1
|
Cui W, Zong J, Li J, Ping Q, Qiu L, Lou L. High-Efficiency Wireless Power Transfer System Based on Low-Frequency AlScN Piezoelectric Micromechanical Ultrasonic Transducers for Implantable Medical Devices. MICROMACHINES 2025; 16:471. [PMID: 40283346 PMCID: PMC12029971 DOI: 10.3390/mi16040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
In recent years, implantable medical devices (IMDs) have introduced groundbreaking solutions for managing various health conditions. However, traditional implanted batteries necessitate periodic surgical replacement and tend to be relatively bulky, posing significant inconvenience to patients. To overcome these limitations, researchers have investigated various wireless power transfer (WPT) techniques, among which the ultrasonic wireless power transmission (UWPT) technique has distinct advantages. However, limited research has been conducted on ultrasonic power transfer at lower operating frequencies. Therefore, this study explores wireless power transfer using scandium-doped aluminum nitride (AlScN) piezoelectric micro-electromechanical transducers (PMUTs) in deionized (DI) water. Experimental results indicate that at an operating frequency of 14.075 kHz, the power transfer efficiency (PTE) can reach up to 2.68% under optimal load resistance conditions. Furthermore, a low-frequency UWPT system based on a AlScN PMUT has been developed, delivering a stable 3.3 V output for implantable medical devices and contributing to the advancement of a full-spectrum UWPT framework.
Collapse
Affiliation(s)
- Wanyun Cui
- School of Microelectronics, Shanghai University, Shanghai 201800, China; (W.C.); (J.Z.); (J.L.)
- Shanghai Industrial µTechnology Research Institute, Shanghai 201899, China
| | - Jianwei Zong
- School of Microelectronics, Shanghai University, Shanghai 201800, China; (W.C.); (J.Z.); (J.L.)
- Shanghai Industrial µTechnology Research Institute, Shanghai 201899, China
| | - Junxiang Li
- School of Microelectronics, Shanghai University, Shanghai 201800, China; (W.C.); (J.Z.); (J.L.)
| | - Qiang Ping
- College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China; (Q.P.); (L.Q.)
| | - Lei Qiu
- College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China; (Q.P.); (L.Q.)
| | - Liang Lou
- School of Microelectronics, Shanghai University, Shanghai 201800, China; (W.C.); (J.Z.); (J.L.)
- Shanghai Industrial µTechnology Research Institute, Shanghai 201899, China
| |
Collapse
|
2
|
Wang Y, Lin J, Zhu K, Nie Y, Wang M, Ma X, Liu X, Wang R, Mai W, Chu F, Liu R, Wu J, Jin J, Zhou X, Ma R, Wang X, Yin T, Liu Z, Zhang S. Precision neuroregulation combining liquid metal and magnetic stimulation. J Neuroeng Rehabil 2025; 22:76. [PMID: 40197274 PMCID: PMC11974191 DOI: 10.1186/s12984-025-01575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/11/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Electromagnetic field-based neuroregulation technology is a crucial technique for treating central nervous system and peripheral nervous system disorders. However, the use of invasive electrodes has unavoidable problems such as the risk of inflammation due to high hardness, electrical connections and the need for batteries. On the other hand, non-invasive magnetic stimulation has limitations such as centimeter-level focal areas and shallow stimulation depth. METHODS To enhance the precision and effectiveness of wireless magnetic stimulation, we employed a figure-8 magnetic stimulation coil (8-coil) to generate a magnetic field, combined with an injectable, highly conductive, and flexible liquid metal (LM) to produce a millimeter-scale focused electric field. A coaxial electric field measurement electrode was used to establish an agar phantom-based electric field measurement platform. The sciatic nerve of C57 mice was stimulated under acute anesthesia conditions, and electromyography (EMG) signals were collected to evaluate the enhancement of stimulation effects. Long-term safety was assessed through four weeks of implantation. RESULTS Theoretical analysis and finite element simulations demonstrated that the combination of LM and the 8-coil generated a millimeter-scale enhanced vector electric field within the tissue. Measured electric field distributions closely aligned with theoretical and simulation results. In the sciatic nerve experiments on mice, 1 µL of LM under a 0.45 T magnetic field significantly increased EMG signals and leg movement amplitude by approximately 500%. Long-term implantation under magnetic stimulation revealed no adverse effects. CONCLUSIONS This method utilizes focused electric fields to improve the precision and effectiveness of neuro-magnetic stimulation. It holds promise as a novel approach for precise stimulation. Preliminary evidence was provided for the safety of in vivo LM implantation under external magnetic fields.
Collapse
Affiliation(s)
- Yuheng Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Junjie Lin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Kai Zhu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Yuhui Nie
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Mengyuan Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Xiaoxu Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Xu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Ruru Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Wenshu Mai
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Fangxuan Chu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Ruixu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Jiankang Wu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ren Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Shunqi Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Saccher M, Stuart Savoia A, van Schaijk R, Klootwijk JH, Dekker R. Pre-Charged Collapse-Mode Capacitive Micromachined Ultrasonic Transducer (CMUT) Receivers for Efficient Power Transfer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:283-297. [PMID: 40031540 DOI: 10.1109/tuffc.2024.3523179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) offer several advantages over standard lead zirconate titanate (PZT) transducers, particularly for implantable devices. To eliminate their typical need for an external bias voltage, we embedded a charge storage layer in the dielectric. The objective of this study was to evaluate the performance of plasma-enhanced chemical vapor deposition (PECVD) Si3N4 and atomic layer deposition (ALD) Al2O3 as materials for the charge storage layer and two different dielectric layer thicknesses, focusing on their application as receivers in a wireless power transfer link. Capacitance-voltage (CV) measurements revealed that Si3N4 has a higher charge storage capacity compared to Al2O3. Additionally, a thicker dielectric layer between the bottom electrode and the charge storage layer (Bdiel) improved both charge trapping and retention, as assessed in dynamic accelerated lifetime transmit (TX)-mode tests. We then analyzed the power conversion performance of the fabricated CMUTs through both simulations and experiments. We performed extensive modeling based on an equivalent circuit derived from electrical impedance measurements of the fabricated CMUTs. The model was used to predict the power conversion efficiency under various conditions, including the charging field strength, the operating frequency, and parasitic series resistance. Power transfer experiments at 1- and 2.4-MHz recorded efficiencies exceeding 80% with an optimally matched load and up to 54% with a purely resistive load. Results confirmed that, with optimal load matching, the efficiency of different CMUT variants is comparable, indicating that the optimal variant should be selected based on additional criteria, such as charge retention time.
Collapse
|
4
|
Kassiri H, Muneeb A, Salahi R, Dabbaghian A. Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1268-1295. [PMID: 40030458 DOI: 10.1109/tbcas.2024.3456825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Driven by its proven therapeutic efficacy in treating movement disorders and psychiatric conditions, neurostimulation has emerged as a promising intervention for intractable epilepsy. Researchers envision an advanced implantable device capable of long-term neuronal monitoring, high spatio-temporal resolution data processing, and timely responsive neurostimulation upon seizure detection. However, the stringent energy constraints of implantable devices and significant inter-patient variability in neural activity pose substantial challenges and opportunities for biomedical circuits and systems researchers. For seizure detection, various ASIC solutions employing both deterministic and data-driven algorithms have been developed. These solutions leverage a subset of numerous signal features (spanning time and frequency domains) and classifiers (such as SVMs, DNNs, SNNs) to achieve notable success in terms of detection accuracy, latency, and energy efficiency. Implementations vary widely in computational approaches (digital, mixed-signal, analog, spike-based), training strategies (online versus offline), and application targets (patient-specific versus cross-patient). In terms of treatment, recent efforts have focused on the personalization of stimulation waveforms to enhance therapeutic efficacy. This personalization faces complex challenges, including a limited understanding of how stimulation parameters influence neuronal activity, the lack of a comprehensive brain model to capture its intricate electrochemical dynamics, and recording neural signals in the presence of stimulation artifacts. This review provides a comprehensive overview of the field, detailing the foundational principles, recent advancements, and ongoing challenges in enhancing the diagnostic accuracy, treatment efficacy, and energy efficiency of implantable patient-optimized neurostimulators. We also discuss potential future directions, emphasizing the need for standardized performance metrics, advanced computational models, and adaptive stimulation protocols to realize the full potential of this transformative technology.
Collapse
|
5
|
Holzapfel L, Giagka V. A Robust Backscatter Modulation Scheme for Uninterrupted Ultrasonic Powering and Back-Communication of Deep Implants. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1897-1905. [PMID: 39302785 DOI: 10.1109/tuffc.2024.3465268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Traditionally, implants are powered by batteries, which have to be recharged by an inductive power link. In the recent years, ultrasonic power links are being investigated, promising more available power for deeply implanted miniaturized devices. These implants often need to transfer back information. For ultrasonically powered implants, this is usually achieved with on-off keying (OOK) based on backscatter modulation, or active driving of a secondary transducer. In this article, we propose to superimpose subcarriers, effectively leveraging frequency-shift keying (FSK), which increases the robustness of the link against interference and fading. It also allows for simultaneous powering and communication, and inherently provides the possibility of frequency domain multiplexing for implant networks. The modulation scheme can be implemented in miniaturized application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and microcontrollers. We have validated this modulation scheme in a water tank during continuous ultrasound and movement. We achieved symbol rates of up to 104 kBd, and were able to transfer data through 20 cm of water and through a 5 cm tissue phantom with additional misalignment and during movements. This approach could provide a robust uplink for miniaturized implants that are located deep inside the body and need continuous ultrasonic powering.
Collapse
|
6
|
Wang W, Yu Z, Zou Y, Woods JE, Chari P, Su Y, Robinson JT, Yang K. Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2024; 59:3599-3611. [PMID: 39830594 PMCID: PMC11736903 DOI: 10.1109/jssc.2024.3464533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This paper presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and "magnetic field steering" technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multi-coil TX array in a closed loop, we develop an Active Echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2mm3 implantable stimulator embedding a custom low-power System-on-Chip (SoC) powered by an ME film, a transmitter with a custom three-channel AE RX chip, and a multi-coil TX array with mutual inductance cancellation. The AE RX achieves -161dBm/Hz input-referred noise with 64dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90° rotation from the ideal position, our omnidirectional WPT system achieves 6.8× higher power transfer efficiency (PTE) than a single-coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2% from using ideal control.
Collapse
Affiliation(s)
- Wei Wang
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Yiwei Zou
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Prahalad Chari
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Yumin Su
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA, and Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| |
Collapse
|
7
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
8
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Dorrian RM, Leonard AV, Lauto A. Millimetric devices for nerve stimulation: a promising path towards miniaturization. Neural Regen Res 2024; 19:1702-1706. [PMID: 38103235 PMCID: PMC10960286 DOI: 10.4103/1673-5374.389627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
10
|
Rivkin B, Akbar F, Otto M, Beyer L, Paul B, Kosiba K, Gustmann T, Hufenbach J, Medina-Sánchez M. Remotely Controlled Electrochemical Degradation of Metallic Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307742. [PMID: 38326101 DOI: 10.1002/smll.202307742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.
Collapse
Affiliation(s)
- Boris Rivkin
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Farzin Akbar
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Martin Otto
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Lukas Beyer
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Birgit Paul
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Konrad Kosiba
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Tobias Gustmann
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Julia Hufenbach
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Mariana Medina-Sánchez
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Center for Molecular Bioengineering (B CUBE), Chair of Micro- and Nano Systems, Technische Universität Dresden, 01307, Dresden, Germany
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
11
|
Jo D, Lee H, Jang Y, Oh P, Kwon Y. The Development of a New Vagus Nerve Simulation Electroceutical to Improve the Signal Attenuation in a Living Implant Environment. SENSORS (BASEL, SWITZERLAND) 2024; 24:3172. [PMID: 38794024 PMCID: PMC11125165 DOI: 10.3390/s24103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
An electroceutical is a medical device that uses electrical signals to control biological functions. It can be inserted into the human body as an implant and has several crucial advantages over conventional medicines for certain diseases. This research develops a new vagus nerve simulation (VNS) electroceutical through an innovative approach to overcome the communication limitations of existing devices. A phased array antenna with a better communication performance was developed and applied to the electroceutical prototype. In order to effectively respond to changes in communication signals, we developed the steering algorithm and firmware, and designed the smart communication protocol that operates at a low power that is safe for the patients. This protocol is intended to improve a communication sensitivity related to the transmission and reception distance. Based on this technical approach, the heightened effectiveness and safety of the prototype have been ascertained, with the actual clinical tests using live animals. We confirmed the signal attenuation performance to be excellent, and a smooth communication was achieved even at a distance of 7 m. The prototype showed a much wider communication range than any other existing products. Through this, it is conceivable that various problems due to space constraints can be resolved, hence presenting many benefits to the patients whose last resort to the disease is the VNS electroceutical.
Collapse
Affiliation(s)
- Daeil Jo
- Department of Industrial Engineering, Ajou University, Suwon 16499, Republic of Korea;
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Hyunung Lee
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Youlim Jang
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Paul Oh
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Yongjin Kwon
- Department of Industrial Engineering, Ajou University, Suwon 16499, Republic of Korea;
| |
Collapse
|
12
|
Benbuk A, Gulick D, Moniz-Garcia D, Liu S, Quinones-Hinojosa A, Christen JB. Wireless Stimulation of Motor Cortex Through a Collagen Dura Substitute Using an Ultra-Thin Implant Fabricated on Parylene/PDMS. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:334-346. [PMID: 37910421 PMCID: PMC11080957 DOI: 10.1109/tbcas.2023.3329447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We present the design, fabrication, and in vivo testing of an ultra-thin (100 μm) wireless and battery-free implant for stimulation of the brain's cortex. The implant is fabricated on a flexible and transparent parylene/PDMS substrate, and it is miniaturized to dimensions of 15.6 × 6.6 mm 2. The frequency and pulse width of the monophasic voltage pulses are determined through On-Off keying (OOK) modulation of a wireless transmission at 2.45 GHz. Furthermore, the implant triggered a motor response in vivo when tested in 6 rodents. Limb response was observed by wireless stimulation of the brain's motor cortex through an FDA-approved collagen dura substitute that was placed on the dura in the craniotomy site, with no direct contact between the implant's electrodes and the brain's cortical surface. Therefore, the wireless stimulation method reported herein enables the concept of an e-dura substitute, where wireless electronics can be integrated onto a conventional dura substitute to augment its therapeutic function and administer any desired stimulation protocol without the need for post-surgical intervention for battery replacement or reprogramming stimulation parameters.
Collapse
|
13
|
Mereu F, Cordella F, Paolini R, Scarpelli A, Demofonti A, Zollo L, Gruppioni E. A Sensory Feedback Neural Stimulator Prototype for Both Implantable and Wearable Applications. MICROMACHINES 2024; 15:480. [PMID: 38675291 PMCID: PMC11051761 DOI: 10.3390/mi15040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The restoration of sensory feedback is one of the current challenges in the field of prosthetics. This work, following the analysis of the various types of sensory feedback, aims to present a prototype device that could be used both for implantable applications to perform PNS and for wearable applications, performing TENS, to restore sensory feedback. The two systems are composed of three electronic boards that are presented in detail, as well as the bench tests carried out. To the authors' best knowledge, this work presents the first device that can be used in a dual scenario for restoring sensory feedback. Both the implantable and wearable versions respected the expected values regarding the stimulation parameters. In its implantable version, the proposed system allows simultaneous and independent stimulation of 30 channels. Furthermore, the capacity of the wearable version to elicit somatic sensations was evaluated on healthy participants demonstrating performance comparable with commercial solutions.
Collapse
Affiliation(s)
- Federico Mereu
- Centro Protesi Inail, Vigorso di Budrio, 40054 Bologna, Italy;
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | - Francesca Cordella
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | - Roberto Paolini
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | - Alessia Scarpelli
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | - Andrea Demofonti
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | - Loredana Zollo
- Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.C.); (R.P.); (A.S.); (A.D.); (L.Z.)
| | | |
Collapse
|
14
|
Miziev S, Pawlak WA, Howard N. Comparative analysis of energy transfer mechanisms for neural implants. Front Neurosci 2024; 17:1320441. [PMID: 38292898 PMCID: PMC10825050 DOI: 10.3389/fnins.2023.1320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants.
Collapse
|
15
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
16
|
Nair V, Dalrymple AN, Yu Z, Balakrishnan G, Bettinger CJ, Weber DJ, Yang K, Robinson JT. Miniature battery-free bioelectronics. Science 2023; 382:eabn4732. [PMID: 37943926 DOI: 10.1126/science.abn4732] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.
Collapse
Affiliation(s)
- Vishnu Nair
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Gaurav Balakrishnan
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher J Bettinger
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Hall TAG, Theodoridis K, Kechagias S, Kohli N, Denonville C, Rørvik PM, Cegla F, van Arkel RJ. Electromechanical and biological evaluations of 0.94Bi 0.5Na 0.5TiO 3-0.06BaTiO 3 as a lead-free piezoceramic for implantable bioelectronics. BIOMATERIALS ADVANCES 2023; 154:213590. [PMID: 37598437 DOI: 10.1016/j.bioadv.2023.213590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing.
Collapse
Affiliation(s)
- Thomas A G Hall
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK
| | | | - Stylianos Kechagias
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK
| | - Nupur Kohli
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK; Biomedical Engineering Department, Khalifa University, United Arab Emirates
| | - Christelle Denonville
- Thin Film and Membrane Technology, Sustainable Energy Technology, SINTEF Industry, Norway
| | - Per Martin Rørvik
- Thin Film and Membrane Technology, Sustainable Energy Technology, SINTEF Industry, Norway
| | - Frederic Cegla
- Non-Destructive Evaluation Group, Department of Mechanical Engineering, Imperial College London, UK
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK.
| |
Collapse
|
18
|
Su K, Qiu Z, Xu J. A 14-Bit, 12 V-to-100 V Voltage Compliance Electrical Stimulator with Redundant Digital Calibration. MICROMACHINES 2023; 14:2001. [PMID: 38004858 PMCID: PMC10672756 DOI: 10.3390/mi14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Electrical stimulation is an important technique for modulating the functions of the nervous system through electrical stimulus. To implement a more competitive prototype that can tackle the domain-specific difficulties of existing electrical stimulators, three key techniques are proposed in this work. Firstly, a load-adaptive power saving technique called over-voltage detection is implemented to automatically adjust the supply voltage. Secondly, redundant digital calibration (RDC) is proposed to improve current accuracy and ensure safety during long-term electrical stimulation without costing too much circuit area and power. Thirdly, a flexible waveform generator is designed to provide arbitrary stimulus waveforms for particular applications. Measurement results show the stimulator can adjust the supply voltage from 12 V to 100 V automatically, and the measured effective resolution of the stimulation current reaches 14 bits in a full range of 6.5 mA. Without applying charge balancing techniques, the average mismatch between the cathodic and anodic current pulses in biphasic stimulus is 0.0427%. The proposed electrical stimulator can generate arbitrary stimulus waveforms, including sine, triangle, rectangle, etc., and it is supposed to be competitive for implantable and wearable devices.
Collapse
Affiliation(s)
- Kangyu Su
- College of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China; (K.S.); (Z.Q.)
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Zhang Qiu
- College of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China; (K.S.); (Z.Q.)
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Jian Xu
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| |
Collapse
|
19
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
20
|
Sanchez-Rojas JL. Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III. MICROMACHINES 2023; 14:1862. [PMID: 37893299 PMCID: PMC10609083 DOI: 10.3390/mi14101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
This is the third volume of a Special Issue focused on piezoelectric transducers, covering a wide range of topics, including the design, fabrication, characterization, packaging and system integration or final applications of mili/micro/nano-electro-mechanical system-based transducers featuring piezoelectric materials and devices [...].
Collapse
Affiliation(s)
- Jose Luis Sanchez-Rojas
- Microsystems, Actuators and Sensors Lab, Institute of Nanotechnology, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
21
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. JOURNAL OF APPLIED PHYSICS 2023; 134:094103. [PMID: 37692260 PMCID: PMC10484622 DOI: 10.1063/5.0156015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density [the amount of power transferred divided by receiver footprint area (length × width)]. Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm2, which is over four times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 and 56 mW to 10 and 27-mm2 ME receivers, respectively. This total power delivery is over five times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
Affiliation(s)
- Wonjune Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - C. Anne Tuppen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Amanda Singer
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Rachel Weirnick
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
22
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics Enables Large Power Delivery to mm-Sized Wireless Bioelectronics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555944. [PMID: 37732216 PMCID: PMC10508743 DOI: 10.1101/2023.09.01.555944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density (the amount of power transferred divided by receiver footprint area (length × width)). Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm 2 , which is over 4 times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 mW and 56 mW to 10-mm 2 and 27-mm 2 ME receivers, respectively. This total power delivery is over 5 times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
|
23
|
Kashani Z, Kiani M. A Study on Ultrasonic Wireless Power Transfer With Phased Array for Biomedical Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:713-724. [PMID: 37267144 PMCID: PMC10664043 DOI: 10.1109/tbcas.2023.3282197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article presents the design, fabrication, and sensitivity analysis of an ultrasound (US) wireless power transfer (WPT) link using an external phased array. Optimal beam focusing and steering is needed for efficient, safe, and reliable US WPT to biomedical implants with millimeter (mm) dimensions. Therefore, the main contributions of this work include the investigation of the 1) performance of the US WPT link using different mm-sized US receivers, 2) effect of different types of errors in the delay profile of the beamforming system on the delivered power, and 3) implant's localization. In measurements, the fabricated 0.94 MHz, 32-element array (39.48 × 9.6 × 2 mm3) driven by 25 V pulses with beam focusing and steering capability up to 50 mm depth and ±60o angle could deliver power to different mm-sized US receivers within the FDA safety limit of 720 mW/cm2. Specifically, several US transducers with a 1 mm dimension (sphere, cubic, disc shape) and 2 mm dimension (disc shape) received 0.095 mW, 0.25 mW, 0.22 mW, and 0.53 mW, respectively, at a 30 mm depth (0o steering angle). Among these transducers, the sphere shape transducer featured less sensitivity to misalignments. A random error in the phased array delays had a more drastic effect on delivered power reduction. For implant's localization, the measurement results demonstrated comparable power delivery by measuring pulse delays of only 5 elements (out of 32 elements) using 4 different interpolation methods.
Collapse
|
24
|
Habibagahi I, Jang J, Babakhani A. Miniaturized Wirelessly Powered and Controlled Implants for Multisite Stimulation. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2023; 71:1911-1922. [PMID: 38645708 PMCID: PMC11031205 DOI: 10.1109/tmtt.2022.3233368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This paper presents a miniaturized implant with a diameter of only 14 mm, which houses a novel System on Chip (SoC) enabling two voltage level stimulation of up to 16 implants using a single Tx coil. Each implant can operate at a distance of 80 mm in the air through the inductive resonant link. The SoC consumes only 27 μW static power and enables two channels with stimulation amplitudes of 1.8 V and 3.3 V and timing resolution of 100 μs. The SoC is implemented in the standard 180 nm complementary metal oxide semiconductor (CMOS) technology and has an area of 0.75 mm × 1.6 mm. The SoC comprises an RF rectifier, low drop-out regulator (LDO), error detection block, clock data recovery, finite state machine (FSM), and output stage. Each implant has a PCB-defined passcode, which enables the individual addressability of the implants for synchronized therapies. The implantable device weighs only 80 mg and sizes 20.1 mm3. Tolerance of up to 70° to angular misalignment was measured at a distance of 50 mm. The efficacy of bilateral stimulation was further verified by implanting two devices on two sides of a pig's neck and performing bilateral vagus nerve stimulation (VNS), while monitoring the heart rate.
Collapse
Affiliation(s)
- Iman Habibagahi
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA
| | - Jaeeun Jang
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA
| | - Aydin Babakhani
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
25
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
26
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
27
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
28
|
Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206401. [PMID: 36585372 DOI: 10.1002/smll.202206401] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Margaux Desseigne
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| |
Collapse
|
29
|
Systematic investigation of self-image-guided ultrasonic transceiver using time interval measurements for wireless power transfer. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Khalifa A, Nasrollahpour M, Nezaratizadeh A, Sha X, Stanaćević M, Sun NX, Cash SS. Fabrication and Assembly Techniques for Sub-mm Battery-Free Epicortical Implants. MICROMACHINES 2023; 14:476. [PMID: 36838175 PMCID: PMC9966084 DOI: 10.3390/mi14020476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Over the past three decades, we have seen significant advances in the field of wireless implantable medical devices (IMDs) that can interact with the nervous system. To further improve the stability, safety, and distribution of these interfaces, a new class of implantable devices is being developed: single-channel, sub-mm scale, and wireless microelectronic devices. In this research, we describe a new and simple technique for fabricating and assembling a sub-mm, wirelessly powered stimulating implant. The implant consists of an ASIC measuring 900 × 450 × 80 µm3, two PEDOT-coated microelectrodes, an SMD inductor, and a SU-8 coating. The microelectrodes and SMD are directly mounted onto the ASIC. The ultra-small device is powered using electromagnetic (EM) waves in the near-field using a two-coil inductive link and demonstrates a maximum achievable power transfer efficiency (PTE) of 0.17% in the air with a coil separation of 0.5 cm. In vivo experiments conducted on an anesthetized rat verified the efficiency of stimulation.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ali Nezaratizadeh
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xiao Sha
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Milutin Stanaćević
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nian X. Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
Benbuk A, Esmaeili H, Liu S, Patino-Guerrero A, Migrino RQ, Chae J, Nikkhah M, Blain Christen J. Passive and Flexible Wireless Electronics Fabricated on Parylene/PDMS Substrate for Stimulation of Human Stem Cell-Derived Cardiomyocytes. ACS Sens 2022; 7:3287-3297. [PMID: 36281962 PMCID: PMC9706816 DOI: 10.1021/acssensors.2c00794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we report the development of a wireless, passive, biocompatible, and flexible system for stimulation of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMS). Fabricated on a transparent parylene/PDMS substrate, the proposed stimulator enables real-time excitation and characterization of hiPSC-CMs cultured on-board. The device comprises a rectenna operating at 2.35 GHz which receives radio frequency (RF) energy from an external transmitter and converts it into DC voltage to deliver monophasic stimulation. The operation of the stimulator was primarily verified by delivering monophasic voltage pulses through gold electrodes to hiPSC-CMs cultured on the Matrigel-coated substrates. Stimulated hiPSC-CMs beat in accordance with the monophasic pulses when delivered at 0.5, 1, and 2 Hz pulsing frequency, while no significant cell death was observed. The wireless stimulator could generate monophasic pulses with an amplitude of 8 V at a distance of 15 mm. These results demonstrated the proposed wireless stimulator's efficacy for providing electrical stimulation to engineered cardiac tissues. The proposed stimulator will have a wide application in tissue engineering where a fully wireless stimulation of electroconductive cells is needed. The device also has potential to be employed as a cardiac stimulator by delivering external stimulation and regulating the contractions of cardiac tissue.
Collapse
Affiliation(s)
- Ahmed
Abed Benbuk
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Hamid Esmaeili
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Shiyi Liu
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Alejandra Patino-Guerrero
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Raymond Q. Migrino
- Phoenix
Veterans Affairs Health Care System, Phoenix, Arizona 85022, United States,University
of Arizona College of Medicine, Phoenix, Arizona 85004, United States
| | - Junseok Chae
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Mehdi Nikkhah
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States,Center
for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States,
| | - Jennifer Blain Christen
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States,
| |
Collapse
|
32
|
Zhao L, Annayev M, Oralkan O, Jia Y. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:842-851. [PMID: 35671313 DOI: 10.1109/tbcas.2022.3178581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 μW-554 μW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.
Collapse
|
33
|
Benedict BC, Ghanbari MM, Muller R. Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2756-2765. [PMID: 35939455 DOI: 10.1109/tuffc.2022.3197705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Millimeter-scale implants using ultrasound (US) for power and communication have been proposed for a range of deep-tissue applications, including neural recording and stimulation. However, published implementations have shown high sensitivity to misalignment with the external US transducer. Ultrasonic beamforming using a phased array to these implants can improve tolerance to misalignment, reduce implant volume, and allow multiple implants to be operated simultaneously in different locations. This article details the design of a custom planar phased array US system, which is capable of steering and focusing US power within a 3-D volume. Analysis and simulation is performed to determine the choice of array element pitch, with special attention given to maximizing the power available at the implant while meeting FDA limits for diagnostic US. Time reversal (TR) is proposed as a computationally simple approach to beamforming that is robust despite scattering and inhomogeneity of the acoustic medium. This technique is demonstrated both in active drive and pulse-echo modes, and it is experimentally compared with other beamforming techniques by measuring energy transfer efficiency. Simultaneous power delivery to multiple implants is also demonstrated.
Collapse
|
34
|
Liu F, Wu Y, Almarri N, Habibollahi M, Lancashire HT, Bryson B, Greensmith L, Jiang D, Demosthenous A. A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:752-765. [PMID: 36018872 DOI: 10.1109/tbcas.2022.3202026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 μm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method.
Collapse
|
35
|
Valente V. Evolution of Biotelemetry in Medical Devices: From Radio Pills to mm-Scale Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:580-599. [PMID: 35834463 DOI: 10.1109/tbcas.2022.3190767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The advent of semiconductor technology in the mid-20th century created unprecedented opportunities to develop a new generation of small-scale wireless medical sensing devices that can support remote monitoring of patients' vital signs. The first radio pills were developed as early as the 1950's using only a few transistors. These swallowable capsules could sense and wirelessly transmit vital parameters from inside the human body. Since then we have witnessed the rapid progress of medical devices driven by the evolution of semiconductor technology, from single-transistor oscillators to complex mixed-signal multi-channel and multi-modal systems. This paper retraces the evolution of biotelemetry devices from their very early inception to the smart miniaturized systems of modern days, focusing on semiconductor-enabled sensing methods and circuits developed over the last six decades. The paper also includes the author's perspective on current and future trends in the development of CMOS-based biotelemeters, focusing on concepts of implant modularity, miniaturization and hybrid energy harvesting solutions.
Collapse
|
36
|
Kim HJ, Ho JS. Wireless interfaces for brain neurotechnologies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210020. [PMID: 35658679 DOI: 10.1098/rsta.2021.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities-including radio-frequency fields, acoustic waves and light-to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
- The N.1 Institute for Health National University of Singapore, Queenstown, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Queenstown, Singapore
| |
Collapse
|
37
|
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering (Basel) 2022; 9:292. [PMID: 35877343 PMCID: PMC9311987 DOI: 10.3390/bioengineering9070292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen 518116, China;
| | - Junyong Deng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
Zhang Y, Muthuraman P, Andino-Pavlovsky V, Uguz I, Elloian J, Shepard KL. Augmented ultrasonography with implanted CMOS electronic motes. Nat Commun 2022; 13:3521. [PMID: 35725979 PMCID: PMC9209459 DOI: 10.1038/s41467-022-31166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Modern clinical practice benefits significantly from imaging technologies and much effort is directed toward making this imaging more informative through the addition of contrast agents or reporters. Here, we report the design of a battery-less integrated circuit mote acting as an electronic reporter during medical ultrasound imaging. When implanted within the field-of-view of a brightness-mode (B-mode) ultrasound imager, this mote transmits information from its location through backscattered acoustic energy which is captured within the ultrasound image itself. We prototype and characterize the operation of such motes in vitro and in vivo. Performing with a static power consumption of less than 57 pW, the motes operate at duty cycles for receiving acoustic energy as low as 50 ppm. Motes within the same field-of-view during imaging have demonstrated signal-to-noise ratios of more than 19.1 dB at depths of up to 40 mm in lossy phantom. Physiological information acquired through such motes, which is beyond what is measurable with endogenous ultrasound backscatter and which is biogeographically located within an image, has the potential to provide an augmented ultrasonography.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.,School of Integrated Circuits, Peking University, Beijing, P. R. China
| | - Prashant Muthuraman
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Ilke Uguz
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jeffrey Elloian
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
39
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
40
|
Khan SR, Mugisha AJ, Tsiamis A, Mitra S. Commercial Off-the-Shelf Components (COTS) in Realizing Miniature Implantable Wireless Medical Devices: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3635. [PMID: 35632042 PMCID: PMC9144583 DOI: 10.3390/s22103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022]
Abstract
Over the past decade, there has been exponential growth in the per capita rate of medical patients around the world, and this is significantly straining the resources of healthcare institutes. Therefore, the reliance on smart commercial off-the-shelf (COTS) implantable wireless medical devices (IWMDs) is increasing among healthcare institutions to provide routine medical services, such as monitoring patients' physiological signals and the remote delivery of therapeutic drugs. These smart COTS IWMDs reduce the necessity of recurring visits of patients to healthcare institutions and also mitigate physical contact, which can minimize the possibility of any potential spread of contagious diseases. Furthermore, the devices provide patients with the benefit of recuperating in familiar surroundings. As such, low-cost, ubiquitous COTS IWMDs have engendered the proliferation of telemedicine in healthcare to provide routine medical services. In this paper, a review work on COTS IWMDs is presented at a macro level to discuss the history of IWMDs, different networked COTS IWMDs, health and safety regulations of COTS IWMDs and the importance of organized procurement. Furthermore, we discuss the basic building blocks of IWMDs and how COTS components can contribute to build these blocks over widely researched custom-built application-specific integrated circuits.
Collapse
Affiliation(s)
- Sadeque Reza Khan
- Institute of Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK; (A.J.M.); (A.T.); (S.M.)
| | | | | | | |
Collapse
|
41
|
Shah J, Quinkert C, Collar B, Williams M, Biggs E, Irazoqui P. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:233-243. [PMID: 35201991 PMCID: PMC9195150 DOI: 10.1109/tbcas.2022.3153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a wireless, fully implantable device for electrical stimulation of peripheral nerves consisting of a powering coil, a tuning network, a Zener diode, selectable stimulation parameters, and a stimulator IC, all encapsulated in biocompatible silicone. A wireless RF signal at 13.56 MHz powers the implant through the on-chip rectifier. The ASIC, designed in TSMC's 180 nm MS RF G process, occupies an area of less than 1.2 mm2. The IC enables externally selectable current-controlled stimulation through an on-chip read-only memory with a wide range of 32 stimulation parameters (90-750 µA amplitude, 100 µs or 1 ms pulse width, 15 or 50 Hz frequency). The IC generates the constant current waveform using an 8-bit binary weighted DAC and an H-Bridge. At the most power-hungry stimulation parameter, the average power consumption during a stimulus pulse is 2.6 mW with a power transfer efficiency of ∼5.2%. In addition to benchtop and acute testing, we chronically implanted two versions of the device (a design with leads and a leadless design) on two rats' sciatic nerves to verify the long-term efficacy of the IC and the full system. The leadless device had the following dimensions: height of 0.45 cm, major axis of 1.85 cm, and minor axis of 1.34 cm, with similar dimensions for the device with leads. Both devices were implanted and worked for experiments lasting from 21-90 days. To the best of our knowledge, the fabricated IC is the smallest constant-current stimulator that has been tested chronically.
Collapse
|
42
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
43
|
A 28 nm Bulk CMOS Fully Digital BPSK Demodulator for US-Powered IMDs Downlink Communications. ELECTRONICS 2022. [DOI: 10.3390/electronics11050698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low-invasive and battery-less implantable medical devices (IMDs) have been increasingly emerging in recent years. The developed solutions in the literature often concentrate on the Bidirectional Data-Link for long-term monitoring devices. Indeed, their ability to collect data and communicate them to the external world, namely Data Up-Link, has revealed a promising solution for bioelectronic medicine. Furthermore, the capacity to control organs such as the brain, nerves, heart-beat and gastrointestinal activities, made up through the manipulation of electrical transducers, could optimise therapeutic protocols and help patients’ pain relief. These kinds of stimulations come from the modulation of a powering signal generated from an externally placed unit coupled to the implanted receivers for power/data exchanging. The established communication is also defined as a Data Down-Link. In this framework, a new solution of the Binary Phase-Shift Keying (BPSK) demodulator is presented in this paper in order to design a robust, low-area, and low-power Down-Link for ultrasound (US)-powered IMDs. The implemented system is fully digital and PLL-free, thus reducing area occupation and making it fully synthesizable. Post-layout simulation results are reported using a 28 nm Bulk CMOS technology provided by TSMC. Using a 2 MHz carrier input signal and an implant depth of 1 cm, the data rate is up to 1.33 Mbit/s with a 50% duty cycle, while the minimum average power consumption is cut-down to 3.3 μW in the typical corner.
Collapse
|
44
|
Kashani Z, Ilham SJ, Kiani M. Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:64-78. [PMID: 34986100 PMCID: PMC9131469 DOI: 10.1109/tbcas.2022.3140591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrasound (US) is an attractive modality for wireless power transfer (WPT) to biomedical implants with millimeter (mm) dimensions. To compensate for misalignments in WPT to a mm-sized implant (or powering a network of mm-sized implants), a US transducer array should electronically be driven in a beamforming fashion (known as US phased array) to steer focused US beams at different locations. This paper presents the theory and design methodology of US WPT links with phased arrays and mm-sized receivers (Rx). For given constraints imposed by the application and fabrication, such as load (RL) and focal distance (F), the optimal geometries of a US phased array and Rx transducer, as well as the optimal operation frequency (fc) are found through an iterative design procedure to maximize the power transfer efficiency (PTE). An optimal figure of merit (FoM) related to PTE is proposed to simplify the US array design. A design example of a US link is presented and optimized for WPT to a mm-sized Rx with a linear array. In measurements, the fabricated 16-element array (10.9×9×1.7 mm3) driven by 100 V pulses at fc of 1.1 MHz with optimal delays for focusing at F = 20 mm generated a US beam with a pressure output of 0.8 MPa. The link could deliver up to 6 mW to a ∼ 1 mm3 Rx with a PTE of 0.14% (RL = 850 Ω). The beam steering capability of the array at -45o to 45o angles was also characterized.
Collapse
|
45
|
A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer. MICROMACHINES 2022; 13:mi13010121. [PMID: 35056286 PMCID: PMC8777898 DOI: 10.3390/mi13010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
A circularly polarized implantable antenna integrated with a voltage-doubled rectifier (abbr., rectenna) is investigated for microwave wireless power transfer in the industrial, scientific, and medical (ISM) band of 2.4–2.48 GHz. The proposed antenna is miniaturized with the dimensions of 7.5 mm × 7.5 mm × 1.27 mm by etching four C-shaped open slots on the patch. A rectangular slot truncated diagonally is cut to improve the circular polarization performance of the antenna. The simulated impedance bandwidth in a three-layer phantom is 30.4% (1.9–2.58 GHz) with |S11| below −10 dB, and the 3-dB axial-ratio bandwidth is 16.9% (2.17–2.57 GHz). Furthermore, a voltage-doubled rectifier circuit that converts RF power to DC power is designed on the back of the antenna. The simulated RF-to-DC conversion efficiency can be up to 45% at the input power of 0 dBm. The proposed rectenna was fabricated and measured in fresh pork to verify the simulated results and evaluate the performance of wireless power transfer.
Collapse
|
46
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
47
|
Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med 2021; 7:19. [PMID: 34937565 PMCID: PMC8697496 DOI: 10.1186/s42234-021-00080-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
In the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sunwoo Lee
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Zhang Y, Demosthenous A. Integrated Circuits for Medical Ultrasound Applications: Imaging and Beyond. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:838-858. [PMID: 34665739 DOI: 10.1109/tbcas.2021.3120886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical ultrasound has become a crucial part of modern society and continues to play a vital role in the diagnosis and treatment of illnesses. Over the past decades, the development of medical ultrasound has seen extraordinary progress as a result of the tremendous research advances in microelectronics, transducer technology and signal processing algorithms. However, medical ultrasound still faces many challenges including power-efficient driving of transducers, low-noise recording of ultrasound echoes, effective beamforming in a non-linear, high-attenuation medium (human tissues) and reduced overall form factor. This paper provides a comprehensive review of the design of integrated circuits for medical ultrasound applications. The most important and ubiquitous modules in a medical ultrasound system are addressed, i) transducer driving circuit, ii) low-noise amplifier, iii) beamforming circuit and iv) analog-digital converter. Within each ultrasound module, some representative research highlights are described followed by a comparison of the state-of-the-art. This paper concludes with a discussion and recommendations for future research directions.
Collapse
|
49
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
50
|
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele MA. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv Healthc Mater 2021; 10:e2100986. [PMID: 34235886 DOI: 10.1002/adhm.202100986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.
Collapse
Affiliation(s)
- Brendan L. Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
| | - Seedevi Senevirathne
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Katie Kilgour
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Darragh McArt
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Manus Biggs
- Centre for Research in Medical Devices National University of Ireland Newcastle Road Galway H91 W2TY Ireland
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
- Department of Electrical and Computer Engineering North Carolina State University 890 Oval Dr. Raleigh NC 27695 USA
| |
Collapse
|