1
|
Phillips M, Nimmo M, Rugonyi S. Developmental and Evolutionary Heart Adaptations Through Structure-Function Relationships. J Cardiovasc Dev Dis 2025; 12:83. [PMID: 40137081 PMCID: PMC11942974 DOI: 10.3390/jcdd12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
While the heart works as an efficient pump, it also has a high level of adaptivity by changing its structure to maintain function during healthy and diseased states. In this Review, we present examples of structure-function relationships across species and throughout embryonic development in mammals and birds. We also summarize current research on avian models aiming at understanding how biophysical and biological mechanisms closely interact during heart formation. We conclude by underscoring similarities between cardiac adaptations and structural changes over developmental and evolutionary time scales and how understanding the mechanisms behind these adaptations can help prevent or alleviate the effects of cardiac malformations and contribute to cardiac regeneration efforts.
Collapse
Affiliation(s)
| | | | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA; (M.P.); (M.N.)
| |
Collapse
|
2
|
Faubert AC, Wang S. Clipping spline: interactive, dynamic 4D volume clipping and analysis based on thin plate spline. BIOMEDICAL OPTICS EXPRESS 2025; 16:499-519. [PMID: 39958850 PMCID: PMC11828437 DOI: 10.1364/boe.544231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 02/18/2025]
Abstract
Methods for seeing inside volumetric images are increasingly important with the rapid advancements in 3D and 4D (3D + time) biomedical imaging techniques. Here, we report a novel volume clipping method and its open-source implementation which enables unprecedented 4D visualization and analysis of embryonic mouse heart development with data from optical coherence tomography (OCT). Clipping a volume to extract information inside has long been a vital approach in biomedical image analysis; however, it is challenging to make a dynamic non-planar cutaway view that is simultaneously smooth, adjustable, efficient to compute, easy to control, and interactive in real time. We addressed this challenge by applying the thin plate spline (TPS) to create a new way of volume clipping, called the clipping spline. Specifically, the clipping spline produces a cutaway view by generating a binary mask based on the unique TPS surface that intersects with a set of 3D control points while having minimal curvature. We implemented this method in an open-source platform where the clipping spline can be interactively controlled for real-time, adjustable, and dynamic cutaway views into a volume. We also developed an algorithm that automatically connects and interpolates different sets of control points over time, providing 4D volume clipping. In addition to characterizing the clipping spline, we demonstrate its application by revealing a series of never-before-seen dynamics and processes of embryonic mouse heart development based on OCT data. We also show a TPS-based method for tracking the embryonic myocardium with control points over two timescales (heartbeat and development). Our results indicate that the clipping spline promises to be broadly used in volumetric biomedical image visualization and analysis, especially by the OCT community.
Collapse
Affiliation(s)
- Andre C. Faubert
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
3
|
Ling S, Blackburn BJ, Jenkins MW, Watanabe M, Ford SM, Lapierre-Landry M, Rollins AM. Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning. BIOMEDICAL OPTICS EXPRESS 2023; 14:1945-1958. [PMID: 37206115 PMCID: PMC10191668 DOI: 10.1364/boe.481657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Raiola M, Sendra M, Torres M. Imaging Approaches and the Quantitative Analysis of Heart Development. J Cardiovasc Dev Dis 2023; 10:145. [PMID: 37103024 PMCID: PMC10144158 DOI: 10.3390/jcdd10040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
Collapse
Affiliation(s)
- Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Departamento de Ingeniería Biomedica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
5
|
Faubert AC, Larina IV, Wang S. Open-source, highly efficient, post-acquisition synchronization for 4D dual-contrast imaging of the mouse embryonic heart over development with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:163-181. [PMID: 36698661 PMCID: PMC9842004 DOI: 10.1364/boe.475027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Dynamic imaging of the beating embryonic heart in 3D is critical for understanding cardiac development and defects. Optical coherence tomography (OCT) plays an important role in embryonic heart imaging with its unique imaging scale and label-free contrasts. In particular, 4D (3D + time) OCT imaging enabled biomechanical analysis of the developing heart in various animal models. While ultrafast OCT systems allow for direct volumetric imaging of the beating heart, the imaging speed remains limited, leading to an image quality inferior to that produced by post-acquisition synchronization. As OCT systems become increasingly available to a wide range of biomedical researchers, a more accessible 4D reconstruction method is required to enable the broader application of OCT in the dynamic, volumetric assessment of embryonic heartbeat. Here, we report an open-source, highly efficient, post-acquisition synchronization method for 4D cardiodynamic and hemodynamic imaging of the mouse embryonic heart. Relying on the difference between images to characterize heart wall movements, the method provides good sensitivity to the cardiac activity when aligning heartbeat phases, even at early stages when the heart wall occupies only a small number of pixels. The method works with a densely sampled single 3D data acquisition, which, unlike the B-M scans required by other methods, is readily available in most commercial OCT systems. Compared with an existing approach for the mouse embryonic heart, this method shows superior reconstruction quality. We present the robustness of the method through results from different embryos with distinct heart rates, ranging from 1.24 Hz to 2.13 Hz. Since the alignment process operates on a 1D signal, the method has a high efficiency, featuring sub-second alignment time while utilizing ∼100% of the original image files. This allows us to achieve repeated, dual-contrast imaging of mouse embryonic heart development. This new, open-source method could facilitate research using OCT to study early cardiogenesis.
Collapse
Affiliation(s)
- Andre C. Faubert
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
6
|
Ling S, Jenkins MW, Watanabe M, Ford SM, Rollins AM. Prenatal ethanol exposure impairs the conduction delay at the atrioventricular junction in the looping heart. Am J Physiol Heart Circ Physiol 2021; 321:H294-H305. [PMID: 34142884 PMCID: PMC8526336 DOI: 10.1152/ajpheart.00107.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared with controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19-20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion-size map along the inflow heart tube, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.NEW & NOTEWORTHY To the best of our knowledge, this is the first study investigating the impact of ethanol exposure on the early cardiac conduction system. Our results showed that ethanol-exposed embryos exhibited abnormally fast atrioventricular conduction. In addition, our findings, in CV measurements and endocardial cushion thickness, reveal regional differences in the AVJ myocardium even at this early stage in heart development, suggesting that the differentiation and maturation at this site are complex and warrant further studies.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Stephanie M Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, Ohio
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
8
|
Lopez AL, Wang S, Larina IV. Embryonic Mouse Cardiodynamic OCT Imaging. J Cardiovasc Dev Dis 2020; 7:E42. [PMID: 33020375 PMCID: PMC7712379 DOI: 10.3390/jcdd7040042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The embryonic heart is an active and developing organ. Genetic studies in mouse models have generated great insight into normal heart development and congenital heart defects, and suggest mechanical forces such as heart contraction and blood flow to be implicated in cardiogenesis and disease. To explore this relationship and investigate the interplay between biomechanical forces and cardiac development, live dynamic cardiac imaging is essential. Cardiodynamic imaging with optical coherence tomography (OCT) is proving to be a unique approach to functional analysis of the embryonic mouse heart. Its compatibility with live culture systems, reagent-free contrast, cellular level resolution, and millimeter scale imaging depth make it capable of imaging the heart volumetrically and providing spatially resolved information on heart wall dynamics and blood flow. Here, we review the progress made in mouse embryonic cardiodynamic imaging with OCT, highlighting leaps in technology to overcome limitations in resolution and acquisition speed. We describe state-of-the-art functional OCT methods such as Doppler OCT and OCT angiography for blood flow imaging and quantification in the beating heart. As OCT is a continuously developing technology, we provide insight into the future developments of this area, toward the investigation of normal cardiogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA;
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| |
Collapse
|
9
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
10
|
Su Y, Wei L, Tan H, Li J, Li W, Fu L, Wang T, Kang L, Yao XS. Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. JOURNAL OF BIOPHOTONICS 2020; 13:e201960047. [PMID: 31682322 DOI: 10.1002/jbio.201960047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Noninvasive visualization of embryos at different development stages is crucial for the understanding of the basic developmental biology. It is therefore desirable to have an imaging tool capable of rapidly evaluating the effects of gene manipulation or genome editing in developing embryos for the studies of gene functions and genetic engineering. Here, we propose and demonstrate a novel use of optical coherence tomography (OCT) to noninvasively exam the embryonic development of the migratory locusts in real time with 3-dimensional (3D) view capability. In particular, we obtain the sufficiently high spatial resolution tomographic 2D and 3D images of live locust embryos throughout their development processes. We show that not only we are able to noninvasively observe all previously known forms of blastokinesis as an embryo develops, such as anatrepsis, katatrepsis, revolution, rotation and diapauses, and determine their precise occurring time or duration, but also discover an unreported rotation form we named "twist." In addition, with the OCT images we determined the exact occurring time of diapauses of the locusts from Tibetan plateau for the first time. Finally, we demonstrate that OCT systems can be used to rapidly capture the development defects of genetically modified embryos in which certain genes essential for embryonic development were suppressed by RNA interference. Our work shows that OCT is an enabling imaging tool with sufficient spatial resolution for the rapid evaluation of embryonic variations of small animals.
Collapse
Affiliation(s)
- Ya Su
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Tan
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Wenping Li
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Lei Fu
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Tongxin Wang
- College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- College of Life Sciences, Hebei University, Baoding, China
| | - X Steve Yao
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| |
Collapse
|
11
|
Courchaine K, Rugonyi S. Optical coherence tomography for in vivo imaging of endocardial to mesenchymal transition during avian heart development. BIOMEDICAL OPTICS EXPRESS 2019; 10:5989-5995. [PMID: 31799059 PMCID: PMC6865111 DOI: 10.1364/boe.10.005989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 05/08/2023]
Abstract
The endocardial to mesenchymal transition (EndMT) that occurs in endocardial cushions during heart development is critical for proper heart septation and formation of the heart's valves. In EndMT, cells delaminate from the endocardium and migrate into the previously acellular endocardial cushions. Optical coherence tomography (OCT) imaging uses the optical properties of tissues for contrast, and during early development OCT can differentiate cellular versus acellular tissues. Here we show that OCT can be used to non-invasively track EndMT progression in vivo in the outflow tract cushions of chicken embryos. This enables in vivo studies to elucidate factors leading to cardiac malformations.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| |
Collapse
|
12
|
Deonarain S, Motala A, Mthembu T, Nxele N, Phakathi T, Thwala N, Rampersad N. Macular thicknesses in patients with keratoconus: An optical coherence tomography study. AFRICAN VISION AND EYE HEALTH 2019. [DOI: 10.4102/aveh.v78i1.482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Keratoconus, a corneal ectasia associated with thickness and structural changes, has been reported to co-exist with posterior segment ocular conditions. However, very few studies have reported on macular thicknesses in individuals with keratoconus.Aim: The aim of this study was to investigate macular thicknesses in participants with keratoconus.Setting: This study was conducted at the University of KwaZulu-Natal (UKZN).Methods: A comparative cross-sectional research design was used. The sample consisted of 88 participants with 44 each in the control and keratoconus (15, 11 and 18 with mild, moderate and severe keratoconus, respectively) groups. Macular thicknesses were obtained with the Fourier-domain Optovue iVue100 optical coherence tomographer using the nine Early Treatment Diabetic Retinopathy Study sectors. Data were analysed using descriptive and inferential statistics.Results: Overall, the mean macular thicknesses were comparable among the control and three keratoconus groups (p ≥ 0.199). The mean central foveal thickness was greater in the severe keratoconus group (259 µm) than the other three study groups that showed similar measurements (247 µm – 248 µm). The central fovea was thinnest followed by the perifovea and parafovea in all four study groups. The mean thickness in the nasal and temporal quadrants of the parafovea and perifovea was thickest and thinnest, respectively, in all four study groups.Conclusion: Macular thicknesses via optical coherence tomography in individuals with keratoconus and controls are similar with thickness differences that are clinically insignificant. Consequently, macular thicknesses should be included in the preoperative assessment of individuals with keratoconus awaiting corneal transplantation to assess the integrity of the retina prior to surgery.
Collapse
|
13
|
Hendon CP, Lye TH, Yao X, Gan Y, Marboe CC. Optical coherence tomography imaging of cardiac substrates. Quant Imaging Med Surg 2019; 9:882-904. [PMID: 31281782 PMCID: PMC6571187 DOI: 10.21037/qims.2019.05.09] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the United States. Knowledge of a patient's heart structure will help to plan procedures, potentially identifying arrhythmia substrates, critical structures to avoid, detect transplant rejection, and reduce ambiguity when interpreting electrograms and functional measurements. Similarly, basic research of numerous cardiac diseases would greatly benefit from structural imaging at cellular scale. For both applications imaging on the scale of a myocyte is needed, which is approximately 100 µm × 10 µm. The use of optical coherence tomography (OCT) as a tool for characterizing cardiac tissue structure and function has been growing in the past two decades. We briefly review OCT principles and highlight important considerations when imaging cardiac muscle. In particular, image penetration, tissue birefringence, and light absorption by blood during in vivo imaging are important factors when imaging the heart with OCT. Within the article, we highlight applications of cardiac OCT imaging including imaging heart tissue structure in small animal models, quantification of myofiber organization, monitoring of radiofrequency ablation (RFA) lesion formation, structure-function analysis enabled by functional extensions of OCT and multimodal analysis and characterizing important substrates within the human heart. The review concludes with a summary and future outlook of OCT imaging the heart, which is promising with progress in optical catheter development, functional extensions of OCT, and real time image processing to enable dynamic imaging and real time tracking during therapeutic procedures.
Collapse
Affiliation(s)
| | | | | | - Yu Gan
- Columbia University, New York, NY, USA
| | | |
Collapse
|
14
|
Kheradvar A, Zareian R, Kawauchi S, Goodwin RL, Rugonyi S. Animal Models for Heart Valve Research and Development. ACTA ACUST UNITED AC 2018; 24:55-62. [PMID: 30631375 DOI: 10.1016/j.ddmod.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Valvular heart disease is the third-most common cause of heart problems in the United States. Malfunction of the valves can be acquired or congenital and each may lead either to stenosis or regurgitation, or even both in some cases. Heart valve disease is a progressive disease, which is irreversible and may be fatal if left untreated. Pharmacological agents cannot currently prevent valvular calcification or help repair damaged valves, as valve tissue is unable to regenerate spontaneously. Thus, heart valve replacement/repair is the only current available treatment. Heart valve research and development is currently focused on two parallel paths; first, research that aims to understand the underlying mechanisms for heart valve disease to emerge with an ultimate goal to devise medical treatment; and second, efforts to develop repair and replacement options for a diseased valve. Studies that focus on developmental malformation, genetic and disease epigenetics usually employ small animal models that are easy to access for in vivo imaging that minimally disturbs their environment during early stages of development. Alternatively, studies that aim to develop novel device for replacement and repair of diseased valves often employ large animals whose heart size and anatomy closely replicate human's. This paper aims to briefly review the current state-of-the-art animal models, and justification to use an animal model for a particular heart valve related project.
Collapse
|
15
|
Elahi S, Gu S, Thrane L, Rollins AM, Jenkins MW. Complex regression Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29704328 PMCID: PMC5920204 DOI: 10.1117/1.jbo.23.4.046009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (∼100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Collapse
Affiliation(s)
- Sahar Elahi
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Shi Gu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Lars Thrane
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Address all correspondence to: Michael W. Jenkins, E-mail:
| |
Collapse
|
16
|
Abstract
Optical pacing (OP) uses pulsed infrared light to initiate heartbeats in electrically excitable cardiac tissues without employing exogenous agents. OP is an alternative approach to electrical pacing that may overcome some its disadvantages for some applications. In this review, we discuss the initial demonstrations, mechanisms, safety, advantages and applications of OP.
Collapse
Affiliation(s)
- S M Ford
- Rainbow Babies and Children's Hospital Divisions of Neonatology and Pediatric Cardiology, 11100 Euclid Ave, MS 6010, Cleveland, OH 44106, United States of America
| | | | | |
Collapse
|
17
|
Wu C, Le H, Ran S, Singh M, Larina IV, Mayerich D, Dickinson ME, Larin KV. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. BIOMEDICAL OPTICS EXPRESS 2017; 8:4629-4639. [PMID: 29082090 PMCID: PMC5654805 DOI: 10.1364/boe.8.004629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 05/04/2023]
Abstract
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles. SPIM enables high-resolution, 3D imaging with less phototoxicity and photobleaching than laser scanning confocal microscopy (LSCM) by illuminating the sample with a focused sheet of light. Side by side comparisons are supplemented with co-registered images. The results demonstrate that SPIM and RI-OCT are highly complementary and could provide more comprehensive tissue characterization for mouse embryonic research.
Collapse
Affiliation(s)
- Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Henry Le
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - Shihao Ran
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Equal contribution
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Equal contribution
| |
Collapse
|
18
|
Ford SM, McPheeters MT, Wang YT, Ma P, Gu S, Strainic J, Snyder C, Rollins AM, Watanabe M, Jenkins MW. Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease. CONGENIT HEART DIS 2017; 12:322-331. [PMID: 28211263 PMCID: PMC5467887 DOI: 10.1111/chd.12443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. METHODS Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180 bpm, well above intrinsic rate 60-110 bpm) at stage 13 of development (3-4 weeks human) for 5 min. Pacing fatigued the heart and led to at least 1 h of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping-4-5 weeks human) or stage 35 (4 chambered heart-8 weeks human). RESULTS All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-h post pacing (P value < .01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (P < .05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. CONCLUSION The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs.
Collapse
Affiliation(s)
- Stephanie M Ford
- Rainbow Babies and Children's Hospital Division of Neonatology, University Hospitals, Cleveland, Ohio, USA
| | - Matthew T McPheeters
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yves T Wang
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Pei Ma
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Shi Gu
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - James Strainic
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Christopher Snyder
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Peterson LM, Gu S, Karunamuni G, Jenkins MW, Watanabe M, Rollins AM. Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1823-1837. [PMID: 28663868 PMCID: PMC5480583 DOI: 10.1364/boe.8.001823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
The great arteries develop from symmetrical aortic arch arteries which are extensively remodeled. These events are vulnerable to perturbations. Hemodynamic forces have a significant role in this remodeling. In this study, optical coherence tomography (OCT) visualized live avian embryos for staging and measuring pharyngeal arch morphology. Measurements acquired with our orientation-independent, dual-angle Doppler OCT technique revealed that ethanol exposure leads to higher absolute blood flow, shear stress, and retrograde flow. Ethanol-exposed embryos had smaller cardiac neural crest (CNC) derived pharyngeal arch mesenchyme and fewer migrating CNC-derived cells. These differences in forces and CNC cell numbers could explain the abnormal aortic arch remodeling.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ganga Karunamuni
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
20
|
Ma P, Gu S, Karunamuni GH, Jenkins MW, Watanabe M, Rollins AM. Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities. Am J Physiol Heart Circ Physiol 2016; 311:H1150-H1159. [PMID: 27542407 PMCID: PMC5130492 DOI: 10.1152/ajpheart.00188.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
Cardiac neural crest cell (CNCC) ablation creates congenital heart defects (CHDs) that resemble those observed in many syndromes with craniofacial and cardiac consequences. The loss of CNCCs causes a variety of great vessel defects, including persistent truncus arteriosus and double-outlet right ventricle. However, because of the lack of quantitative volumetric measurements, less severe defects, such as great vessel size changes and valve defects, have not been assessed. Also poorly understood is the role of abnormal cardiac function in the progression of CNCC-related CHDs. CNCC ablation was previously reported to cause abnormal cardiac function in early cardiogenesis, before the CNCCs arrive in the outflow region of the heart. However, the affected functional parameters and how they correlate with the structural abnormalities were not fully characterized. In this study, using a CNCC-ablated quail model, we contribute quantitative phenotyping of CNCC ablation-related CHDs and investigate abnormal early cardiac function, which potentially contributes to late-stage CHDs. Optical coherence tomography was used to assay early- and late-stage embryos and hearts. In CNCC-ablated embryos at four-chambered heart stages, great vessel diameter and left atrioventricular valve leaflet volumes are reduced. Earlier, at cardiac looping stages, CNCC-ablated embryos exhibit abnormally twisted bodies, abnormal blood flow waveforms, increased retrograde flow percentage, and abnormal cardiac cushions. The phenotypes observed in this CNCC-ablation model were also strikingly similar to those found in an established avian fetal alcohol syndrome model, supporting the contribution of CNCC dysfunction to the development of alcohol-induced CHDs.
Collapse
Affiliation(s)
- Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Ganga H Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
21
|
Abstract
Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.
Collapse
Affiliation(s)
- Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA
| |
Collapse
|
22
|
Blech-Hermoni Y, Sullivan CB, Jenkins MW, Wessely O, Ladd AN. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn 2016; 245:854-73. [PMID: 27144987 DOI: 10.1002/dvdy.24413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CUG-BP, Elav-like family member 1 (CELF1) is a multifunctional RNA binding protein found in a variety of adult and embryonic tissues. In the heart, CELF1 is found exclusively in the myocardium. However, the roles of CELF1 during cardiac development have not been completely elucidated. RESULTS Myofibrillar organization is disrupted and proliferation is reduced following knockdown of CELF1 in cultured chicken primary embryonic cardiomyocytes. In vivo knockdown of Celf1 in developing Xenopus laevis embryos resulted in myofibrillar disorganization and a trend toward reduced proliferation in heart muscle, indicating conserved roles for CELF1 orthologs in embryonic cardiomyocytes. Loss of Celf1 also resulted in morphogenetic abnormalities in the developing heart and gut. Using optical coherence tomography, we showed that cardiac contraction was impaired following depletion of Celf1, while heart rhythm remained unperturbed. In contrast to cardiac muscle, loss of Celf1 did not disrupt myofibril organization in skeletal muscle cells, although it did lead to fragmentation of skeletal muscle bundles. CONCLUSIONS CELF1 is required for normal myofibril organization, proliferation, morphogenesis, and contractile performance in the developing myocardium. Developmental Dynamics 245:854-873, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Connor B Sullivan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Andrea N Ladd
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
23
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|
24
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics. J Cardiovasc Dev Dis 2015; 3. [PMID: 27088080 PMCID: PMC4827265 DOI: 10.3390/jcdd3010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS) at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, USA;
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA;
| | - Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2145, Madison, WI 53706, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-419-9310; Fax: +1-503-418-9311
| |
Collapse
|
26
|
Wang S, Singh M, Lopez AL, Wu C, Raghunathan R, Schill A, Li J, Larin KV, Larina IV. Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. OPTICS LETTERS 2015; 40:4791-4. [PMID: 26469621 PMCID: PMC4849121 DOI: 10.1364/ol.40.004791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-resolution three-dimensional (3D) imaging of cardiovascular dynamics in mouse embryos is greatly desired to study mammalian congenital cardiac defects. Here, we demonstrate direct four-dimensional (4D) imaging of the cardiovascular structure and function in live mouse embryos at a ∼43 Hz volume rate using an optical coherence tomography (OCT) system with a ∼1.5 MHz Fourier domain mode-locking swept laser source. Combining ultrafast OCT imaging with live mouse embryo culture protocols, 3D volumes of the embryo are directly and continuously acquired over time for a cardiodynamics analysis without the application of any synchronization algorithms. We present the time-resolved measurements of the heart wall motion based on the 4D structural data, report 4D speckle variance and Doppler imaging of the vascular system, and quantify spatially resolved blood flow velocity over time. These results indicate that the ultra-high-speed 4D imaging approach could be a useful tool for efficient cardiovascular phenotyping of mouse embryos.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Jiasong Li
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Samara State Aerospace University, 34 Moskovskoye Shosse, Samara 443086, Russia
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Corresponding author:
| |
Collapse
|
27
|
Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC DEVELOPMENTAL BIOLOGY 2015; 15:36. [PMID: 26472242 PMCID: PMC4608261 DOI: 10.1186/s12861-015-0087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Background Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3 mice, which are null for MBNL1 protein. Methods Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. Results As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. Conclusions Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0087-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Coram
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
| | - Samantha J Stillwagon
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Anuradha Guggilam
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Andrea N Ladd
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
28
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:78001. [PMID: 25581495 DOI: 10.1117/1.jbo.20.7.078001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/29/2015] [Indexed: 05/19/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United StatescUniversity of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
29
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051020. [PMID: 25581495 PMCID: PMC4405081 DOI: 10.1117/1.jbo.20.5.051020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H. Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J. Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D. Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L. West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V. Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- University of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- Address all correspondence to: Irina V. Larina, E-mail:
| |
Collapse
|
30
|
Karunamuni G, Gu S, Doughman YQ, Noonan AI, Rollins AM, Jenkins MW, Watanabe M. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Dev Dyn 2015; 244:607-18. [PMID: 25546089 DOI: 10.1002/dvdy.24246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of fetal alcohol syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. RESULTS The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrioventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3D reconstructed the late-stage cardiac valves in precise detail to examine their morphology and dimensions. CONCLUSIONS We believe, therefore, that optical coherence tomography, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
31
|
Filas BA, Xu G, Taber LA. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods Mol Biol 2015; 1189:3-16. [PMID: 25245683 DOI: 10.1007/978-1-4939-1164-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
32
|
Abstract
The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally "freeze" this movement and overcome motion artifacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart.
Collapse
|
33
|
Poole KM, McCormack DR, Patil CA, Duvall CL, Skala MC. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:4118-30. [PMID: 25574425 PMCID: PMC4285592 DOI: 10.1364/boe.5.004118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies.
Collapse
|
34
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
35
|
Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora vicina pupae in vivo? Forensic Sci Int 2014; 242:157-161. [PMID: 25064575 DOI: 10.1016/j.forsciint.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/16/2022]
Abstract
Necrophagous blowfly pupae are valuable contributors to the estimation of post-mortem interval, should an accurate age estimate be obtained. At present, this is reliant on a combination of rearing and destructive methods conducted on preserved samples, including morphological observation and gene expression analyses. This study demonstrates the use of optical coherence tomography (OCT) as a tool for in vivo morphological observation and pupal age estimation. Using a Michelson OCT microscope, alive and preserved four and ten-day old Calliphora vicina pupae were scanned in different orientations. Two and three-dimensional images were created. Morphological characteristics such as the brain, mouthparts and legs were identifiable in both living and preserved samples, with distinct differences noted between the two ages. Absorption of light by the puparium results in a vertical resolution of 1-2 mm, preventing observation of deeper tissues. The use of contrast agents or a longer wavelength laser would improve the images obtainable. At present, the data suggests OCT provides a primary view of external and internal morphology, which can be used to distinguish younger and older pupae for further analysis of age and PMI estimation.
Collapse
Affiliation(s)
- Katherine Brown
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, England.
| | - Michelle Harvey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| |
Collapse
|
36
|
Peterson LM, Gu S, Jenkins MW, Rollins AM. Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT. BIOMEDICAL OPTICS EXPRESS 2014; 5:499-514. [PMID: 24575344 PMCID: PMC3920880 DOI: 10.1364/boe.5.000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/19/2023]
Abstract
Doppler OCT (DOCT) can provide blood flow velocity information which is valuable for investigation of microvascular structure and function. However, DOCT is only sensitive to motion parallel with the imaging beam, so that knowledge of flow direction is needed for absolute velocity determination. Here, absolute volumetric flow is calculated by integrating velocity components perpendicular to the B-scan plane. These components are acquired using two illumination beams with a predetermined angular separation, produced by a delay encoded technique. This technology enables rapid pulsatile flow measurement from single B-scans without the need for 3-D volumetric data or knowledge of blood vessel orientation.
Collapse
|
37
|
Ma P, Wang YT, Gu S, Watanabe M, Jenkins MW, Rollins AM. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76004. [PMID: 24996663 PMCID: PMC4082492 DOI: 10.1117/1.jbo.19.7.076004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 05/29/2023]
Abstract
Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps and corrected conduction velocity maps of early embryonic quail hearts. 3-D correction eliminates underestimation bias in 2-D conduction velocity measurements, therefore enabling more accurate measurements with less experimental variability. The integrated system will also open the door to correlate the structure and electrophysiology, thereby improving our understanding of heart development.
Collapse
Affiliation(s)
- Pei Ma
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| | - Yves T. Wang
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Shi Gu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| | - Michiko Watanabe
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| |
Collapse
|
38
|
Karunamuni G, Gu S, Doughman YQ, Peterson LM, Mai K, McHale Q, Jenkins MW, Linask KK, Rollins AM, Watanabe M. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects? Am J Physiol Heart Circ Physiol 2013; 306:H414-21. [PMID: 24271490 DOI: 10.1152/ajpheart.00600.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities.
Collapse
|
39
|
Peterson LM, Jenkins MW, Gu S, Barwick L, Watanabe M, Rollins AM. 4D shear stress maps of the developing heart using Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2012; 3:3022-32. [PMID: 23162737 PMCID: PMC3493225 DOI: 10.1364/boe.3.003022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 05/19/2023]
Abstract
Accurate imaging and measurement of hemodynamic forces is vital for investigating how physical forces acting on the embryonic heart are transduced and influence developmental pathways. Of particular importance is blood flow-induced shear stress, which influences gene expression by endothelial cells and potentially leads to congenital heart defects through abnormal heart looping, septation, and valvulogenesis. However no imaging tool has been available to measure shear stress on the endocardium volumetrically and dynamically. Using 4D structural and Doppler OCT imaging, we are able to accurately measure the blood flow in the heart tube in vivo and to map endocardial shear stress throughout the heart cycle under physiological conditions for the first time. These measurements of the shear stress patterns will enable precise titration of experimental perturbations and accurate correlation of shear with the expression of molecules critical to heart development.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Lee Barwick
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland,
Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| |
Collapse
|
40
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|