - David D. Tran
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- University of Southern California
| | - Malisa Sarntinoranont
- Department of Mechanical & Aerospace Engineering, University of Florida, 497 Wertheim, P.O. Box 116250, Gainesville, FL 32611
| |
Collapse
|
2
|
Yuan T, Zhan W, Terzano M, Holzapfel GA, Dini D. A comprehensive review on modeling aspects of infusion-based drug delivery in the brain. Acta Biomater 2024; 185:1-23. [PMID: 39032668 DOI: 10.1016/j.actbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Brain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions. Behind these interactions are principles of biophysics and biomechanics that can be described and captured using mathematical models. Although biomechanics and biophysics have received considerable attention, a comprehensive mechanistic model for modeling infusion-based drug delivery in the brain has yet to be developed. Therefore, this article reviews the state-of-the-art mechanistic studies that can support the development of next-generation models for infusion-based brain drug delivery from the perspective of fluid mechanics, solid mechanics, and mathematical modeling. The supporting techniques and database are also summarized to provide further insights. Finally, the challenges are highlighted and perspectives on future research directions are provided. STATEMENT OF SIGNIFICANCE: Despite the immense potential of infusion-based drug delivery methods for bypassing the blood-brain barrier and efficiently delivering drugs to the brain, achieving optimal drug distribution remains a significant challenge. This is primarily due to our limited understanding of the complex interactions between drugs and the brain that are governed by principles of biophysics and biomechanics, and can be described using mathematical models. This article provides a comprehensive review of state-of-the-art mechanistic studies that can help to unravel the mechanism of drug transport in the brain across the scales, which underpins the development of next-generation models for infusion-based brain drug delivery. More broadly, this review will serve as a starting point for developing more effective treatments for brain diseases and mechanistic models that can be used to study other soft tissue and biomaterials.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Noh DH, Zadeh AH, Zhang H, Wang F, Ryu S, Zhang C, Kim S. Convection-Enhanced Drug Delivery: Experimental and Analytical Studies of Infusion Behavior in an In Vitro Brain Surrogate. Ann Biomed Eng 2024; 52:1693-1705. [PMID: 38502430 DOI: 10.1007/s10439-024-03482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Convection-enhanced drug delivery (CED) directly infuses drugs with a large molecular weight toward target cells as a therapeutic strategy for neurodegenerative diseases and brain cancers. Despite the success of many previous in vitro experiments on CED, challenges still remain. In particular, a theoretical predictive model is needed to form a basis for treatment planning, and developing such a model requires well-controlled injection tests that can rigorously capture the convective (advective) and diffusive transport of an infusate. For this purpose, we investigated the advection-diffusion transport of an infusate (bromophenol blue solution) in the brain surrogate (0.2% w/w agarose gel) at different injection rates, ranging from 0.25 to 4 μL/min, by closely monitoring changes in the color intensity, propagation distance, and injection pressures. One dimensional closed-form solution was examined with two variable sets, such as the mathematically calculated coefficient of molecular diffusion and average velocity, and the hydraulic dispersion coefficient and seepage velocity by the least squared method. As a result, the seepage velocity was greater than the average velocity to some extent, particularly for the later infusion times. The poroelastic deformation in the brain surrogate might lead to changes in porosity, and consequently, slight increases in the actual flow velocity as infusion continues. The limitation of efficiency of the single catheter was analyzed by dimensionless analysis. Lastly, this study suggests a simple but robust approach that can properly capture the convective (advective) and diffusive transport of an infusate in an in vitro brain surrogate via well-controlled injection tests.
Collapse
Affiliation(s)
- Dong-Hwa Noh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amin Hosseini Zadeh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Alfred Benesch & Company, Lincoln, Nebraska, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Fei Wang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chi Zhang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Seunghee Kim
- Department of Civil and Environmental Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
5
|
Adhikari G, Sarojasamhita VP, Richardson-Powell V, Farooqui A, Budzinski M, Garvey DT, Yang J, Katz D, Crouch B, Ramanujam N, Mueller JL. Impact of Injection-Based Delivery Parameters on Local Distribution Volume of Ethyl-Cellulose Ethanol Gel in Tissue and Tissue Mimicking Phantoms. IEEE Trans Biomed Eng 2024; 71:1488-1498. [PMID: 38060363 PMCID: PMC11086015 DOI: 10.1109/tbme.2023.3340613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Local drug delivery aims to minimize systemic toxicity by preventing off-target effects; however, injection parameters influencing depot formation of injectable gels have yet to be thoroughly studied. We explored the effects of needle characteristics, injection depth, rate, volume, and polymer concentration on gel ethanol distribution in both tissue and phantoms. METHODS The polymer ethyl cellulose (EC) was added to ethanol to form an injectable gel to ablate cervical precancer and cancer. Tissue mimicking phantoms composed of 1% agarose dissolved in deionized water were used to establish overall trends between various injection parameters and the resulting gel distribution. Additional experiments were performed in excised swine cervices with a CT-imageable injectate formulation, which enabled visualization of the distribution without tissue sectioning. RESULTS Needle type and injection rate had minimal impact on gel distribution, while needle depths ≥13 mm yielded significantly larger distributions. Needle gauge and EC concentration impacted injection pressure with maximum gel distribution achieved when the pressure was 70-250 kPa. Injection volumes ≤3 mL of 6% EC-ethanol minimized fluid leakage away from the injection site. Results guided the development of a speculum-compatible hand-held injector to deliver gel ethanol into the cervix. CONCLUSION Needle depth, gauge, and polymer concentration are critical to consider when delivering injectable gels. SIGNIFICANCE This study addressed key questions related to the impact of injection-based parameters on gel distribution at a scale relevant to human applications including: 1) how best to deliver EC-ethanol into the cervix and 2) general insights about injection protocols relevant to the delivery of injectable gels in tissue.
Collapse
Affiliation(s)
- Gatha Adhikari
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | - Asma Farooqui
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maya Budzinski
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David T. Garvey
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jeffrey Yang
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jenna L. Mueller
- Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of OB-GYN & Reproductive Science, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Mehta JN, Morales BE, Hsu FC, Rossmeisl JH, Rylander CG. Constant Pressure Convection-Enhanced Delivery Increases Volume Dispersed With Catheter Movement in Agarose. J Biomech Eng 2022; 144:111003. [PMID: 35656789 PMCID: PMC9254693 DOI: 10.1115/1.4054729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Convection-enhanced delivery (CED) has been extensively studied for drug delivery to the brain due to its inherent ability to bypass the blood-brain barrier. Unfortunately, CED has also been shown to inadequately distribute therapeutic agents over a large enough targeted tissue volume to be clinically beneficial. In this study, we explore the use of constant pressure infusions in addition to controlled catheter movement as a means to increase volume dispersed (Vd) in an agarose gel brain tissue phantom. Constant flow rate and constant pressure infusions were conducted with a stationary catheter, a catheter retracting at a rate of 0.25 mm/min, and a catheter retracting at a rate of 0.5 mm/min. The 0.25 mm/min and 0.5 mm/min retracting constant pressure catheters resulted in significantly larger Vd compared to any other group, with a 105% increase and a 155% increase compared to the stationary constant flow rate catheter, respectively. These same constant pressure retracting infusions resulted in a 42% and 45% increase in Vd compared to their constant flow rate counterparts. Using constant pressure infusions coupled with controlled catheter movement appears to have a beneficial effect on Vd in agarose gel. Furthermore, constant pressure infusions reveal the fundamental limitation of flow-driven infusions in both controlled catheter movement protocols as well as in stationary protocols where maximum infusion volume can never be reliably obtained.
Collapse
Affiliation(s)
- Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX, 78712-1591
| | - Brianna E. Morales
- Department of Biomedical Engineering, University of Texas at Austin, 301 E. Dean Keeton St. C2100, Austin, TX, 78712-2100
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine Medical, Center Boulevard, Winston-Salem, NC 27157
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, 205 Duckpond Drive, Blacksburg, VA 24061
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX, 78712-1591
| |
Collapse
|
7
|
Brady ML, Grondin R, Zhang Z, Pomerleau F, Powell D, Huettl P, Wilson M, Stice J, Gerhardt GA, Abramov V, Raghavan R. In-vitro and in-vivo performance studies of a porous infusion catheter designed for intraparenchymal delivery of therapeutic agents of varying size. J Neurosci Methods 2022; 378:109643. [PMID: 35691412 DOI: 10.1016/j.jneumeth.2022.109643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Limitations have previously existed for the use of brain infusion catheters with extended delivery port designs to achieve larger distribution volumes using convection-enhanced delivery (CED), due to poor transmittance of materials and uncontrolled backflow. The goal of this study was to evaluate a novel brain catheter that has been designed to allow for extended delivery and larger distribution volumes with limited backflow of fluid. It was characterized using a broad range of therapeutic pore sizes both for transmittance across the membranes to address possible occlusion and for distribution in short term infusion studies, both in-vitro in gels and in-vivo in canines. METHODS Brain catheters with pore sizes of 10, 12, 15, 20 and 30 µm were evaluated using three infusates prepared in 0.9% sterile saline with diameters approximating 2, 5, and 30 nm, respectively. Magnevist™ was chosen as the small molecule infusate to mimic low-molecular weight therapeutics. Galbumin™ served as a surrogate for an assortment of proteins used for brain cancer and Parkinson's disease. Gadoluminate™ was used to assess the distribution of large therapeutics, such as adeno-associated viral particles and synthetic nanoparticles. The transmittance of the medium and large tracer particles through catheters of different pore size (15, 20 and 30 µm) was measured by MRI and compared with the measured concentration of the control. Infusions into 0.2% agarose gels were performed in order to evaluate differences in transmittance and distribution of the small, medium, and large tracer particles through catheters with different pore sizes (10, 12, 15, 20 and 30 µm). In-vivo infusions were performed in the canine in order to evaluate the ability of the catheter to infuse the small, medium, and large tracer particles into brain parenchyma at high flow rates through catheters with different pore sizes (10, 15, and 20 µm). Two catheters were stereotactically inserted into the brain for infusion, one per hemisphere, in each animal (N = 6). RESULTS The transmittance of Galbumin and Gadoluminate across the catheter membrane surface was 100% to within the accuracy of the measurements. There was no evidence of any blockage or retardation of any of the infusates. Catheter pore size did not appear to significantly affect transmittance or distribution in gels of any of the molecule sizes in the range of catheter pore sizes tested. There were differences in the distributions between the different tracer molecules: Magnevist produced relatively large distributions, followed by Gadoluminate and Galbumin. We observed no instances of uncontrolled backflow in a total of 12 in-vivo infusions. In addition, several of the infusions resulted in substantial amounts remaining in tissue. We expect the in-tissue distributions to be substantially improved in the larger human brain. COMPARISON WITH EXISTING METHODS The new porous brain catheter performed well in terms of both backflow and intraparenchymal infusion of molecules of varying size in the canine brain under CED flow conditions. CONCLUSIONS Overall, the data presented in this report support that the novel porous brain catheter can deliver therapeutics of varying sizes at high infusion rates in the brain parenchyma, and resist backflow that can compromise the efficacy of CED therapy. Additional work is needed to further characterize the brain catheter, including animal toxicity studies of chronically implanted brain catheters to lay the foundation for its use in the clinic.
Collapse
Affiliation(s)
- Martin L Brady
- Therataxis, LLC, 4203 Somerset Place, Baltimore, MD 21210, USA
| | - Richard Grondin
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - Zhiming Zhang
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - Francois Pomerleau
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - David Powell
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - Pete Huettl
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - Mike Wilson
- Occam Design, 1201 East Oak Street, Louisville, KY 40204, USA
| | - Jim Stice
- Cerovations, LLC, 1000 Westgate Dr, St. Paul, MN 55114, USA
| | - Greg A Gerhardt
- University of Kentucky College of Medicine, Department of Neuroscience, 780 Rose Street, Lexington, KY 40536, USA
| | - Vasiliy Abramov
- Occam Design, 1201 East Oak Street, Louisville, KY 40204, USA
| | - Raghu Raghavan
- Therataxis, LLC, 4203 Somerset Place, Baltimore, MD 21210, USA.
| |
Collapse
|
8
|
Myrovali E. Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:2598-2607. [PMID: 35580307 DOI: 10.1021/acsabm.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tremendous attention has been given to hydrogels due to their mechanical and physical properties. Hydrogels are promising biomaterials due to their high biocompatibility. Magnetic hydrogels, which are based on hydrogel incorporated magnetic nanoparticles, have been proposed in biomedical applications. The advantages of magnetic hydrogels are that they can easily respond to externally applied magnetic fields and prevent the leakage of magnetic nanoparticles in the surrounding area. Herein, a prototype hybrid stent of magnetic hydrogel was fabricated, characterized, and evaluated for magnetic hyperthermia treatment. First, magnetic hydrogel was produced by a solution of alginate with magnetic nanoparticles in a bath of calcium chloride (5-15 mg mL-1) in order to achieve the external gelation and optimize the heating rate. The increased concentration (1-8 mg mL-1) of magnetic nanoparticles inside the hydrogel resulted in almost zero leakage of iron oxide nanoparticles after 15 days, guaranteeing that they can be used safely in biomedical applications. Thus, magnetic hybrid stents, which are based on the magnetic hydrogels, were developed in a simple way and were evaluated both in an agarose phantom model and in an ex vivo tissue sample at 30 mT and 765 kHz magnetic hyperthermia conditions to examine the heating efficiency. In both cases, hyperthermia results indicate excellent heat generation from the hybrid stent and facile temperature control via tuning magnetic nanoparticle concentration (2-8 mg mL-1). This study can be a promising method that promotes spatially thermal distribution in cancer treatment or restenosis treatment of hollow organs.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.,Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, 57001 Thessaloniki, Greece
| |
Collapse
|
9
|
Jamal A, Yuan T, Galvan S, Castellano A, Riva M, Secoli R, Falini A, Bello L, Rodriguez y Baena F, Dini D. Insights into Infusion-Based Targeted Drug Delivery in the Brain: Perspectives, Challenges and Opportunities. Int J Mol Sci 2022; 23:3139. [PMID: 35328558 PMCID: PMC8949870 DOI: 10.3390/ijms23063139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
Targeted drug delivery in the brain is instrumental in the treatment of lethal brain diseases, such as glioblastoma multiforme, the most aggressive primary central nervous system tumour in adults. Infusion-based drug delivery techniques, which directly administer to the tissue for local treatment, as in convection-enhanced delivery (CED), provide an important opportunity; however, poor understanding of the pressure-driven drug transport mechanisms in the brain has hindered its ultimate success in clinical applications. In this review, we focus on the biomechanical and biochemical aspects of infusion-based targeted drug delivery in the brain and look into the underlying molecular level mechanisms. We discuss recent advances and challenges in the complementary field of medical robotics and its use in targeted drug delivery in the brain. A critical overview of current research in these areas and their clinical implications is provided. This review delivers new ideas and perspectives for further studies of targeted drug delivery in the brain.
Collapse
Affiliation(s)
- Asad Jamal
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Stefano Galvan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Antonella Castellano
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy;
| | - Riccardo Secoli
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Andrea Falini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, 20122 Milan, Italy;
| | - Ferdinando Rodriguez y Baena
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| |
Collapse
|
10
|
Yeboah IB, Hatekah SWK, Yaya A, Kan-Dapaah K. Photothermally-Heated Superparamagnetic Polymeric Nanocomposite Implants for Interstitial Thermotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:955. [PMID: 35335769 PMCID: PMC8950572 DOI: 10.3390/nano12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023]
Abstract
Photothermally-heated polymer-based superparamagnetic nanocomposite (SNC) implants have the potential to overcome limitations of the conventional inductively-heated ferromagnetic metallic alloy implants for interstitial thermotherapy (IT). This paper presents an assessment of a model SNC-poly-dimethylsiloxane (PDMS) and Fe3O4 nanoparticles (MNP)-implant for IT. First, we performed structural and optical characterization of the commercially purchased MNPs, which were added to the PDMS to prepare the SNCs (MNP weight fraction =10 wt.%) that were used to fabricate cubic implants. We studied the structural properties of SNC and characterized the photothermal heating capabilities of the implants in three different media: aqueous solution, cell (in-vitro) suspensions and agarose gel. Our results showed that the spherical MNPs, whose optical absorbance increased with concentration, were uniformly distributed within the SNC with no new bond formed with the PDMS matrix and the SNC implants generated photothermal heat that increased the temperature of deionized water to different levels at different rates, decreased the viability of MDA-MB-231 cells and regulated the lesion size in agarose gel as a function of laser power only, laser power or exposure time and the number of implants, respectively. We discussed the opportunities it offers for the development of a smart and efficient strategy that can enhance the efficacy of conventional interstitial thermotherapy. Collectively, this proof-of-concept study shows the feasibility of a photothermally-heated polymer-based SNC implant technique.
Collapse
Affiliation(s)
- Ivan B. Yeboah
- Department of Biomedical Engineering, School of Engineering Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana; (I.B.Y.); (S.W.K.H.)
| | - Selassie W. K. Hatekah
- Department of Biomedical Engineering, School of Engineering Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana; (I.B.Y.); (S.W.K.H.)
| | - Abu Yaya
- Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana;
| | - Kwabena Kan-Dapaah
- Department of Biomedical Engineering, School of Engineering Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana; (I.B.Y.); (S.W.K.H.)
| |
Collapse
|
11
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
12
|
Head T, Tokranova N, Cady NC. Lithographically patterned micro-nozzles for controlling fluid flow profiles for drug delivery and in vitro imaging applications. MRS COMMUNICATIONS 2021; 11:584-589. [PMID: 37063609 PMCID: PMC10104572 DOI: 10.1557/s43579-021-00078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 06/19/2023]
Abstract
Precisely controlling delivery of drugs and other reagents is important for intravital microscopy studies. In this work, photolithographic integration of micro-nozzles onto a microfluidic platform was performed to tune the fluid flow profile and depth of penetration into biological tissue mimics. Performance characteristics were measured by correlating the flow rate through the device to the applied pressure and/or delivery of dyes into solution and agarose gel-based phantom tissue. From these results, the implementation of micro-nozzles was demonstrated to significantly improve the lateral dispersion of delivered fluid and increase the depth of penetration into phantom tissue.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Natalya Tokranova
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
13
|
Myrovali E, Papadopoulos K, Iglesias I, Spasova M, Farle M, Wiedwald U, Angelakeris M. Long-Range Ordering Effects in Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21602-21612. [PMID: 33929817 DOI: 10.1021/acsami.1c01820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Irene Iglesias
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| |
Collapse
|
14
|
Tsiapla AR, Kalimeri AA, Maniotis N, Myrovali E, Samaras T, Angelakeris M, Kalogirou O. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Int J Hyperthermia 2021; 38:511-522. [PMID: 33784924 DOI: 10.1080/02656736.2021.1899310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: In magnetic particle hyperthermia, a promising least-invasive cancer treatment, malignant regions in proximity with magnetic nanoparticles undergo heat stress, while unavoidably surrounding healthy tissues may also suffer from heat either directly or indirectly by the induced eddy currents, due to the developed electric fields as well. Here, we propose a facile upgrade of a typical magnetic particle hyperthermia protocol, to selectively mitigate eddy currents' heating without compromising the beneficial role of heating in malignant regions.Method: The key idea is to apply the external magnetic field intermittently (in an ON/OFF pulse mode), instead of the continuous field mode typically applied. The parameters of the intermittent field mode, such as time intervals (ON time: 25-100 s, OFF time: 50-200 s, Duty Cycle:16-100%) and field amplitude (30-70 mT) are optimized based on evaluation on healthy tissue and cancer tissue phantoms. The goal is to sustain in cancer tissue phantom the maximum temperature increase (preferably within 4-8°C above body temperature of 37°C), while in the healthy tissue phantom temperature variation is suppressed far below the 4°C dictating the eddy current mitigation.Results: Optimum conditions of intermittent field (ON/OFF: 50/100 in s, Duty Cycle: 33%, magnetic field: 45mT) are then examined in ex-vivo samples verifying the successful suppression of eddy currents. Simultaneously, a well-elaborated theoretical approach provides a rapid calculation of temperature increase and, furthermore, the ability to quickly simulate a variety of duty cycle times and field controls may save experimental time.Conclusion: Eventually, the application of an intermittent field mode in a magnetic particle hyperthermia protocol, succeeds in eddy current mitigation in surrounding tissues and allows for the application of larger field amplitudes that may augment hyperthermia efficiency without objecting typical biomedical applicability field constraints such as Brezovich criterion.
Collapse
Affiliation(s)
- Aikaterini-Rafailia Tsiapla
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Antonia-Areti Kalimeri
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Nikolaos Maniotis
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Eirini Myrovali
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Mavroeidis Angelakeris
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Orestis Kalogirou
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| |
Collapse
|
15
|
Mehta JN, McRoberts GR, Rylander CG. Controlled Catheter Movement Affects Dye Dispersal Volume in Agarose Gel Brain Phantoms. Pharmaceutics 2020; 12:E753. [PMID: 32796527 PMCID: PMC7464141 DOI: 10.3390/pharmaceutics12080753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023] Open
Abstract
The standard of care for treatment of glioblastoma results in a mean survival of only 12 to 15 months. Convection-enhanced delivery (CED) is an investigational therapy to treat glioblastoma that utilizes locoregional drug delivery via a small-caliber catheter placed into the brain parenchyma. Clinical trials have failed to reach their endpoints due to an inability of standard catheters to fully saturate the entire brain tumor and its margins. In this study, we examine the effects of controlled catheter movement on dye dispersal volume in agarose gel brain tissue phantoms. Four different catheter movement control protocols (stationary, continuous retraction, continuous insertion, and intermittent insertion) were applied for a single-port stepped catheter capable of intrainfusion movement. Infusions of indigo carmine dye into agarose gel brain tissue phantoms were conducted during the controlled catheter movement. The dispersal volume (Vd), forward dispersal volume (Vdf), infusion radius, backflow distance, and forward flow distance were quantified for each catheter movement protocol using optical images recorded throughout the experiment. Vd and Vdf for the retraction and intermittent insertion groups were significantly higher than the stationary group. The stationary group had a small but significantly larger infusion radius than either the retracting or the intermittent insertion groups. The stationary group had a greater backflow distance and lower forward flow distance than either the retraction or the intermittent insertion groups. Continuous retraction of catheters during CED treatments can result in larger Vd than traditional stationary catheters, which may be useful for improving the outcomes of CED treatment of glioblastoma. However, catheter design will be crucial in preventing backflow of infusate up the needle tract, which could significantly alter both the Vd and shape of the infusion.
Collapse
Affiliation(s)
- Jason N. Mehta
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712-1591, USA;
| | - Gabrielle R. McRoberts
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712-1591, USA;
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712-1591, USA;
| |
Collapse
|
16
|
Salunkhe A, Khot V, Patil SI, Tofail SA, Bauer J, Thorat ND. MRI Guided Magneto-chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics. ACS APPLIED BIO MATERIALS 2020; 3:2305-2313. [DOI: 10.1021/acsabm.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ashwini Salunkhe
- Department of Physics, Rajaram College, Kolhapur, Maharashtra 416004, India
- Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Vishwajeet Khot
- Department of Medical Physics, Centre for Interdisciplinary Research, D Y Patil Education Society (Institution Deemed to be University), Kolhapur, Maharashtra 416006, India
| | - S. I. Patil
- Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
17
|
Elenes EY, Rausch MK, Rylander CG. Parametric Study of the Design Variables of an Arborizing Catheter on Dispersal Volume Using a Biphasic Computational Model. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0310021-310029. [PMID: 35833170 PMCID: PMC8597557 DOI: 10.1115/1.4042874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Indexed: 06/15/2023]
Abstract
Convection-enhanced delivery (CED) is an investigational therapy developed to circumvent the limitations of drug delivery to the brain. Catheters are used in CED to locally infuse therapeutic agents into brain tissue. CED has demonstrated clinical utility for treatment of malignant brain tumors; however, CED has been limited by lack of CED-specific catheters. Therefore, we developed a multiport, arborizing catheter to maximize drug distribution for CED. Using a multiphasic finite element (FE) framework, we parametrically determined the influence of design variables of the catheter on the dispersal volume of the infusion. We predicted dispersal volume of a solute infused in a permeable hyperelastic solid matrix, as a function of separation distance (ranging from 0.5 to 2.0 cm) of imbedded infusion cavities that represented individual ports in a multiport catheter. To validate the model, we compared FE solutions of pressure-controlled infusions to experimental data of indigo carmine dye infused in agarose tissue phantoms. The Tc50, defined as the infusion time required for the normalized solute concentration between two sources to equal 50% of the prescribed concentration, was determined for simulations with infusion pressures ranging from 1 to 4 kPa. In our validated model, we demonstrate that multiple ports increase dispersal volume with increasing port distance but are associated with a significant increase in infusion time. Tc50 increases approximately tenfold when doubling the port distance. Increasing the infusion flow rate (from 0.7 μL/min to 8.48 μL/min) can mitigate the increased infusion time. In conclusion, a compromise of port distance and flow rate could improve infusion duration and dispersal volume.
Collapse
Affiliation(s)
- Egleide Y Elenes
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, Stop C0600, Austin, TX 78712-1221; Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - Christopher G Rylander
- Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712-1591; Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| |
Collapse
|
18
|
Abstract
Gliomas are the most common malignancies of the brain and have a mean survival of 12 months with only 5-10% of the patients surviving for more than 5 years, independent of treatment after diagnosis. Conventional treatment modalities have found the modest success in reducing tumor burden and metastases. Presence of different biological barriers and drug-resistance efflux transporters are crucial for tumor recurrence and treatment failure. Nanotechnology may amend these circumstances by targeting residual infiltrating malignant cells with minimal damage to normal cells, on-demand release and an improved cellular uptake by tumor cells. This review highlights the current status and advances in nanotechnology for treatment of gliomas.
Collapse
|
19
|
Efremova MV, Nalench YA, Myrovali E, Garanina AS, Grebennikov IS, Gifer PK, Abakumov MA, Spasova M, Angelakeris M, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Size-selected Fe 3O 4-Au hybrid nanoparticles for improved magnetism-based theranostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2684-2699. [PMID: 30416920 PMCID: PMC6204820 DOI: 10.3762/bjnano.9.251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 05/24/2023]
Abstract
Size-selected Fe3O4-Au hybrid nanoparticles with diameters of 6-44 nm (Fe3O4) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality Fe3O4 nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter Fe3O4-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an extraordinarily high r 2-relaxivity of 495 mM-1·s-1 along with a specific loss power of 617 W·gFe -1 and 327 W·gFe -1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4-Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Yulia A Nalench
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Eirini Myrovali
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Ivan S Grebennikov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Polina K Gifer
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russia
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Makis Angelakeris
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| |
Collapse
|
20
|
Parupudi T, Rahimi R, Ammirati M, Sundararajan R, Garner AL, Ziaie B. Fabrication and characterization of implantable flushable electrodes for electric field-mediated drug delivery in a brain tissue-mimic agarose gel. Electrophoresis 2018; 39:2262-2269. [PMID: 29947027 DOI: 10.1002/elps.201800161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Tejasvi Parupudi
- School of Electrical and Computer Engineering; Purdue University; West Lafayette IN USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering; Purdue University; West Lafayette IN USA
- Birck Nanotechnology Center; Purdue University; West Lafayette IN USA
| | - Mario Ammirati
- Department of Neurological Surgery; The Ohio State University; Wexner Medical Center; Columbus OH USA
| | - Raji Sundararajan
- School of Engineering Technology; Purdue University; West Lafayette IN USA
| | - Allen L. Garner
- School of Electrical and Computer Engineering; Purdue University; West Lafayette IN USA
- School of Nuclear Engineering; Purdue University; West Lafayette IN USA
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette IN USA
| | - Babak Ziaie
- School of Electrical and Computer Engineering; Purdue University; West Lafayette IN USA
- Birck Nanotechnology Center; Purdue University; West Lafayette IN USA
| |
Collapse
|
21
|
Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
22
|
Development of enhanced ethanol ablation as an alternative to surgery in treatment of superficial solid tumors. Sci Rep 2017; 7:8750. [PMID: 28821832 PMCID: PMC5562881 DOI: 10.1038/s41598-017-09371-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
While surgery is at the foundation of cancer treatment, its access is limited in low-income countries. Here, we describe development of a low-cost alternative therapy based on intratumoral ethanol injection suitable for resource-limited settings. Although ethanol-based tumor ablation is successful in treating hepatocellular carcinomas, the necessity for multiple treatments, injection of large fluid volumes, and decreased efficacy in treatment of non-capsulated tumors limit its applicability. To address these limitations, we investigated an enhanced ethanol ablation strategy to retain ethanol within the tumor through the addition of ethyl cellulose. This increases the viscosity of injected ethanol and forms an ethanol-based gel-phase upon exposure to the aqueous tumor environment. This technique was first optimized to maximize distribution volume, using tissue-simulating phantoms. Then, chemically-induced epithelial tumors in the hamster cheek pouch were treated. As controls, pure ethanol injections of either four times or one-fourth the tumor volume induced complete regression of 33% and 0% of tumors, respectively. In contrast, ethyl cellulose-ethanol injections of one-fourth the tumor volume induced complete regression in 100% of tumors. These results contribute to proof-of-concept for enhanced ethanol ablation as a novel and effective alternative to surgery for tumor treatment, with relevance to resource-limited settings.
Collapse
|
23
|
Lueshen E, Tangen K, Mehta AI, Linninger A. Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics. Med Eng Phys 2017; 45:15-24. [DOI: 10.1016/j.medengphy.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
|
24
|
Angelakeris M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim Biophys Acta Gen Subj 2017; 1861:1642-1651. [PMID: 28219721 DOI: 10.1016/j.bbagen.2017.02.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 11/18/2022]
Abstract
Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- M Angelakeris
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
25
|
Lai P, Lechtman E, Mashouf S, Pignol JP, Reilly RM. Depot system for controlled release of gold nanoparticles with precise intratumoral placement by permanent brachytherapy seed implantation (PSI) techniques. Int J Pharm 2016; 515:729-739. [DOI: 10.1016/j.ijpharm.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022]
|
26
|
Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Sci Rep 2016; 6:37934. [PMID: 27897195 PMCID: PMC5126575 DOI: 10.1038/srep37934] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023] Open
Abstract
In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.
Collapse
|
27
|
Malloy KE, Li J, Choudhury GR, Torres A, Gupta S, Kantorak C, Goble T, Fox PT, Clarke GD, Daadi MM. Magnetic Resonance Imaging-Guided Delivery of Neural Stem Cells into the Basal Ganglia of Nonhuman Primates Reveals a Pulsatile Mode of Cell Dispersion. Stem Cells Transl Med 2016; 6:877-885. [PMID: 28297573 PMCID: PMC5442780 DOI: 10.5966/sctm.2016-0269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023] Open
Abstract
Optimal stem cell delivery procedures are critical to the success of the cell therapy approach. Variables such as flow rate, suspension solution, needle diameter, cell density, and tissue mechanics affect tissue penetration, backflow along the needle, and the dispersion and survival of injected cells during delivery. Most cell transplantation centers engaged in human clinical trials use custom‐designed cannula needles, syringes, or catheters, sometimes precluding the use of magnetic resonance imaging (MRI)‐guided delivery to target tissue. As a result, stem cell therapies may be hampered because more than 80% of grafted cells do not survive the delivery—for example, to the heart, liver/pancreas, and brain—which translates to poor patient outcomes. We developed a minimally invasive interventional MRI (iMRI) approach for intraoperatively imaging neural stem cell (NSC) delivery procedures. We used NSCs prelabeled with a contrast agent and real‐time magnetic resonance imaging to guide the injection cannula to the target and to track the delivery of the cells into the putamen of baboons. We provide evidence that cell injection into the brain parenchyma follows a novel pulsatile mode of cellular discharge from the delivery catheter despite a constant infusion flow rate. The rate of cell infusion significantly affects the dispersion and viability of grafted cells. We report on our investigational use of a frameless navigation system for image‐guided NSC transplantation using a straight cannula. Through submillimeter accuracy and real‐time imaging, iMRI approaches may improve the safety and efficacy of neural cell transplantation therapies. Stem Cells Translational Medicine2017;6:877–885
Collapse
Affiliation(s)
- Kristen E. Malloy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jinqi Li
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Gourav R. Choudhury
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - April Torres
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shruti Gupta
- MRI Interventions, Inc., Irvine, California, USA
| | | | - Tim Goble
- MRI Interventions, Inc., Irvine, California, USA
| | - Peter T. Fox
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Geoffrey D. Clarke
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
28
|
Attar MM, Amanpour S, Haghpanahi M, Haddadi M, Rezaei G, Muhammadnejad S, HajiAkhoundzadeh M, Barati T, Sadeghi F, Javadi S. Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line. Int J Hyperthermia 2016; 32:858-867. [DOI: 10.1080/02656736.2016.1204667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mohammad Mahdi Attar
- Department of Mechanical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haghpanahi
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran
| | - Mahnaz Haddadi
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Rezaei
- Department of Mechanical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Samad Muhammadnejad
- Research Centre for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran
| | - Mehran HajiAkhoundzadeh
- Research Centre for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran
| | - Tahereh Barati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadeghi
- Cancer Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Javadi
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
HEYDARI MORTEZA, JAVIDI MEHRDAD, ATTAR MOHAMMADMAHDI, KARIMI ALIREZA, NAVIDBAKHSH MAHDI, HAGHPANAHI MOHAMMAD, AMANPOUR SAEID. MAGNETIC FLUID HYPERTHERMIA IN A CYLINDRICAL GEL CONTAINS WATER FLOW. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In magnetic fluid hyperthermia (MFH), nanoparticles are injected into a diseased tissue and then subjected to an alternating high frequency magnetic field. The produced heat may have a key asset to destroy the cancerous cells. The blood flow in a tissue is considered as the most complicated part of the MFH which should be taken into account in the analysis of the MFH. This study was aimed to perform an experimental study to investigate the heat transfer of agar gel which contains fluid flow. Fe 3 O 4 as a nanoparticle was injected into the center of a cylindrical gel. It was also embedded with other cylindrical gels and subjected to an alternating magnetic field of 7.3 (kA/m) and a frequency of 50 (kHz) for 3600 (s). The temperature of the gel was measured at three points. The temperature distribution was measured via the experimental data. Moreover, specific absorption rate (SAR) was quantified with time differential temperature function at t = 0 by means of experimental data. Finite element method (FEM) was employed to establish a model to validate the SAR function. Results revealed the effects of fluid flow and accuracy of the SAR function for heat production in gel. The proposed function have implications in hyperthermia studies as a heat generation source. Finally, the condition of experimental setup was simulated to find the blood perfusion.
Collapse
Affiliation(s)
- MORTEZA HEYDARI
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - MEHRDAD JAVIDI
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - MOHAMMAD MAHDI ATTAR
- School of Mechanical Engineering, Hamedan Branch Islamic Azad University, Hamedan 19878, Iran
| | - ALIREZA KARIMI
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - MAHDI NAVIDBAKHSH
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - MOHAMMAD HAGHPANAHI
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - SAEID AMANPOUR
- Cancer Research Center, Tehran University of Medical Science, Tehran 14186, Iran
| |
Collapse
|
30
|
Investigation of the electrical properties of agarose gel: characterization of concentration using nyquist plot phase angle and the implications of a more comprehensive in vitro model of the brain. Ann Neurosci 2014; 20:99-107. [PMID: 25206025 PMCID: PMC4117127 DOI: 10.5214/ans.0972.7531.200305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The electrical properties of agarose gel, namely impedance and capacitance, are relatively unexplored. Agarose gels are used as in vitro models in studies across numerous disciplines, including imaging, radiotherapy, infusion, and neurosurgery. PURPOSE In this study, we seek to characterize the impedance response of low concentration agarose gels by relating the gel concentrations to Nyquist Plot phase in order to establish a baseline with which to modify the response of the gel to simulate that of in vivo brain tissue. This information is relevant to areas such as deep brain stimulation, and could have a significant impact on in vitro model design for such studies in the future. METHODS Ten agarose gels spanning four different concentrations were subjected to impedance spectroscopy using a Model 3387 DBS electrode. Phase angles were calculated and Cartesian Nyquist plots generated from the data. RESULTS Results suggest that an inverse relationship exists between agarose gel concentration and phase angle. In addition, the results indicate that agarose gel reasonably emulates a constant phase element, which portrays the electrode-electrolyte interface impedance of some equivalent circuit models of brain tissue. CONCLUSION The data shows that agarose gel is a suitable substrate for a deep brain stimulation in vitro model, but requires modification. In the future, we plan to utilize this data to determine the modifications necessary in the current agarose gel model to make it scientifically applicable to studies of both deep brain stimulation and infusion due to their overlapping variables.
Collapse
|
31
|
The substitute brain and the potential of the gel model. Ann Neurosci 2014; 20:118-22. [PMID: 25206029 PMCID: PMC4117117 DOI: 10.5214/ans.0972.7531.200309] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022] Open
Abstract
This purpose of this paper is to review the recent history of the use of agarose gels. Although originally confined to electrophoresis work, agarose gels have proven themselves useful to a number of disciplines in the modern world, which includes brain infusion studies for research involving the treatment of various neurological conditions, such as Parkinson’s Disease. In reviewing the relevant research leading up to the modern day, this paper attempts to track agarose gels through their stages of accuracy verification, highlighting why they are useful to the neurosurgery discipline and characterizing the nature of their use. Agarose gels do have significant limitations, which are also discussed, but they have substantial potential as a modifiable medium or as a basis of comparison for even more accurate models in the future.
Collapse
|
32
|
Ramped-rate vs continuous-rate infusions: An in vitro comparison of convection enhanced delivery protocols. Ann Neurosci 2014; 20:59-64. [PMID: 25206014 PMCID: PMC4117103 DOI: 10.5214/ans.0972.7531.200206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 03/13/2013] [Indexed: 12/04/2022] Open
Abstract
Background Convection enhanced delivery (CED) is a technique using infusion convection currents to deliver therapeutic agents into targeted regions of the brain. Recently, CED is gaining significant acceptance for use in gene therapy of Parkinson’s disease (PD) employing direct infusion into the brain. CED offers advantages in that it targets local areas of the brain, bypasses the blood-brain barrier (BBB), minimizes systemic toxicity of the therapeutics, and allows for delivery of larger molecules that diffusion driven methods cannot achieve. Investigating infusion characteristics such as backflow and morphology is important in developing standard and effective protocols in order to successfully deliver treatments into the brain. Optimizing clinical infusion protocols may reduce backflow, improve final infusion cloud morphology, and maximize infusate penetrance into targeted tissue. Purpose The purpose of the current study was to compare metrics during ramped-rate and continuous-rate infusions using two different catheters in order to optimize current infusion protocols. Occasionally, the infusate refluxes proximally up the catheter tip, known as backflow, and minimizing this can potentially reduce undesirable effects in the clinical setting. Traditionally, infusions are performed at a constant rate throughout the entire duration, and backflow is minimized only by slow infusion rates, which increases the time required to deliver the desired amount of infusate. In this study, we investigate the effects of ramping and various infusion rates on backflow and infusion cloud morphology. The independent parameters in the study are: ramping, maximum infusion rate, time between rate changes, and increments of rate changes. Methods Backflow was measured using two methods: i) at the point of pressure stabilization within the catheter, and ii) maximum backflow as shown by video data. Infusion cloud morphology was evaluated based on the height-to-width ratio of each infusion cloud at the end of each experiment. Results were tabulated and statistically analyzed to identify any significant differences between protocols. Results The experimental results show that CED rampedrate infusion protocols result in smaller backflow distances and more spherical cloud morphologies compared to continuous-rate infusion protocols ending at the same maximum infusion rate. Our results also suggest internal-line pressure measurements can approximate the time-point at which backflow ceases. Conclusion Our findings indicate that ramping CED infusion protocols can potentially minimize backflow and produce more spherical infusion clouds. However, further research is required to determine the strength of this correlation, especially in relation to maximum infusion rates.
Collapse
|
33
|
Javidi M, Heydari M, Attar MM, Haghpanahi M, Karimi A, Navidbakhsh M, Amanpour S. Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. Int J Hyperthermia 2014; 31:33-9. [PMID: 25523967 DOI: 10.3109/02656736.2014.988661] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In magnetic fluid hyperthermia (MFH), nanoparticles are injected into diseased tissue and subjected to an alternating high frequency magnetic field. The process triggers sufficient heat to destroy the cancerous cells. One of the challenging problems during MFH is blood flow in tissue. In real conditions the heat which is transferred by blood flow should be considered in the analysis of MFH. METHODS In this study, heat transfer was investigated in an agar gel phantom containing fluid flow. Fe3O4 as a nano-fluid was injected into the centre of a gel cylinder which was filled with another gel cylinder and subjected to an alternating magnetic field of 7.3 kA/m and a frequency of 50 kHz for 3600 s. The temperature was measured at three points in the gel. Temperature distributions regarding the time at these three points were experimentally measured. Moreover, the specific absorption rate (SAR) function was calculated with a temperature function. RESULTS The SAR function was a key asset in the hyperthermia and was obtained on the condition that the fluid flowed through the gel. Finally, a finite element analysis (FEA) was performed to verify the SAR function. The results revealed that there was good agreement between the measured temperature and the one obtained from FEA. In addition, the effects of fluid flow and accuracy of function obtained for heat production in the gel were presented. CONCLUSION It is believed that the proposed model has the potential ability to get close to reality in this type of investigation. The proposed function has implications for use in further modelling studies as a heat generation source.
Collapse
Affiliation(s)
- Mehrdad Javidi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
34
|
Orozco GA, Smith JH, García JJ. Backflow length predictions during flow-controlled infusions using a nonlinear biphasic finite element model. Med Biol Eng Comput 2014; 52:841-9. [DOI: 10.1007/s11517-014-1187-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
|
35
|
Sillay KA, McClatchy SG, Shepherd BA, Venable GT, Fuehrer TS. Image-guided convection-enhanced delivery into agarose gel models of the brain. J Vis Exp 2014. [PMID: 24894268 DOI: 10.3791/51466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Convection-enhanced delivery (CED) has been proposed as a treatment option for a wide range of neurological diseases. Neuroinfusion catheter CED allows for positive pressure bulk flow to deliver greater quantities of therapeutics to an intracranial target than traditional drug delivery methods. The clinical utility of real time MRI guided CED (rCED) lies in the ability to accurately target, monitor therapy, and identify complications. With training, rCED is efficient and complications may be minimized. The agarose gel model of the brain provides an accessible tool for CED testing, research, and training. Simulated brain rCED allows practice of the mock surgery while also providing visual feedback of the infusion. Analysis of infusion allows for calculation of the distribution fraction (Vd/Vi) allowing the trainee to verify the similarity of the model as compared to human brain tissue. This article describes our agarose gel brain phantom and outlines important metrics during a CED infusion and analysis protocols while addressing common pitfalls faced during CED infusion for the treatment of neurological disease.
Collapse
Affiliation(s)
- Karl A Sillay
- University of Tennessee Health Science Center; Semmes-Murphey Clinic;
| | | | | | | | | |
Collapse
|
36
|
Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J Biomed Mater Res B Appl Biomater 2014; 103:282-91. [DOI: 10.1002/jbm.b.33197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 01/29/2023]
|
37
|
Haar PJ, Chen ZJ, Fatouros PP, Gillies GT, Corwin FD, Broaddus WC. Modelling convection-enhanced delivery in normal and oedematous brain. J Med Eng Technol 2014; 38:76-84. [DOI: 10.3109/03091902.2013.837532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Etheridge M, Manuchehrabadi N, Franklin R, Bischof J. Superparamagnetic Iron Oxide Nanoparticle Heating. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12983-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
39
|
Sillay K, Schomberg D, Hinchman A, Kumbier L, Ross C, Kubota K, Brodsky E, Miranpuri G. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease. J Neural Eng 2012; 9:026009. [PMID: 22331865 DOI: 10.1088/1741-2560/9/2/026009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Convection-enhanced delivery (CED) is an advanced infusion technique used to deliver therapeutic agents into the brain. CED has shown promise in recent clinical trials. Independent verification of published parameters is warranted with benchmark testing of published parameters in applicable models such as gel phantoms, ex vivo tissue and in vivo non-human animal models to effectively inform planned and future clinical therapies. In the current study, specific performance characteristics of two CED infusion catheter systems, such as backflow, infusion cloud morphology, volume of distribution (mm(3)) versus the infused volume (mm(3)) (Vd/Vi) ratios, rate of infusion (µl min(-1)) and pressure (mmHg), were examined to ensure published performance standards for the ERG valve-tip (VT) catheter. We tested the hypothesis that the ERG VT catheter with an infusion protocol of a steady 1 µl min(-1) functionality is comparable to the newly FDA approved MRI Interventions Smart Flow (SF) catheter with the UCSF infusion protocol in an agarose gel model. In the gel phantom models, no significant difference was found in performance parameters between the VT and SF catheter. We report, for the first time, such benchmark characteristics in CED between these two otherwise similar single-end port VT with stylet and end-port non-stylet infusion systems. Results of the current study in agarose gel models suggest that the performance of the VT catheter is comparable to the SF catheter and warrants further investigation as a tool in the armamentarium of CED techniques for eventual clinical use and application.
Collapse
Affiliation(s)
- Karl Sillay
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang L, Yang M, Jiang M. Mathematical Modeling for Convection-Enhanced Drug Delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2011.12.705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Ivanchenko O, Ivanchenko V. Designing and testing of backflow-free catheters. J Biomech Eng 2011; 133:061003. [PMID: 21744923 DOI: 10.1115/1.4004286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Convection-enhanced delivery (CED) is a drug delivery technique used to target specific regions of the central nervous system (CNS) for the treatment of neurodegenerative diseases and cancer while bypassing the blood-brain barrier (BBB). The application of CED is limited by low volumetric flow rate infusions in order to prevent the possibility of backflow. Consequently, a small convective flow produces poor drug distribution inside the treatment region, which can render CED treatment ineffective. Novel catheter designs and CED protocols are needed in order to improve the drug distribution inside the treatment region and prevent backflow. In order to develop novel backflow-free catheter designs, the impact of the micro-fluid injection into deformable porous media was investigated experimentally as well as numerically. Fluid injection into the porous media has a considerable effect on local transport properties such as porosity and hydraulic conductivity because of the local media deformation. These phenomena not only alter the bulk flow velocity distribution of the micro-fluid flow due to the changing porosity, but significantly modify the flow direction, and even the volumetric flow distribution, due to induced local hydraulic conductivity anisotropy. These findings help us to design backflow-free catheters with safe volumetric flow rates up to 10 μl/min. A first catheter design reduces porous media deformation in order to improve catheter performance and control an agent volumetric distribution. A second design prevents the backflow by reducing the porosity and hydraulic conductivity along a catheter's shaft. A third synergistic catheter design is a combination of two previous designs. Novel channel-inducing and dual-action catheters, as well as a synergistic catheter, were successfully tested without the occurrence of backflow and are recommended for future animal experiments.
Collapse
Affiliation(s)
- O Ivanchenko
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
42
|
Modeling Concentration Distribution and Deformation During Convection-Enhanced Drug Delivery into Brain Tissue. Transp Porous Media 2011. [DOI: 10.1007/s11242-011-9894-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Smith JH, Starkweather KA, García JJ. Implications of transvascular fluid exchange in nonlinear, biphasic analyses of flow-controlled infusion in brain. Bull Math Biol 2011; 74:881-907. [PMID: 21979463 DOI: 10.1007/s11538-011-9696-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/06/2011] [Indexed: 11/30/2022]
Abstract
A nonlinear, coupled biphasic-mass transport model that includes transvascular fluid exchange is proposed for flow-controlled infusions in brain tissue. The model accounts for geometric and material nonlinearities, a hydraulic conductivity dependent on deformation, and transvascular fluid exchange according to Starling's law. The governing equations were implemented in a custom-written code assuming spherical symmetry and using an updated Lagrangian finite-element algorithm. Results of the model indicate that, using normal physiological values of vascular permeability, transvascular fluid exchange has negligible effects on tissue deformation, fluid pressure, and transport of the infused agent. As vascular permeability may be increased artificially through methods such as administering nitric oxide, a parametric study was conducted to determine how increased vascular permeability affects flow-controlled infusion. Increased vascular permeability reduced both tissue deformation and fluid pressure, possibly reducing damage to tissue adjacent to the infusion catheter. Furthermore, the loss of fluid to the vasculature resulted in a significantly increased interstitial fluid concentration but a modestly increased tissue concentration. From a clinical point of view, this increase in concentration could be beneficial if limited to levels below which toxicity would not occur. However, the modestly increased tissue concentration may make the increase in interstitial fluid concentration difficult to assess in vivo using co-infused radiolabeled agents.
Collapse
Affiliation(s)
- Joshua H Smith
- Department of Mechanical Engineering, Lafayette College, Easton, PA 18042, USA.
| | | | | |
Collapse
|
44
|
Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. Med Biol Eng Comput 2011; 49:1233-40. [DOI: 10.1007/s11517-011-0819-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023]
|
45
|
Xi G, Mania-Farnell B, Rajaram V, Mayanil CS, Soares MB, Tomita T, Goldman S. Efficacy of interstitial continuous vincristine infusion in a bioluminescent rodent intracranial tumor model. J Neurooncol 2011; 106:261-70. [PMID: 21842443 DOI: 10.1007/s11060-011-0680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/30/2011] [Indexed: 12/24/2022]
Abstract
Interstitial chemotherapeutic drug infusion can bypass the blood-brain barrier, and provide high regional drug concentrations without systemic exposure. However, toxicity and efficacy for drugs administered via interstitial continuous (i.c.) infusion have not been characterized. In the current study, vincristine (VIN) was infused into the right frontal lobes of healthy Fisher 344 rats at 30, 45, 60, and 120 μg/ml over a period of 7 days at 1 μl/h, using an Alzet osmotic pump to evaluate toxicity. C6 rat glioblastoma cells transduced with a luciferase gene were inoculated into the right frontal lobe of a second group of rats. VIN was administered to tumor bearing rats via i.c. infusion 7 days later and tumor growth was monitored by bioluminescence intensity (BLI) to assess VIN efficacy, intravenous (i.v.) drug administration was used as a comparison drug delivery method. The results suggested that VIN toxicity is dose-dependent. Efficacy studies showed increased BLI, which correlates with histopathological tumor size, in saline-infused and i.v.-treated tumor-bearing rats. These rats survived an average of 28 ± 0.85 days and 33 ± 1.38 days, respectively. Both groups had large tumors at the time of death. Animals treated with VIN via i.c. infusion survived until day 90, the observation endpoint for this study. This was significantly longer than average survival times in the previous two groups. These results demonstrate that VIN via i.c. infusion is effective in reducing C6 glioblastoma tumors and prolonging rodent survival time compared to i.v. injection and suggest that chemotherapeutic drug administration via i.c. infusion may be a promising strategy for treating malignant brain tumors.
Collapse
Affiliation(s)
- Guifa Xi
- Neurosurgical Department, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S, Tamar G, Shneor R, Guez D, Margel S, Mardor Y. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine 2011; 6:1595-602. [PMID: 21904449 PMCID: PMC3160945 DOI: 10.2147/ijn.s23025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Convection-enhanced delivery (CED) is a novel approach for delivering drugs directly into brain tumors by intracranial infusion, enabling the distribution of high drug concentrations over large tissue volumes. This study was designed to present a method for binding methotrexate (MTX) to unique crystalline, highly ordered and superparamagnetic maghemite nanoparticles via human serum albumin (HSA) coating, optimized for CED treatments of gliomas. Naked nanoparticles and HSA- or polyethylene glycol (PEG)-coated nanoparticles with/without MTX were studied. In vitro results showed no toxicity and a similar cell-kill efficacy of the MTX-loaded particles via HSA coating to that of free MTX, while MTX-loaded particles via PEG coating showed low efficacy. In vivo, the PEG-coated nanoparticles provided the largest distributions in normal rat brain and long clearance times, but due to their low efficacy in vitro, were not considered optimal. The naked nanoparticles provided the smallest distributions and shortest clearance times. The HSA-coated nanoparticles (with/without MTX) provided good distributions and long clearance times (nearly 50% of the distribution volume remained in the brain 3 weeks post treatment). No MTX-related toxicity was noted. These results suggest that the formulation in which HSA was bound to our nanoparticles via a unique precipitation method, and MTX was bound covalently to the HSA, could enable efficient and stable drug loading with no apparent toxicity. The cell-kill efficacy of the bound MTX remained similar to that of free MTX, and the nanoparticles presented efficient distribution volumes and slow clearance times in vivo, suggesting that these particles are optimal for CED.
Collapse
Affiliation(s)
- Enav Corem-Salkmon
- The Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Poston D, Raghavan R, Gillies GT. Catheter delivery systems for infusions into the cortex. J Med Eng Technol 2011; 35:246-53. [DOI: 10.3109/03091902.2011.576799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Sindhwani N, Ivanchenko O, Lueshen E, Prem K, Linninger AA. Methods for Determining Agent Concentration Profiles in Agarose Gel During Convection-Enhanced Delivery. IEEE Trans Biomed Eng 2011; 58:626-32. [DOI: 10.1109/tbme.2010.2089455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Ivanchenko O, Sindhwani N, Linninger A. Experimental techniques for studying poroelasticity in brain phantom gels under high flow microinfusion. J Biomech Eng 2010; 132:051008. [PMID: 20459209 DOI: 10.1115/1.4001164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Convection enhanced delivery is an attractive option for the treatment of several neurodegenerative diseases such as Parkinson, Alzheimer, and brain tumors. However, the occurrence of a backflow is a major problem impeding the widespread use of this technique. In this paper, we analyze experimentally the force impact of high flow microinfusion on the deformable gel matrix. To investigate these fluid structure interactions, two optical methods are reported. First, gel stresses during microinfusion were visualized through a linear polariscope. Second, the displacement field was tracked using 400 nm nanobeads as space markers. The corresponding strain and porosity fields were calculated from the experimental observations. Finally, experimental data were used to validate a computational model for fluid flow and deformation in soft porous media. Our studies demonstrate experimentally, the distribution and magnitude of stress and displacement fields near the catheter tip. The effect of fluid traction on porosity and hydraulic conductivity is analyzed. The increase in fluid content in the catheter vicinity enhances the gel hydraulic conductivity. Our computational model takes into account the changes in porosity and hydraulic conductivity. The simulations agree with experimental findings. The experiments quantified solid matrix deformation, due to fluid infusion. Maximum deformations occur in areas of relatively large fluid velocities leading to volumetric strain of the matrix, causing changes in hydraulic conductivity and porosity close to the catheter tip. The gradual expansion of this region with increased porosity leads to decreased hydraulic resistance that may also create an alternative pathway for fluid flow.
Collapse
Affiliation(s)
- O Ivanchenko
- Laboratory of Product and Process Design, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
50
|
Haar PJ, Broaddus WC, Chen ZJ, Fatouros PP, Gillies GT, Corwin FD. Quantification of convection-enhanced delivery to the ischemic brain. Physiol Meas 2010; 31:1075-89. [DOI: 10.1088/0967-3334/31/9/001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|