1
|
Chen C, Zeng W, Yang Z, Hou S, Liang J, Liu H. Development of a current measurement system for 4πγ ionization chamber. Appl Radiat Isot 2025; 218:111684. [PMID: 39842074 DOI: 10.1016/j.apradiso.2025.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
A current measurement system named ICMS-TIA (Ionization Current Measurement System based on Transimpedance Amplifier) for rapid and accurate measurement of the ionization current of 4πγ ionization chamber is developed based on an improved high-value resistance I-V conversion method with range switching function. The effective measurement range of the ICMS-TIA is from 50 fA to 50 μA and the response time of the system is less than 2.8 s. The test shows that the deviation of the current measurement above 1 pA is less than 0.41%, and the uncertainty over a range of current levels is given. In the linearity tests, the maximum deviation is 1.15 %. These tests indicate that this system can be used for current measurement of 4πγ ionization chamber.
Collapse
Affiliation(s)
- Cong Chen
- School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weihua Zeng
- School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zhijie Yang
- National Institute of Metrology (NIM), Beijing, 100029, China
| | - Shengli Hou
- School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Juncheng Liang
- National Institute of Metrology (NIM), Beijing, 100029, China
| | - Haoran Liu
- National Institute of Metrology (NIM), Beijing, 100029, China
| |
Collapse
|
2
|
Muhammad W, Song J, Kim S, Ahmed F, Cho E, Lee H, Kim J. Silicon-Based Biosensors: A Critical Review of Silicon's Role in Enhancing Biosensing Performance. BIOSENSORS 2025; 15:119. [PMID: 39997021 PMCID: PMC11852904 DOI: 10.3390/bios15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
This review into recent advancements in silicon-based technology, with a particular emphasis on the biomedical applications of silicon sensors. Owing to their diminutive size, high sensitivity, and intrinsic compatibility with electronic systems, silicon-based sensors have found widespread utilization across healthcare, industrial, and environmental monitoring domains. In the realm of biomedical sensing, silicon has demonstrated significant potential to enhance human health outcomes while simultaneously driving progress in microfabrication techniques for multifunctional device development. The review systematically examines the versatile roles of silicon in the fabrication of electrodes, sensing channels, and substrates. Silicon electrodes are widely used in electrochemical biosensors for glucose monitoring and neural activity recording, while sensing channels in field-effect transistor biosensors enable the detection of cancer biomarkers and small molecules. Porous silicon substrates are applied in optical biosensors for label-free protein and pathogen detection. Key challenges in this field, including the interaction of silicon with biomolecules, the economic barriers to miniaturization, and issues related to signal stability, are critically analyzed. Proposed strategies to address these challenges and improve sensor functionality and reliability are also discussed. Furthermore, the article explores emerging developments in silicon-based biosensors, particularly their integration into wearable technologies. The pivotal role of artificial intelligence (AI) in enhancing the performance, functionality, and real-time capabilities of these sensors is also highlighted. This review provides a comprehensive overview of the current state, challenges, and future directions in the field of silicon-based biomedical sensing technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (W.M.); (J.S.); (S.K.); (F.A.); (E.C.); (H.L.)
| |
Collapse
|
3
|
Lazarjan VK, Crochetiere ME, Khiarak MN, Aarani SG, Hosseini SN, Gagnon-Turcotte G, Marquet P, Gosselin B. High Precision Ping-Pong Auto-Zeroed Lock-in Fluorescence Photometry Sensor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1140-1155. [PMID: 38625769 DOI: 10.1109/tbcas.2024.3388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
This paper presents a high-precision CMOS fluorescence photometry sensor using a novel lock-in amplification scheme based on switched-biasing and ping-pong auto-zeroing techniques. The CMOS sensor includes two photodiodes and a lock-in amplifier (LIA) operating at 1 kHz. The LIA comprises a differential low-noise amplifier using a novel switched-biasing ping-pong auto-zeroed scheme, an automatic phase aligner, a programmable gain amplifier, a band-pass filter, a mixer, and an output low-pass filter. The design is fabricated in 0.18-µm CMOS process, and the measurement shows that the LIA can retrieve noisy input signals with a dynamic reserve of 42 dB, while consuming only 0.7 mW from a 1.8 V supply voltage. The measured results show that the LIA can detect a wide range of incident light power from 8 nW to 24 µW. The proposed design is encapsulated in a 3D-printed housing allowing for real-time in vitro biomarker detection. This ambulatory platform uses an LED and a fiber optic to convey the excitation light to the sample and retrieve the fluorescence signal. Experiments with a beads solution diluted in PBS demonstrate that the sensor has a sensitivity of 1:100 k. Experimental results obtained in vitro with NIH3T3 mouse cells tagged with membrane dye show the ability of the prototype to detect different densities of cell culture. The portable prototype, which includes optical filters and a small 30 mm × 36 mm × 30 mm printed circuit board enclosed inside the 3D-printed housing, consumes 36.7 mW and weighs 120 g.
Collapse
|
4
|
Gudlavalleti RH, Xi X, Legassey A, Chan PY, Li J, Burgess D, Giardina C, Papadimitrakopoulos F, Jain F. Highly Miniaturized, Low-Power CMOS ASIC Chip for Long-Term Continuous Glucose Monitoring. J Diabetes Sci Technol 2024; 18:1179-1184. [PMID: 36772835 PMCID: PMC11418493 DOI: 10.1177/19322968231153419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The objective of this work is to develop a highly miniaturized, low-power, biosensing platform for continuous glucose monitoring (CGM). This platform is based on an application-specific integrated circuit (ASIC) chip that interfaces with an amperometric glucose-sensing element. To reduce both size and power requirements, this custom ASIC chip was implemented using 65-nm complementary metal oxide semiconductor (CMOS) technology node. Interfacing this chip to a frequency-counting microprocessor with storage capabilities, a miniaturized transcutaneous CGM system can be constructed for small laboratory animals, with long battery life. METHOD A 0.45 mm × 1.12 mm custom ASIC chip was first designed and implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm CMOS technology node. This ASIC chip was then interfaced with a multi-layer amperometric glucose-sensing element and a frequency-counting microprocessor with storage capabilities. Variation in glucose levels generates a linear increase in frequency response of this ASIC chip. In vivo experiments were conducted in healthy Sprague Dawley rats. RESULTS This highly miniaturized, 65-nm custom ASIC chip has an overall power consumption of circa 36 µW. In vitro testing shows that this ASIC chip produces a linear (R2 = 99.5) frequency response to varying glucose levels (from 2 to 25 mM), with a sensitivity of 1278 Hz/mM. In vivo testing in unrestrained healthy rats demonstrated long-term CGM (six days/per charge) with rapid glucose response to glycemic variations induced by isoflurane anesthesia and tail vein injection. CONCLUSIONS The miniature footprint of the biosensor platform, together with its low-power consumption, renders this CMOS ASIC chip a versatile platform for a variety of highly miniaturized devices, intended to improve the quality of life of patients with type 1 and type 2 diabetes.
Collapse
Affiliation(s)
| | - Xiangyi Xi
- University of Connecticut, Storrs, CT, USA
| | | | | | - Jin Li
- University of Connecticut, Storrs, CT, USA
| | | | | | | | - Faquir Jain
- University of Connecticut, Storrs, CT, USA
- Biorasis Inc., Storrs, CT, USA
| |
Collapse
|
5
|
Liu M, Li J, Tan CS. Unlocking the Power of Nanopores: Recent Advances in Biosensing Applications and Analog Front-End. BIOSENSORS 2023; 13:598. [PMID: 37366963 DOI: 10.3390/bios13060598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The biomedical field has always fostered innovation and the development of various new technologies. Beginning in the last century, demand for picoampere-level current detection in biomedicine has increased, leading to continuous breakthroughs in biosensor technology. Among emerging biomedical sensing technologies, nanopore sensing has shown great potential. This paper reviews nanopore sensing applications, such as chiral molecules, DNA sequencing, and protein sequencing. However, the ionic current for different molecules differs significantly, and the detection bandwidths vary as well. Therefore, this article focuses on current sensing circuits, and introduces the latest design schemes and circuit structures of different feedback components of transimpedance amplifiers mainly used in nanopore DNA sequencing.
Collapse
Affiliation(s)
- Miao Liu
- Medical College, Tianjin University, Tianjin 300072, China
| | - Junyang Li
- Medical College, Tianjin University, Tianjin 300072, China
| | - Cherie S Tan
- Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Alamouti SF, Jan J, Yalcin C, Ting J, Arias AC, Muller R. A Sparse Sampling Sensor Front-End IC for Low Power Continuous SpO 2 & HR Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:997-1007. [PMID: 36417724 DOI: 10.1109/tbcas.2022.3223971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoplethysmography (PPG) is an attractive method to acquire vital signs such as heart rate and blood oxygenation and is frequently used in clinical and at-home settings. Continuous operation of health monitoring devices demands a low power sensor that does not restrict the device battery life. Silicon photodiodes (PD) and LEDs are commonly used as interface devices in PPG sensors; however, using of flexible organic devices can enhance the sensor conformality and reduce the cost of fabrication. In most PPG sensors, most of system power consumption is concentrated in powering LEDs, traditionally consuming mWs. Using organic devices further increases this power demand since these devices exhibit larger parasitic capacitances and typically need higher drive voltages.This work presents a sensor IC for continuous SpO 2 and HR monitoring that features an on-chip reconstruction-free sparse sampling algorithm to reduce the overall system power consumption by ∼ 70% while maintaining the accuracy of the output information. The designed frontend is compatible with a wide range of devices from silicon PDs to organic PDs with parasitic capacitances up to 10 nF. Implemented in a 40 nm HV CMOS process, the chip occupies 2.43 mm 2 and consumes 49.7 μW and 15.2 μW of power in continuous and sparse sampling modes respectively. The performance of the sensor IC has been verified in vivo with both types of devices and the results are compared against a clinical grade reference. Less than 1 bpm and 1% mean absolute errors were achieved in both continuous and sparse modes of operation.
Collapse
|
7
|
Liu X, Fan Q, Chen Z, Wan P, Mao W, Yu H. A review and analysis of current-mode biosensing front-end ICs for nanopore-based DNA sequencing. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.1071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bio-sensors connect the biological world with electronic devices, widely used in biomedical applications. The combination of microelectronic and medical technologies makes biomedical diagnosis more rapid, accurate, and efficient. In this article, the current-mode biosensing front-end integrated circuits (ICs) for nanopore-based DNA sequencing are reviewed and analyzed, aiming to present their operation theories, advantages, limitations, and performances including gain, bandwidth, noise, and power consumption. Because biological information and external interference are contained in extremely weak sensing current, usually at the pA or nA level, it is challenging to accurately detect and restore the desired signals. Based on the requirements of DNA sequencing, this paper shows three circuit topologies of biosensing front-end, namely, discrete-time, continuous-time, and current-to-frequency conversion types. This paper also makes an introduction to the current-mode sensor array for DNA sequencing. To better review and evaluate the research of the state-of-the-art, the most relevant published works are summarized and compared. The review and analysis would help the researchers be familiar with the requirements, constraints, and methods for current-mode biosensing front-end IC designs for nanopore-based DNA sequencing.
Collapse
|
8
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
9
|
The Design of a Low Noise and Low Power Current Readout Circuit for Sub-pA Current Detection Based on Charge Distribution Model. ELECTRONICS 2022. [DOI: 10.3390/electronics11111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, we proposed an analytical model based on charge distribution for switched-capacitor trans-impedance amplifiers (SCTIAs). The changes in the load state of the amplifier under different operating conditions and the influence of the gain of the operational amplifier (Opamp) on the trans-impedance gain are analyzed to improve the design theory of switched-capacitor trans-impedance amplifiers. According to the conclusion drawn from the analysis, the trans-impedance amplifier (TIA) has been designed by adopting “correlated double sampling technology” and “cross-connection technology” to optimize input-referred noise current, power consumption, and trans-impedance gain. As a result, the trans-impedance gain reaches up to 206 dB, while the bandwidth is 3 kHz. The current readout system achieves an input-referred noise current floor of 2.96 fA/Hz at 1 kHz, and the power consumption of the system is 0.643 mW. The circuit has been simulated with the technology of 0.18 μm, and the layout area is 1000 μm × 500 μm.
Collapse
|
10
|
Pandey RK, Chao PCP. A Dual-Channel PPG Readout System With Motion-Tolerant Adaptability for OLED-OPD Sensors. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:36-51. [PMID: 34962876 DOI: 10.1109/tbcas.2021.3138996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An adaptive PPG (Photoplethysmography) readout system for a dual-channel OLED-OPD flexible sensor is designed and developed with motion artifact (<1Hz) and ambient lighting interference successfully compensated without any additional motion sensors. The compensation is made possible by adopting multi-feedbacks and an additional reference OPD channel to cancel effectively DC drifts. In result, the quality of measured PPG is improved to the level such that long-time, continuous quality monitoring of bio-sign such as heart rate (HR) is possible. The readout is designed with an auto-programmable band-pass trans-impedance amplifier (TIA) of a 100dbΩ gain with a continuous-type DC-current cancellation loop. The rest of the readout consists of a 0.5 Hz low-pass filter, an additional second-order band-pass filter (0.1-10Hz), a difference amplifier, a motion reference channel, an analog multiplexer, a programmable gain amplifier (PGA), a digital control and a programmable DAC-PWM based auto-intensity tuned OLED driver. The readout is fabricated in an area of 9 mm2 via the TSMC 180nm process. The experiment result shows that the developed OLED-OPD readout senses well as small as 1nA current, with a measured dynamic range >90dB (1nA to 100 µA) and input-referred noise of 0.26 nA/√H, with power consumption of 460µW. The DC drift is successfully reduced to 1% of its average. The accuracy for heart rate is 96%.
Collapse
|
11
|
Lin Q, Song S, Van Wegberg R, Sijbers W, Biswas D, Konijnenburg M, Van Hoof C, Tavernier F, Van Helleputte N. A 134 DB Dynamic Range Noise Shaping Slope Light-to-Digital Converter for Wearable Chest PPG Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1224-1235. [PMID: 34818192 DOI: 10.1109/tbcas.2021.3130470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper presents a low power, high dynamic range (DR), light-to-digital converter (LDC) for wearable chest photoplethysmogram (PPG) applications. The proposed LDC utilizes a novel 2nd-order noise-shaping slope architecture, directly converting the photocurrent to a digital code. This LDC applies a high-resolution dual-slope quantizer for data conversion. An auxiliary noise shaping loop is used to shape the residual quantization noise. Moreover, a DC compensation loop is implemented to cancel the PPG signal's DC component, thus further boosting the DR. The prototype is fabricated with 0.18 μm standard CMOS and characterized experimentally. The LDC consumes 28 μW per readout channel while achieving a maximum 134 dB DR. The LDC is also validated with on-body chest PPG measurement.
Collapse
|
12
|
Zhang Y, Demosthenous A. Integrated Circuits for Medical Ultrasound Applications: Imaging and Beyond. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:838-858. [PMID: 34665739 DOI: 10.1109/tbcas.2021.3120886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical ultrasound has become a crucial part of modern society and continues to play a vital role in the diagnosis and treatment of illnesses. Over the past decades, the development of medical ultrasound has seen extraordinary progress as a result of the tremendous research advances in microelectronics, transducer technology and signal processing algorithms. However, medical ultrasound still faces many challenges including power-efficient driving of transducers, low-noise recording of ultrasound echoes, effective beamforming in a non-linear, high-attenuation medium (human tissues) and reduced overall form factor. This paper provides a comprehensive review of the design of integrated circuits for medical ultrasound applications. The most important and ubiquitous modules in a medical ultrasound system are addressed, i) transducer driving circuit, ii) low-noise amplifier, iii) beamforming circuit and iv) analog-digital converter. Within each ultrasound module, some representative research highlights are described followed by a comparison of the state-of-the-art. This paper concludes with a discussion and recommendations for future research directions.
Collapse
|
13
|
Pullano SA, Fiorillo AS, Barile G, Stornelli V, Ferri G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. MICROMACHINES 2021; 12:mi12020099. [PMID: 33498360 PMCID: PMC7909449 DOI: 10.3390/mi12020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022]
Abstract
Exploiting the transmission and reception of low frequency ultrasounds in air is often associated with the innate echolocating abilities of some mammals, later emulated with sophisticated electronic systems, to obtain information about unstructured environments. Here, we present a novel approach for the reception of ultrasounds in air, which exploits a piezopolymer broadband sensor and an electronic interface based on a second-generation voltage conveyor (VCII). Taking advantage of its capability to manipulate both voltage and current signals, in this paper, we propose an extremely simple interface that presents a sensitivity level of about −100 dB, which is in line with commercially available references. The presented results are obtained without any filtration stage. The second-generation voltage conveyor active device is implemented through a commercially available AD844, with a supply voltage of ±15 V.
Collapse
Affiliation(s)
- Salvatore A. Pullano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.P.); (A.S.F.)
| | - Antonino S. Fiorillo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.P.); (A.S.F.)
| | - Gianluca Barile
- Department of Industrial and Information Engineering and Economics (DIIEE), Faculty of Engineering, University of L’Aquila, 67100 L’Aquila, Italy; (V.S.); (G.F.)
- Correspondence:
| | - Vincenzo Stornelli
- Department of Industrial and Information Engineering and Economics (DIIEE), Faculty of Engineering, University of L’Aquila, 67100 L’Aquila, Italy; (V.S.); (G.F.)
| | - Giuseppe Ferri
- Department of Industrial and Information Engineering and Economics (DIIEE), Faculty of Engineering, University of L’Aquila, 67100 L’Aquila, Italy; (V.S.); (G.F.)
| |
Collapse
|
14
|
Abbott J, Ye T, Krenek K, Qin L, Kim Y, Wu W, Gertner RS, Park H, Ham D. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2020; 55:2567-2582. [PMID: 33762776 PMCID: PMC7983016 DOI: 10.1109/jssc.2020.3005816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CMOS microelectrode arrays (MEAs) can record electrophysiological activities of a large number of neurons in parallel but only extracellularly with low signal-to-noise ratio. Patch clamp electrodes can perform intracellular recording with high signal-to-noise ratio but only from a few neurons in parallel. Recently we have developed and reported a neuroelectronic interface that combines the parallelism of the CMOS MEA and the intracellular sensitivity of the patch clamp. Here, we report the design and characterization of the CMOS integrated circuit (IC), a critical component of the neuroelectronic interface. Fabricated in 0.18-μm technology, the IC features an array of 4,096 platinum black (PtB) nanoelectrodes spaced at a 20 μm pitch on its surface and contains 4,096 active pixel circuits. Each active pixel circuit, consisting of a new switched-capacitor current injector--capable of injecting from ±15 pA to ±0.7 μA with a 5 pA resolution--and an operational amplifier, is highly configurable. When configured into current-clamp mode, the pixel intracellularly records membrane potentials including subthreshold activities with ∼23 μVrms input referred noise while injecting a current for simultaneous stimulation. When configured into voltage-clamp mode, the pixel becomes a switched-capacitor transimpedance amplifier with ∼1 pArms input referred noise, and intracellularly records ion channel currents while applying a voltage for simultaneous stimulation. Such voltage/current-clamp intracellular recording/stimulation is a feat only previously possible with the patch clamp method. At the same time, as an array, the IC overcomes the lack of parallelism of the patch clamp method, measuring thousands of mammalian neurons in parallel, with full-frame intracellular recording/stimulation at 9.4 kHz.
Collapse
Affiliation(s)
- Jeffrey Abbott
- John A. Paulson School of Engineering and Applied Sciences, the Department of Chemistry and Chemical Biology, and the Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tianyang Ye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Keith Krenek
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ling Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA. He is now with Cavium Inc., Marlborough, MA 01752, USA
| | - Youbin Kim
- Harvard College, Cambridge, MA 02138 USA. He is now with University of California, Berkeley, CA 94720, USA
| | - Wenxuan Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and the Department of Physics, Harvard University, Cambridge, MA 02138 USA
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Noh JH. A Capacitive Feedback Transimpedance Amplifier with a DC Feedback Loop Using a Transistor for High DC Dynamic Range. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20174716. [PMID: 32825584 PMCID: PMC7506776 DOI: 10.3390/s20174716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a capacitive feedback transimpedance amplifier (CF-TIA) using a transistor in the direct current (DC) feedback loop for high DC dynamic range. In some applications, the background DC input can vary widely from the minimum to the maximum, and TIA have to sense the target signal even on the top of the maximum DC input. In a conventional CF-TIA, however, the allowable DC input is constrained by the value of the resistor in the DC feedback loop. To allow a fairly high DC input, the resistor is set to a very low value. This causes the thermal noise current to increase significantly. The increased thermal noise is always present even in the minimum DC input, thus degrading the overall noise performance. The circuit proposed herein overcomes this shortcoming by using the transistor instead of the resistor. The adverse effect of the parasitic capacitance of the transistor on system stability is compensated for as well. Then, the analyses of the overall frequency response and design parameters, including the cut-off frequency and attenuation ratio associated with system stability, are presented for the proposed circuit. In addition, in order to cope with the problem that stability is dependent on the amount of DC input, a simple method for ensuring system stability regardless of DC component value is introduced. The presented analyses and the method are generalized for all CF-TIA applications.
Collapse
Affiliation(s)
- Jung-Hoon Noh
- Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 34134, Korea
| |
Collapse
|
16
|
You KD, Cuniberto E, Hsu SC, Wu B, Huang Z, Pei X, Shahrjerdi D. An Electrochemical Biochip for Measuring Low Concentrations of Analytes With Adjustable Temporal Resolutions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:903-917. [PMID: 32746358 DOI: 10.1109/tbcas.2020.3009303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical micro-sensors made of nano-graphitic (NG) carbon materials could offer high sensitivity and support voltammetry measurements at vastly different temporal resolutions. Here, we implement a configurable CMOS biochip for measuring low concentrations of bio-analytes by leveraging these advantageous features of NG micro-sensors. In particular, the core of the biochip is a discrete-time ∆Σ modulator, which can be configured for optimal power consumption according to the temporal resolution requirements of the sensing experiments while providing a required precision of ≈ 13 effective number of bits. We achieve this new functionality by developing a design methodology using the physical models of transistors, which allows the operating region of the modulator to be switched on-demand between weak and strong inversion. We show the application of this configurable biochip through in-vitro measurements of dopamine with concentrations as low as 50 nM and 200 nM at temporal resolutions of 100 ms and 10 s, respectively.
Collapse
|
17
|
Lin Q, Xu J, Song S, Breeschoten A, Konijnenburg M, Van Hoof C, Tavernier F, Van Helleputte N. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:800-810. [PMID: 32746343 DOI: 10.1109/tbcas.2020.3001449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a low power, high dynamic range (DR), reconfigurable light-to-digital converter (LDC) for photoplethysmogram (PPG), and near-infrared spectroscopy (NIRS) sensor readouts. The proposed LDC utilizes a current integration and a charge counting operation to directly convert the photocurrent to a digital code, reducing the noise contributors in the system. This LDC consists of a latched comparator, a low-noise current reference, a counter, and a multi-function integrator, which is used in both signal amplification and charge counting based data quantization. Furthermore, a current DAC is used to further increase the DR by canceling the baseline current. The LDC together with LED drivers and auxiliary digital circuitry are implemented in a standard 0.18 μm CMOS process and characterized experimentally. The LDC and LED drivers consume a total power of 196 μW while achieving a maximum 119 dB DR. The charge counting clock, and the pulse repetition frequency of the LED driver can be reconfigured, providing a wide range of power-resolution trade-off. At a minimum power consumption of 87 μW, the LDC still achieves 95 dB DR. The LDC is also validated with on-body PPG and NIRS measurement by using a photodiode (PD) and a silicon photomultiplier (SIPM), respectively.
Collapse
|
18
|
An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2020. [DOI: 10.3390/jlpea10030023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Designing low-noise current readout circuits at high speed is challenging. There is a need for preamplification stages to amplify weak input currents before being processed by conventional integrator based readout. However, the high current gain preamplification stage usually limits the dynamic range. This article presents a 140 dB input dynamic range low-noise current readout circuit with a noise floor of 10 fArms/sq(Hz). The architecture uses a programmable bidirectional input current gain stage followed by an integrator-based analog-to-pulse conversion stage. The programmable current gains setting enables one to achieve higher overall input dynamic range. The readout circuit is designed and in 0.18 μm CMOS and consumes 10.3 mW power from a 1.8 V supply. The circuit has been verified using post-layout simulations.
Collapse
|
19
|
Carminati M, Fiorini C. Challenges for Microelectronics in Non-Invasive Medical Diagnostics. SENSORS 2020; 20:s20133636. [PMID: 32610430 PMCID: PMC7374509 DOI: 10.3390/s20133636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/03/2023]
Abstract
Microelectronics is emerging, sometimes with changing fortunes, as a key enabling technology in diagnostics. This paper reviews some recent results and technical challenges which still need to be addressed in terms of the design of CMOS analog application specific integrated circuits (ASICs) and their integration in the surrounding systems, in order to consolidate this technological paradigm. Open issues are discussed from two, apparently distant but complementary, points of view: micro-analytical devices, combining microfluidics with affinity bio-sensing, and gamma cameras for simultaneous multi-modal imaging, namely scintigraphy and magnetic resonance imaging (MRI). The role of integrated circuits is central in both application domains. In portable analytical platforms, ASICs offer miniaturization and tackle the noise/power dissipation trade-off. The integration of CMOS chips with microfluidics poses multiple open technological issues. In multi-modal imaging, now that the compatibility of the acquisition chains (thousands of Silicon Photo-Multipliers channels) of gamma detectors with Tesla-level magnetic fields has been demonstrated, other development directions, enabled by microelectronics, can be envisioned in particular for single-photon emission tomography (SPECT): a faster and simplified operation, for instance, to allow transportable applications (bed-side) and hardware pre-processing that reduces the number of output signals and the image reconstruction time.
Collapse
Affiliation(s)
- Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- Correspondence:
| | - Carlo Fiorini
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
20
|
Song S, Konijnenburg M, van Wegberg R, Xu J, Ha H, Sijbers W, Stanzione S, Biswas D, Breeschoten A, Vis P, van Liempd C, van Hoof C, van Helleputte N. A 769 μW Battery-Powered Single-Chip SoC With BLE for Multi-Modal Vital Sign Monitoring Health Patches. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1506-1517. [PMID: 31581099 DOI: 10.1109/tbcas.2019.2945114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An all-in-one battery powered low-power SoC for measuring multiple vital signs with wearables is proposed. All functionality needed in a typical wearable use case scenario, including dedicated readouts, power management circuitry, digital signal processing and wireless communication (BLE) is integrated in a single die. This high level of integration allows an unprecedented level of miniaturization leading to smaller component count which reduces cost and improves comfort and signal integrity. The SoC includes an ECG, Bio-Impedance and a fully differential PPG readout and can interface with external sensors (like an IMU). In a typical application scenario where all sensor readouts are enabled and key features (like heart rate) are calculated on the chip and streamed over the radio, the SoC consumes only 769 μW from the regulated 1.2 V supply.
Collapse
|
21
|
Hartel AJW, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal Chim Acta 2019; 1061:13-27. [PMID: 30926031 PMCID: PMC6860018 DOI: 10.1016/j.aca.2019.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.
Collapse
Affiliation(s)
- Andreas J W Hartel
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| | - Siddharth Shekar
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Peijie Ong
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kenneth L Shepard
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| |
Collapse
|
22
|
Shekar S, Chien CC, Hartel A, Ong P, Clarke OB, Marks A, Drndic M, Shepard KL. Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals. NANO LETTERS 2019; 19:1090-1097. [PMID: 30601669 PMCID: PMC6904930 DOI: 10.1021/acs.nanolett.8b04388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent work has pushed the noise-limited bandwidths of solid-state nanopore conductance recordings to more than 5 MHz and of ion channel conductance recordings to more than 500 kHz through the use of integrated complementary metal-oxide-semiconductor (CMOS) integrated circuits. Despite the spectral spread of the pulse-like signals that characterize these recordings when a sinusoidal basis is employed, Bessel filters are commonly used to denoise these signals to acceptable signal-to-noise ratios (SNRs) at the cost of losing many of the faster temporal features. Here, we report improvements to the SNR that can be achieved using wavelet denoising instead of Bessel filtering. When combined with state-of-the-art high-bandwidth CMOS recording instrumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important insights into nanopore translocation dynamics and mechanisms of ion-channel function.
Collapse
Affiliation(s)
| | - Chen-Chi Chien
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States
| | - Marija Drndic
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
23
|
Amayreh M, Baaken G, Behrends JC, Manoli Y. A Fully Integrated Current-Mode Continuous-Time Delta-Sigma Modulator for Biological Nanopore Read Out. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:225-236. [PMID: 30582552 DOI: 10.1109/tbcas.2018.2889536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a fully integrated low noise current-to-digital converter based on current-mode continuous-time delta-sigma modulators (CT DSMs). The circuit was realized in standard 0.35 μm complimentary metal-oxide-semiconductor process and achieves a noise floor as low as 200 fA rms within a bandwidth of 10 kHz. Thanks to the continuous-time architecture, the oversampling together with the implicit anti-aliasing behavior of the current-mode CT DSM prevents the back folding of any out-of-band signals and noises. Running at a sampling frequency of 1.6 MHz, the circuit achieves a measured worst case anti-aliasing filtering of -110 dB for an out-of-band signal at 1.59 MHz. This characteristic eliminates the need of an anti-aliasing filter, which reduces the complexity as well as the area and power consumption. Two feedback versions, a transistor based as well as a capacitor-based current division have been used to reduce the reference current noise. The transistor-based current division feedback modulator consumes a power of 6.73 mW and occupies an area of 0.63 mm 2, whereas the capacitor based consumes a power of 4.6 mW and occupies an area of 0.32 mm 2. Both of them operate at a supply voltage of ±1.5 V.
Collapse
|
24
|
CMOS Interfaces for Internet-of-Wearables Electrochemical Sensors: Trends and Challenges. ELECTRONICS 2019. [DOI: 10.3390/electronics8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smart wearables, among immediate future IoT devices, are creating a huge and fast growing market that will encompass all of the next decade by merging the user with the Cloud in a easy and natural way. Biological fluids, such as sweat, tears, saliva and urine offer the possibility to access molecular-level dynamics of the body in a non-invasive way and in real time, disclosing a wide range of applications: from sports tracking to military enhancement, from healthcare to safety at work, from body hacking to augmented social interactions. The term Internet of Wearables (IoW) is coined here to describe IoT devices composed by flexible smart transducers conformed around the human body and able to communicate wirelessly. In addition the biochemical transducer, an IoW-ready sensor must include a paired electronic interface, which should implement specific stimulation/acquisition cycles while being extremely compact and drain power in the microwatts range. Development of an effective readout interface is a key element for the success of an IoW device and application. This review focuses on the latest efforts in the field of Complementary Metal–Oxide–Semiconductor (CMOS) interfaces for electrochemical sensors, and analyses them under the light of the challenges of the IoW: cost, portability, integrability and connectivity.
Collapse
|
25
|
Viswam V, Bounik R, Shadmani A. Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1356-1368. [PMID: 30418922 PMCID: PMC6330095 DOI: 10.1109/tbcas.2018.2881044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. A total of 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen subset of electrodes in the array. A sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, was applied to the reference electrode. The sensing currents through the selected recording electrodes were amplified, demodulated, filtered, and digitized to obtain the magnitude and phase information of the respective impedances. The circuitry consumes only 412 μW at 3.3 V supply voltage and occupies only 0.1 mm2, for each channel. The system also included 2048 extracellular action-potential recording channels on the same chip. Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated in this paper. Optical and impedance images showed a strong correlation.
Collapse
Affiliation(s)
- Vijay Viswam
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Raziyeh Bounik
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Amir Shadmani
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Fraccari RL, Carminati M, Piantanida G, Leontidou T, Ferrari G, Albrecht T. High-bandwidth detection of short DNA in nanopipettes. Faraday Discuss 2018; 193:459-470. [PMID: 27711887 DOI: 10.1039/c6fd00109b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.
Collapse
Affiliation(s)
- Raquel L Fraccari
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Giacomo Piantanida
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tina Leontidou
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Giorgio Ferrari
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tim Albrecht
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Fleischer DA, Shekar S, Dai S, Field RM, Lary J, Rosenstein JK, Shepard KL. CMOS-Integrated Low-Noise Junction Field-Effect Transistors for Bioelectronic Applications. IEEE ELECTRON DEVICE LETTERS : A PUBLICATION OF THE IEEE ELECTRON DEVICES SOCIETY 2018; 39:931-934. [PMID: 30666084 PMCID: PMC6338421 DOI: 10.1109/led.2018.2844545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we present a CMOS-integrated low-noise junction field-effect transistor (JFET) developed in a standard 0.18 pm CMOS process. These JFETs reduce input-referred flicker noise power by more than a factor of 10 when compared to equally sized n-channel MOS devices by eliminating oxide interfaces in contact with the channel. We show that this improvement in device performance translates into a factor-of-10 reduction in the input-referred noise of integrated CMOS operational amplifiers when JFET devices are used at the input, significant for many applications in bioelectronics.
Collapse
Affiliation(s)
- Daniel A Fleischer
- Electrical Engineering Department, Columbia University, New York, NY 10027 USA (
| | - Siddharth Shekar
- Electrical Engineering Department, Columbia University, New York, NY 10027 USA (
| | - Shanshan Dai
- School of Engineering, Brown University, Providence, RI 02912 USA
| | | | | | | | - Kenneth L Shepard
- Electrical Engineering Department, Columbia University, New York, NY 10027 USA (
| |
Collapse
|
28
|
Pagkalos I, Rogers ML, Boutelle MG, Drakakis EM. A High-Performance Application Specific Integrated Circuit for Electrical and Neurochemical Traumatic Brain Injury Monitoring. Chemphyschem 2018; 19:1215-1225. [PMID: 29388305 PMCID: PMC6016079 DOI: 10.1002/cphc.201701119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/25/2018] [Indexed: 11/11/2022]
Abstract
This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm2 ASIC fabricated in the commercially available AMS 0.35 μm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury.
Collapse
|
29
|
Li H, Parsnejad S, Ashoori E, Thompson C, Purcell EK, Mason AJ. Ultracompact Microwatt CMOS Current Readout With Picoampere Noise and Kilohertz Bandwidth for Biosensor Arrays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:35-46. [PMID: 28981427 PMCID: PMC5802377 DOI: 10.1109/tbcas.2017.2752742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-density on-chip electrochemical biosensor arrays are advancing toward a crucial role in health monitoring and development of new medicines and medical treatments. Nanopore and ion channel based sensors especially have great potential but present demanding resolution/speed/power/area requirements on instrumentation circuits. This paper presents a pixel-level current readout circuit and new group-cluster architecture to address the circuit challenges in high-performance biosensor arrays. Fabricated in 0.5 μm CMOS, this electrochemical voltammetry circuit achieves 7.2 pArms noise in an 11.5-kHz bandwidth and only consumes 21-μ W power and 0.06 mm2 area per readout channel. Cyclic voltammetry experiments in a potassium ferricyanide solution and patch-clamp whole-cell experiments were performed to validate the circuit's feasibility for electrochemical biosensor applications.
Collapse
|
30
|
Guo E, McKenzie DR. A post Gurney quantum mechanical perspective on the electrolysis of water: ion neutralization in solution. Proc Math Phys Eng Sci 2017; 473:20170371. [PMID: 29225493 DOI: 10.1098/rspa.2017.0371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/06/2017] [Indexed: 11/12/2022] Open
Abstract
Electron fluxes crossing the interface between a metallic conductor and an aqueous environment are important in many fields; hydrogen production, environmental scanning tunnelling microscopy, scanning electrochemical microscopy being some of them. Gurney (Gurney 1931 Proc. R. Soc. Lond.134, 137 (doi:10.1098/rspa.1931.0187)) provided in 1931 a scheme for tunnelling during electrolysis and outlined conditions for it to occur. We measure the low-voltage current flows between gold electrodes in pure water and use the time-dependent behaviour at voltage switch-on and switch-off to evaluate the relative contribution to the steady current arising from tunnelling of electrons between the electrodes and ions in solution and from the neutralization of ions adsorbed onto the electrode surface. We ascribe the larger current contribution to quantum tunnelling of electrons to and from ions in solution near the electrodes. We refine Gurney's barrier scheme to include solvated electron states and quantify energy differences using updated information. We show that Gurney's conditions would prevent the current flow at low voltages we observe but outline how the ideas of Marcus (Marcus 1956 J. Chem. Phys.24, 966-978 (doi:10.1063/1.1742723)) concerning solvation fluctuations enable the condition to be relaxed. We derive an average barrier tunnelling model and a multiple pathways tunnelling model and compare predictions with measurements of the steady-state current-voltage relation. The tunnelling barrier was found to be wide and low in agreement with other experimental studies. Applications as a biosensing mechanism are discussed that exploit the fast tunnelling pathways along molecules in solution.
Collapse
Affiliation(s)
- Enyi Guo
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Institute for Nanoscale Science and Technology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David R McKenzie
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Institute for Nanoscale Science and Technology, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Carminati M, Ferrari G, Vahey MD, Voldman J, Sampietro M. Miniaturized Impedance Flow Cytometer: Design Rules and Integrated Readout. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1438-1449. [PMID: 28952947 DOI: 10.1109/tbcas.2017.2748158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A dual-channel credit-card-sized impedance cell counter featuring a throughput of 2000 cell/s and detection of single yeast cells (5 μm) with a signal-to-noise ratio of 20 dB is presented. Its compactness is achieved by a CMOS ASIC combining a lock-in impedance demodulator with an oversampling 20-bit ΣΔ ADC and real-time peak detection embedded in field-programmable gate array. The module is coupled to a dielectrophoretic cell-sorting microfluidic device, offering compact and label-free electrical readout that replaces the need for a fluorescence microscope and, thus, is suitable for point-of-care diagnostics. The independent role of each dimension of the planar sensing microelectrodes is demonstrated, with simulations and experiments, along with its relevant effect on the spectrum of thin channels, deriving useful design guidelines.
Collapse
|
32
|
Dragas J, Viswam V, Shadmani A, Chen Y, Bounik R, Stettler A, Radivojevic M, Geissler S, Obien M, Müller J, Hierlemann A. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017; 52:1576-1590. [PMID: 28579632 PMCID: PMC5447818 DOI: 10.1109/jssc.2017.2686580] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm2) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Collapse
Affiliation(s)
- Jelena Dragas
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Vijay Viswam
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Amir Shadmani
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Yihui Chen
- ETH Zurich, D-BSSE, 4058 Basel, Switzerland, and now is with Analog Devices Shanghai Co. Ltd., Shanghai, China
| | - Raziyeh Bounik
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Alexander Stettler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Milos Radivojevic
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Sydney Geissler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Marie Obien
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Jan Müller
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| |
Collapse
|
33
|
Trumpis M, Insanally M, Zou J, Elsharif A, Ghomashchi A, Sertac Artan N, Froemke RC, Viventi J. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG. J Neural Eng 2017; 14:026009. [PMID: 28102827 PMCID: PMC5385258 DOI: 10.1088/1741-2552/aa5a82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. APPROACH We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. MAIN RESULTS The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 d. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. SIGNIFICANCE We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but also resulted in a small, light headstage that can easily be scaled to record from hundreds of channels.
Collapse
Affiliation(s)
- Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America. Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li H, Liu X, Li L, Mu X, Genov R, Mason AJ. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. SENSORS 2016; 17:s17010074. [PMID: 28042860 PMCID: PMC5298647 DOI: 10.3390/s17010074] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.
Collapse
Affiliation(s)
- Haitao Li
- Maxim Integrated Products Inc., 160 Rio Robles, San Jose, CA 95134, USA.
| | - Xiaowen Liu
- Xcellcure LLC., 1 City Place Drive Suite 285, St. Louis, MO 63131, USA.
| | - Lin Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiaoyi Mu
- Apple Inc., 1 Infinite Loop, Cupertino, CA 95014, USA.
| | - Roman Genov
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S, Canada.
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Dai S, Perera RT, Yang Z, Rosenstein JK. A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:935-944. [PMID: 27845675 DOI: 10.1109/tbcas.2016.2612581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
Collapse
|
36
|
Lei KM, Mak PI, Law MK, Martins RP. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications. LAB ON A CHIP 2016; 16:3664-3681. [PMID: 27713991 DOI: 10.1039/c6lc01002d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., <1 cm2), seamlessly combining the two key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Ka-Meng Lei
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China
| | - Man-Kay Law
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China.
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China. and Faculty of Science and Technology, Dept. of ECE, University of Macau, China and On leave from Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
37
|
An electrical method to measure low-frequency collective and synchronized cell activity using extracellular electrodes. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy. SENSORS 2016; 16:s16081159. [PMID: 27463721 PMCID: PMC5017325 DOI: 10.3390/s16081159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis.
Collapse
|
39
|
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording. SENSORS 2016; 16:s16050709. [PMID: 27213382 PMCID: PMC4883400 DOI: 10.3390/s16050709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/13/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022]
Abstract
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
Collapse
|
40
|
Özel RE, Kahnemouyi S, Fan H, Mak WH, Lohith A, Seger A, Teodorescu M, Pourmand N. Smartphone Operated Signal Transduction by Ion Nanogating (STING) Amplifier for Nanopore Sensors: Design and Analytical Application. ACS Sens 2016; 1:265-271. [PMID: 27602408 DOI: 10.1021/acssensors.5b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we demonstrated a handheld wireless voltage-clamp amplifier for current measurement of nanopore sensors. This amplifier interfaces a sensing probe and connects wirelessly with a computer or smartphone for the required stimulus input, data processing and storage. To test the proposed Signal Transduction by Ion Nanogating (STING) wireless amplifier, in the current study the system was tested with a nano-pH sensor to measure pH of standard buffer solutions and the performance was compared against the commercial voltage-clamp amplifier. To our best knowledge, STING amplifier is the first miniaturized wireless voltage-clamp platform operated with a customized smart-phone application (app).
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Sina Kahnemouyi
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Hsinwen Fan
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Wai Han Mak
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Akshar Lohith
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Adam Seger
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Mircea Teodorescu
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Nader Pourmand
- Biomolecular Engineering Department and ‡Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
41
|
Carminati M, Gervasoni G, Sampietro M, Ferrari G. Note: Differential configurations for the mitigation of slow fluctuations limiting the resolution of digital lock-in amplifiers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:026102. [PMID: 26931901 DOI: 10.1063/1.4941721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The resolution of digital lock-in amplifiers working with a narrow bandwidth (<100 Hz) is limited by slow fluctuations, which can be two orders of magnitude larger (μV range) than the noise of the input amplifier (tens of nV). In order to tackle this issue, affecting state-of-the-art laboratory instrumentation and here systematically quantified, three differential sensing configurations are presented. They adapt to different setup conditions and are based on manual and automatic tuning of dummy references, allowing a 25-fold resolution improvement for enhanced long-term tracking of impedance sensors.
Collapse
Affiliation(s)
- M Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - G Gervasoni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - M Sampietro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - G Ferrari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
42
|
Carminati M, Ferrari G, Vergani M, Sampietro M. The role of micro-scale current sensing in biomedicine: A unifying view and design guidelines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3201-4. [PMID: 26736973 DOI: 10.1109/embc.2015.7319073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrical activity of cells is regulated by ion fluxes and chemical signaling between them is sustained by redox-reactive molecules. Consequently, current sensing represents a straightforward way to interface electronics with biology and a common detection tool in several applications spanning from patch-clamp and nanopores to micro-scale impedance tracking. Reaching pA resolution at the ms timescale represents a challenge for the readout circuit and here all the criticalities involved in the optimal design of the sensing electrode are reviewed. Advantages vs. drawbacks and risks of the use of silicon as active vs. passive substrate respectively are illustrated by means of experimental examples.
Collapse
|
43
|
Ahn J, Hong SH, Park Y. A Double-Side CMOS-CNT Biosensor Array With Padless Structure for Simple Bare-Die Measurements in a Medical Environment. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:815-824. [PMID: 26731776 DOI: 10.1109/tbcas.2015.2500911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 μm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line. The back-side rectification is made possible by creating VDD and VSS through the back-side and front-side, respectively. The single I/O line is conditioned such that it doubles as either the power source or the ground, depending on whether the chip is face down or face up. A modified universal asynchronous receiver/transmitter (UART) serial communication scheme with pulse based I/O signal transmission is developed to reduce the power degradation during the signaling intervals. In addition, communication errors and I/O power dissipation for the receiver path are minimized by using level sensitive switch control and double sampling difference amplifier. In order to implement these special functions, a controller chip with a special I/O protocol is designed. Using this controller chip, issuing commands and receiving data can both be performed on a single line and the results are flexibly measured through either the backside or the front side of the chip contacts. As a result, a stable operation of under 150 mW maximum power at 2 MHz data rate can be achieved. The double-side chips with 32 × 32 and 64 × 64 sensor arrays occupy areas of 1.9 × 2.3 mm(2) and 3.7 × 3.9 mm(2), respectively.
Collapse
|
44
|
Hsu CL, Jiang H, Venkatesh AG, Hall DA. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:652-61. [PMID: 26595927 DOI: 10.1109/tbcas.2015.2496232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.
Collapse
|
45
|
Rosenstein JK, Lemay SG, Shepard KL. Single-molecule bioelectronics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:475-93. [PMID: 25529538 PMCID: PMC4476964 DOI: 10.1002/wnan.1323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Experimental techniques that interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. In this study, we review several technologies that can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms.
Collapse
Affiliation(s)
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Kenneth L Shepard
- Departments of Electrical and Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Crescentini M, Thei F, Bennati M, Saha S, de Planque MRR, Morgan H, Tartagni M. A Distributed Amplifier System for Bilayer Lipid Membrane (BLM) Arrays With Noise and Individual Offset Cancellation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:334-344. [PMID: 25252284 DOI: 10.1109/tbcas.2014.2346402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
Collapse
|