1
|
Omi AI, Jiang A, Chatterjee B. Efficient Inductive Link Design: A Systematic Method for Optimum Biomedical Wireless Power Transfer in Area-Constrained Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:300-316. [PMID: 40031198 DOI: 10.1109/tbcas.2025.3531995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In the context of implantable bioelectronics, this work provides new insights into maximizing biomedical wireless power transfer (BWPT) via the systematic development of inductive links. This approach addresses the specific challenges of power transfer efficiency (PTE) optimization within the spatial/area constraints of bio-implants embedded in tissue. Key contributions include the derivation of an optimal self-inductance with S-parameter-based analyses leading to the co-design of planar spiral coils and L-section impedance matching networks. To validate the proposed design methodology, two coil prototypes- one symmetric (type-1) and one asymmetric (type-2)- were fabricated and tested for PTE in pork tissue. Targeting a 20 MHz design frequency, the type-1 coil demonstrated a state-of-the-art PTE of 4% (channel length = 15 mm) with a return loss (RL) 20 dB on both the input and output sides, within an area constraint of 1818 mm. In contrast, the type-2 coil achieved a PTE of 2% with an RL 15 dB, for a smaller receiving coil area of 55 mm for the same tissue environment. To complement the coils, we demonstrate a 65 nm test chip with an integrated energy harvester, which includes a 30-stage rectifier and low-dropout regulator (LDO), producing a stable 1V DC output within tissue medium, matching theoretical predictions and simulations. Furthermore, we provide a robust and comprehensive guideline for advancing efficient inductive links for various BWPT applications, with shared resources in GitHub available for utilization by the broader community.
Collapse
|
2
|
Letner JG, Lam JLW, Copenhaver MG, Barrow M, Patel PR, Richie JM, Lee J, Kim HS, Cai D, Weiland JD, Phillips J, Blaauw D, Chestek CA. A method for efficient, rapid, and minimally invasive implantation of individual non-functional motes with penetrating subcellular-diameter carbon fiber electrodes into rat cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636655. [PMID: 39974888 PMCID: PMC11838573 DOI: 10.1101/2025.02.05.636655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective Distributed arrays of wireless neural interfacing chips with 1-2 channels each, known as "neural dust", could enhance brain machine interfaces (BMIs) by removing the wired connection through the scalp and increasing biocompatibility with their submillimeter size. Although several approaches for neural dust have emerged, a procedure for implanting them in batches that builds upon the safety and performance of currently used electrodes remains to be demonstrated. Approach Here, we demonstrate the feasibility of implanting batches of wireless motes that rest on the cortical surface with carbon fiber electrodes of subcellular diameter (6.8-8.4 μm) that penetrate to a target brain depth of 1 mm without insertion aids. To simulate their implantation, we assembled more than 230 mechanically equivalent motes and affixed them to insertion tools with polyethylene glycol (PEG), a quickly dissolvable and biocompatible material. Then, we implanted mote grids of multiple configurations into rat cortex in vivo and evaluated insertion success and their arrangement on the brain surface using photos and videos captured during their implantation. Main Results When placing motes onto the insertion device, we found that they aggregated in molten PEG such that the array pitch was only 5% wider than the dimensions of the mote bases themselves (240 × 240 μm). Overall, we found that motes with this arrangement could be inserted into rat cortex with a high success rate, as 171/186 (92%) motes in 4×4 (N=4) and 5×5 (N=5) square grid configurations were successfully inserted using the insertion device alone. After implantation, measurements of how much motes tilted (22±9°, X̄±S) and had been displaced relative to their original positions were smaller than those measured for devices implanted inside the brain in the literature. Significance Collectively, these data establish the viability of safely implementing motes with ultrasmall electrodes and epicortically-situated chips for use in future BMIs.
Collapse
Affiliation(s)
- Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan L. W. Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miranda G. Copenhaver
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Barrow
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jungho Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hun-Seok Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James D. Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jamie Phillips
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - David Blaauw
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Department, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Lee AH, Lee J, Leung V, Larson L, Nurmikko A. Patterned electrical brain stimulation by a wireless network of implantable microdevices. Nat Commun 2024; 15:10093. [PMID: 39572612 PMCID: PMC11582589 DOI: 10.1038/s41467-024-54542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.
Collapse
Affiliation(s)
- Ah-Hyoung Lee
- School of Engineering, Brown University, Providence, RI, USA
| | - Jihun Lee
- School of Engineering, Brown University, Providence, RI, USA
| | - Vincent Leung
- Electrical and Computer Engineering, Baylor University, Waco, TX, USA
| | - Lawrence Larson
- School of Engineering, Brown University, Providence, RI, USA
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
5
|
Wu H, Cai Y, Wu H, Mahmud S, Nezaratizadeh A, Khalifa A. Adaptive Impedance Matching with Fault Ride Through in Wireless Power Transfer for Implanted Medical Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039149 DOI: 10.1109/embc53108.2024.10782376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
IMDs has found widespread application across various medical fields. Wirelessly powered implants are increasingly being developed to interface with neurons due to its small size. The matching network (MN) within the wireless IMD is a crucial component influencing system efficiency. Conventional approaches using fixed-value MNs struggle to adapt to changes in parameters and environment. This research proposes an adaptive algorithm-based MN that enabels the system to automatically track the maximum rectified voltage despite variations in frequency and inductor, as well as sampling errors due to random external interference. For the first time, an active voltage limiter has been integrated into the MN to reject excess power in order to safeguard the chip, rather than dissipating it as heat. Implemented in TSMC 65nm technology, this system can operate under ±15% inductance fluctuation and ±10% frequency fluctuation at 500 MHz, enabling unusable systems to obtain sufficient power. The chosen proof-of-concept for this work is a neural stimulating IMD but this approach can extend beyond this setup.
Collapse
|
6
|
Dados J, Faherty R, Summers G, Wu H, Burstiner K, Khalifa A. A Compact Sub-Scalp Device for Powering Brain Implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039584 DOI: 10.1109/embc53108.2024.10782386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study explores the system design of an RF transmitter used to power next-generation wireless implantable medical devices. A human-scale, battery powered, proof-of-concept device delivers a 433 MHz signal at ~30 dBm in ~500 µs/s pulses to a transmitter (Tx) coil. The novel device successfully emulates the bulky function generators and power amplifiers which are often used for powering implantable devices.
Collapse
|
7
|
Jiang A, Yang Z, Wang X, Kim C, Chatterjee B. Energy-Efficient Synchronous CDMA for Multiple Channel Access in Internet of Bodies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40031448 DOI: 10.1109/embc53108.2024.10782963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This paper introduces an energy-efficient code-division multiple access (CDMA) architecture for wearable devices for the Internet of Bodies (IoB), which is an emerging data communication framework for connected sensor nodes around the human body. To address the challenge of simultaneous data transmission from multiple transmitters, which often leads to interference, we propose the adoption of standard-basis based CDMA encoding and decoding, which has higher energy efficiencies than the traditional Walsh code-based implementation. We also present a novel architecture for body-worn sensor nodes and data aggregators, where both the sensor nodes and the aggregator possess transceiver functionalities for (1) transmitting data from the sensors to the aggregator, and (2) sending clock synchronization information from the aggregator to the nodes. Acknowledging the synchronization requirements of CDMA, a Clock Data Recovery Circuit (CDR) module is integrated within the body-worn nodes. Experimental results with iCE40 wearable FPGAs, under the assumption of synchronized clocks, validate the effectiveness of CDMA encoding and decoding with 4 sensor nodes. The overall energy efficiency for the sensor node with circuit-level simulations using a standard 65nm process is found to be only 62 pJ/bit (> 3× better than literature) at 1 Mbps.
Collapse
|
8
|
Barbruni GL, Cordara C, Carminati M, Carrara S, Ghezzi D. A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:679-690. [PMID: 38285578 DOI: 10.1109/tbcas.2024.3359481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Three-coil inductive power transfer is the state-of-the-art solution to power multiple miniaturised neural implants. However, the maximum delivered power is limited by the efficiency of the powering link and safety constrains. Here we propose a frequency-switching inductive link, where the passive resonator normally used in a three-coil link is replaced by an active resonator. It receives power from the external transmitter via a two-coil inductive link at the low frequency of 13.56 MHz. Then, it switches the operating frequency to the higher frequency of 433.92 MHz through a dedicated circuitry. Last, it transmits power to 1024 miniaturised implants via a three-coil inductive link using an array of 37 focusing resonators for a brain coverage of 163.84 mm 2. Our simulations reported a power transfer efficiency of 0.013 % and a maximum power delivered to the load of 1970 μW under safety-constrains, which are respectively two orders of magnitude and more than six decades higher compared to an equivalent passive three-coil link. The frequency-switching inductive system is a scalable and highly versatile solution for wireless, miniaturised and large-scale neural interfaces.
Collapse
|
9
|
Barbruni GL, Rodino F, Ros PM, Demarchi D, Ghezzi D, Carrara S. A Wearable Real-Time System for Simultaneous Wireless Power and Data Transmission to Cortical Visual Prosthesis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:580-591. [PMID: 38261488 DOI: 10.1109/tbcas.2024.3357626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Wireless, miniaturised and distributed neural interfaces are emerging neurotechnologies. Although extensive research efforts contribute to their technological advancement, the need for real-time systems enabling simultaneous wireless information and power transfer toward distributed neural implants remains crucial. Here we present a complete wearable system including a software for real-time image capturing, processing and digital data transfer; an hardware for high radiofrequency generation and modulation via amplitude shift keying; and a 3-coil inductive link adapt to operate with multiple miniaturised receivers. The system operates in real-time with a maximum frame rate of 20 Hz, reconstructing each frame with a matrix of 32 × 32 pixels. The device generates a carrier frequency of 433.92 MHz. It transmits the highest power of 32 dBm with a data rate of 6 Mbps and a variable modulation index as low as 8 %, thus potentially enabling wireless communication with 1024 miniaturised and distributed intracortical microstimulators. The system is primarily conceived as an external wearable device for distributed cortical visual prosthesis covering a visual field of 20 °. At the same time, it is modular and versatile, being suitable for multiple applications requiring simultaneous wireless information and power transfer to large-scale neural interfaces.
Collapse
|
10
|
Mahmud S, Nezaratizadeh A, Satriya AB, Yoon YK, Ho JS, Khalifa A. Harnessing metamaterials for efficient wireless power transfer for implantable medical devices. Bioelectron Med 2024; 10:7. [PMID: 38444001 PMCID: PMC10916182 DOI: 10.1186/s42234-023-00136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 03/07/2024] Open
Abstract
Wireless power transfer (WPT) within the human body can enable long-lasting medical devices but poses notable challenges, including absorption by biological tissues and weak coupling between the transmitter (Tx) and receiver (Rx). In pursuit of more robust and efficient wireless power, various innovative strategies have emerged to optimize power transfer efficiency (PTE). One such groundbreaking approach stems from the incorporation of metamaterials, which have shown the potential to enhance the capabilities of conventional WPT systems. In this review, we delve into recent studies focusing on WPT systems that leverage metamaterials to achieve increased efficiency for implantable medical devices (IMDs) in the electromagnetic paradigm. Alongside a comparative analysis, we also outline current challenges and envision potential avenues for future advancements.
Collapse
Affiliation(s)
- Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ali Nezaratizadeh
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Alfredo Bayu Satriya
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yong-Kyu Yoon
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Chang Z, Yang C, Zhang Y, Li Z, Gao H, Luo Y, Xu K, Pan G, Zhao B. A Self-Adaptive Dual-ILRO Clock-Recovery Technique for Two-Tone Battery-Free Crystal-Free Neural-Recording SoC. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:39-50. [PMID: 37549076 DOI: 10.1109/tbcas.2023.3302654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Wireless implantable devices are widely used in medical treatment, which should meet clinical constraints such as longevity, miniaturization, and reliable communication. Wireless power transfer (WPT) can eliminate the battery to reduce system size and prolong device life, while it's challenging to generate a reliable clock without a crystal. In this work, we propose a self-adaptive dual-injection-locked-ring-oscillator (dual-ILRO) clock-recovery technique based on two-tone WPT and integrate it into a battery-free neural-recording SoC. The 2[Formula: see text]-order inter-modulation (IM2) component of the two WPT tones is extracted as a low-frequency reference for battery-free SoC, and the proposed self-adaptive dual-ILRO technique extends the lock range to ensure an anti-interference PVT-robust clock generation. The neural-recording SoC includes a low-noise signal acquisition unit, a power management unit, and a backscatter circuit to perform neural signal recording, wireless power harvesting, and neural data transmission. Benefiting from the 6.4 μW low power of the clock recovery circuit, the overall SoC power is cut down to 49.8 μW. In addition, the proposed clock-recovery technique enables both signal acquisition and uplink communication to perform as well as that synchronized by an ideal clock, i.e., an effective number of 9.6 bits and a bit error rate (BER) less than 4.8 × 10-7 in chip measurement. The SoC takes a die area of 2.05 mm 2, and an animal test is conducted in a Sprague-Dawley rat to validate the wireless neural-recording performance, compared to a crystal-synchronized commercial chip.
Collapse
|
12
|
Quinn KN, Tian Y, Budde R, Irazoqui PP, Tuffaha S, Thakor NV. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024; 69:134-147. [PMID: 38126120 DOI: 10.1002/mus.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.
Collapse
Affiliation(s)
- Kiara N Quinn
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yucheng Tian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pedro P Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Narayanan RP, Khaleghi A, Veletić M, Balasingham I. Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference. PLoS One 2024; 19:e0297114. [PMID: 38271467 PMCID: PMC10834063 DOI: 10.1371/journal.pone.0297114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.
Collapse
Affiliation(s)
- Ram Prasadh Narayanan
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Khaleghi
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Mladen Veletić
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Lee A, Lee J, Leung V, Nurmikko A. Versatile On-Chip Programming of Circuit Hardware for Wearable and Implantable Biomedical Microdevices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306111. [PMID: 37904645 PMCID: PMC10754128 DOI: 10.1002/advs.202306111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 11/01/2023]
Abstract
Wearable and implantable microscale electronic sensors have been developed for a range of biomedical applications. The sensors, typically millimeter size silicon microchips, are sought for multiple sensing functions but are severely constrained by size and power. To address these challenges, a hardware programmable application-specific integrated circuit design is proposed and post-process methodology is exemplified by the design of battery-less wireless microchips. Specifically, both mixed-signal and radio frequency circuits are designed by incorporating metal fuses and anti-fuses on the top metal layer to enable programmability of any number of features in hardware of the system-on-chip (SoC) designs. This is accomplished in post-foundry editing by combining laser ablation and focused ion beam processing. The programmability provided by the technique can significantly accelerate the SoC chip development process by enabling the exploration of multiple internal circuit parameters without the requirement of additional programming pads or extra power consumption. As examples, experimental results are described for sub-millimeter size complementary metal-oxide-semiconductor microchips being developed for wireless electroencephalogram sensors and as implantable microstimulators for neural interfaces. The editing technique can be broadly applicable for miniaturized biomedical wearables and implants, opening up new possibilities for their expedited development and adoption in the field of smart healthcare.
Collapse
Affiliation(s)
- Ah‐Hyoung Lee
- School of EngineeringBrown UniversityProvidenceRI02912USA
| | - Jihun Lee
- School of EngineeringBrown UniversityProvidenceRI02912USA
| | - Vincent Leung
- Electrical and Computer EngineeringBaylor UniversityWacoTX76798USA
| | - Arto Nurmikko
- School of EngineeringBrown UniversityProvidenceRI02912USA
- Carney Institute for Brain ScienceBrown UniversityProvidenceRI02912USA
| |
Collapse
|
15
|
Nair V, Dalrymple AN, Yu Z, Balakrishnan G, Bettinger CJ, Weber DJ, Yang K, Robinson JT. Miniature battery-free bioelectronics. Science 2023; 382:eabn4732. [PMID: 37943926 DOI: 10.1126/science.abn4732] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.
Collapse
Affiliation(s)
- Vishnu Nair
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Gaurav Balakrishnan
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher J Bettinger
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
16
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
17
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. JOURNAL OF APPLIED PHYSICS 2023; 134:094103. [PMID: 37692260 PMCID: PMC10484622 DOI: 10.1063/5.0156015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density [the amount of power transferred divided by receiver footprint area (length × width)]. Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm2, which is over four times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 and 56 mW to 10 and 27-mm2 ME receivers, respectively. This total power delivery is over five times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
Affiliation(s)
- Wonjune Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - C. Anne Tuppen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Amanda Singer
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Rachel Weirnick
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
18
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics Enables Large Power Delivery to mm-Sized Wireless Bioelectronics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555944. [PMID: 37732216 PMCID: PMC10508743 DOI: 10.1101/2023.09.01.555944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density (the amount of power transferred divided by receiver footprint area (length × width)). Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm 2 , which is over 4 times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 mW and 56 mW to 10-mm 2 and 27-mm 2 ME receivers, respectively. This total power delivery is over 5 times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
|
19
|
Sen O, Sheehan AM, Raman PR, Khara KS, Khalifa A, Chatterjee B. Machine-Learning Methods for Speech and Handwriting Detection Using Neural Signals: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5575. [PMID: 37420741 DOI: 10.3390/s23125575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Brain-Computer Interfaces (BCIs) have become increasingly popular in recent years due to their potential applications in diverse fields, ranging from the medical sector (people with motor and/or communication disabilities), cognitive training, gaming, and Augmented Reality/Virtual Reality (AR/VR), among other areas. BCI which can decode and recognize neural signals involved in speech and handwriting has the potential to greatly assist individuals with severe motor impairments in their communication and interaction needs. Innovative and cutting-edge advancements in this field have the potential to develop a highly accessible and interactive communication platform for these people. The purpose of this review paper is to analyze the existing research on handwriting and speech recognition from neural signals. So that the new researchers who are interested in this field can gain thorough knowledge in this research area. The current research on neural signal-based recognition of handwriting and speech has been categorized into two main types: invasive and non-invasive studies. We have examined the latest papers on converting speech-activity-based neural signals and handwriting-activity-based neural signals into text data. The methods of extracting data from the brain have also been discussed in this review. Additionally, this review includes a brief summary of the datasets, preprocessing techniques, and methods used in these studies, which were published between 2014 and 2022. This review aims to provide a comprehensive summary of the methodologies used in the current literature on neural signal-based recognition of handwriting and speech. In essence, this article is intended to serve as a valuable resource for future researchers who wish to investigate neural signal-based machine-learning methods in their work.
Collapse
Affiliation(s)
- Ovishake Sen
- Department of ECE, University of Florida, Gainesville, FL 32611, USA
| | - Anna M Sheehan
- Department of ECE, University of Florida, Gainesville, FL 32611, USA
| | - Pranay R Raman
- Department of ECE, University of Florida, Gainesville, FL 32611, USA
| | - Kabir S Khara
- Department of ECE, University of Florida, Gainesville, FL 32611, USA
| | - Adam Khalifa
- Department of ECE, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
20
|
Bhatt S, Masterson E, Zhu T, Eizadi J, George J, Graupe N, Vareberg A, Phillips J, Bok I, Dwyer M, Ashtiani A, Hai A. Wireless in vivo Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133549. [PMID: 36970106 PMCID: PMC10035629 DOI: 10.1016/j.snb.2023.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro. We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.
Collapse
Affiliation(s)
- Suyash Bhatt
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Emily Masterson
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Judy George
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Nesya Graupe
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Matthew Dwyer
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| |
Collapse
|
21
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
22
|
DAS D, Xu Z, Nasrollahpour M, Martos-Repath I, Zaeimbashi M, Khalifa A, Mittal A, Cash SS, Sun NX, Shrivastava A, Onabajo M. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2023; 4:139-155. [PMID: 37829556 PMCID: PMC10569408 DOI: 10.1109/ojcas.2023.3259233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A magnetoelectric antenna (ME) can exhibit the dual capabilities of wireless energy harvesting and sensing at different frequencies. In this article, a behavioral circuit model for hybrid ME antennas is described to emulate the radio frequency (RF) energy harvesting and sensing operations during circuit simulations. The ME antenna of this work is interfaced with a CMOS energy harvester chip towards the goal of developing a wireless communication link for fully integrated implantable devices. One role of the integrated system is to receive pulse-modulated power from a nearby transmitter, and another role is to sense and transmit low-magnitude neural signals. The measurements reported in this paper are the first results that demonstrate simultaneous low-frequency wireless magnetic sensing and high-frequency wireless energy harvesting at two different frequencies with one dual-mode ME antenna. The proposed behavioral ME antenna model can be utilized during design optimizations of energy harvesting circuits. Measurements were performed to validate the wireless power transfer link with an ME antenna having a 2.57 GHz resonance frequency connected to an energy harvester chip designed in 65nm CMOS technology. Furthermore, this dual-mode ME antenna enables concurrent sensing using a carrier signal with a frequency that matches the second 63.63 MHz resonance mode. A wireless test platform has been developed for evaluation of ME antennas as a tool for neural implant design, and this prototype system was utilized to provide first experimental results with the transmission of magnetically modulated action potential waveforms.
Collapse
Affiliation(s)
- Diptashree DAS
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ziyue Xu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
- MediaTek Inc., Woburn, MA 01801, USA
| | - Isabel Martos-Repath
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Mohsen Zaeimbashi
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ankit Mittal
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nian X Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Aatmesh Shrivastava
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Marvin Onabajo
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Khalifa A, Nasrollahpour M, Nezaratizadeh A, Sha X, Stanaćević M, Sun NX, Cash SS. Fabrication and Assembly Techniques for Sub-mm Battery-Free Epicortical Implants. MICROMACHINES 2023; 14:476. [PMID: 36838175 PMCID: PMC9966084 DOI: 10.3390/mi14020476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Over the past three decades, we have seen significant advances in the field of wireless implantable medical devices (IMDs) that can interact with the nervous system. To further improve the stability, safety, and distribution of these interfaces, a new class of implantable devices is being developed: single-channel, sub-mm scale, and wireless microelectronic devices. In this research, we describe a new and simple technique for fabricating and assembling a sub-mm, wirelessly powered stimulating implant. The implant consists of an ASIC measuring 900 × 450 × 80 µm3, two PEDOT-coated microelectrodes, an SMD inductor, and a SU-8 coating. The microelectrodes and SMD are directly mounted onto the ASIC. The ultra-small device is powered using electromagnetic (EM) waves in the near-field using a two-coil inductive link and demonstrates a maximum achievable power transfer efficiency (PTE) of 0.17% in the air with a coil separation of 0.5 cm. In vivo experiments conducted on an anesthetized rat verified the efficiency of stimulation.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ali Nezaratizadeh
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xiao Sha
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Milutin Stanaćević
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nian X. Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
24
|
Bhatt S, Masterson E, Zhu T, Eizadi J, George J, Graupe N, Vareberg A, Phillips J, Bok I, Dwyer M, Ashtiani A, Hai A. Wireless in vivo Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524785. [PMID: 36711824 PMCID: PMC9882301 DOI: 10.1101/2023.01.19.524785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro . We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.
Collapse
Affiliation(s)
- Suyash Bhatt
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Emily Masterson
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Judy George
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Nesya Graupe
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Matthew Dwyer
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical & Computer Engineering, University of Wisconsin–Madison
| |
Collapse
|
25
|
Edmunds JL, Sonmezoglu S, Maharbiz MM. Piezoelectric-based optical modulator for miniaturized wireless medical implants. OPTICS EXPRESS 2022; 30:43664-43677. [PMID: 36523060 DOI: 10.1364/oe.474832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Optical links for medical implants have recently been explored as an attractive option primarily because it provides a route to ultrasmall wireless implant systems. Existing devices for optical communication either are not CMOS compatible, require large bias voltages to operate, or consume substantial amounts of power. Here, we present a high-Q CMOS-compatible electro-optic modulator that enables establishing an optical data uplink to implants. The modulator acts as a pF-scale capacitor, requires no bias voltage, and operates at CMOS voltages of down to 0.5V. We believe this technology would provide a path towards the realization of millimeter (mm)- and sub-mm scale wireless implants for use in bio-sensing applications.
Collapse
|
26
|
Wang H, Zhu C, Jin W, Tang J, Wu Z, Chen K, Hong H. A Linear-Power-Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems. SENSORS (BASEL, SWITZERLAND) 2022; 22:8765. [PMID: 36433362 PMCID: PMC9697315 DOI: 10.3390/s22228765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Magnetic coupling resonance wireless power transfer can efficiently provide energy to intracranial implants under safety constraints, and is the main way to power fully implantable brain-computer interface systems. However, the existing maximum efficiency tracking wireless power transfer system is aimed at optimizing the overall system efficiency, but the efficiency of the secondary side is not optimized. Moreover, the parameters of the transmitter and the receiver change nonlinearly in the power control process, and the efficiency tracking mainly depends on wireless communication. The heat dissipation caused by the unoptimized receiver efficiency and the wireless communication delay in power control will inevitably affect neural activity and even cause damage, thus affecting the results of neuroscience research. Here, a linear-power-regulated wireless power transfer method is proposed to realize the linear change of the received power regulation and optimize the receiver efficiency, and a miniaturized linear-power-regulated wireless power transfer system is developed. With the received power control, the efficiency of the receiver is increased to more than 80%, which can significantly reduce the heating of fully implantable microsystems. The linear change of the received power regulation makes the reflected impedance in the transmitter change linearly, which will help to reduce the dependence on wireless communication and improve biological safety in received power control applications.
Collapse
|
27
|
Trueman RP, Ahlawat AS, Phillips JB. A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1137-1150. [PMID: 34806913 DOI: 10.1089/ten.teb.2021.0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The peripheral nervous system has the remarkable ability to regenerate in response to injury. However, this is only successful over shorter nerve gaps and often provides poor outcomes for patients. Currently, the gold standard of treatment is the surgical intervention of an autograft, whereby patient tissue is harvested and transplanted to bridge the nerve gap. Despite being the gold standard, more than half of patients have dissatisfactory functional recovery after an autograft. Peripheral nerve tissue engineering aims to create biomaterials that can therapeutically surpass the autograft. Current tissue-engineered constructs are designed to deliver a combination of therapeutic benefits to the regenerating nerve, such as supportive cells, alignment, extracellular matrix, soluble factors, immunosuppressants, and other therapies. An emerging therapeutic opportunity in nerve tissue engineering is the use of electrical stimulation (ES) to modify and enhance cell function. ES has been shown to positively affect four key cell types, such as neurons, endothelial cells, macrophages, and Schwann cells, involved in peripheral nerve repair. Changes elicited include faster neurite extension, cellular alignment, and changes in cell phenotype associated with improved regeneration and functional recovery. This review considers the relevant modes of administration and cellular responses that could underpin incorporation of ES into nerve tissue engineering strategies. Impact Statement Tissue engineering is becoming increasingly complex, with multiple therapeutic modalities often included within the final tissue-engineered construct. Electrical stimulation (ES) is emerging as a viable therapeutic intervention to be included within peripheral nerve tissue engineering strategies; however, to date, there have been no review articles that collate the information regarding the effects of ES on key cell within peripheral nerve injury. This review article aims to inform the field on the different therapeutic effects that may be achieved by using ES and how they may become incorporated into existing strategies.
Collapse
Affiliation(s)
- Ryan P Trueman
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Ananya S Ahlawat
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - James B Phillips
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
28
|
Angotzi GN, Giantomasi L, Ribeiro JF, Crepaldi M, Vincenzi M, Zito D, Berdondini L. Integrated Micro-Devices for a Lab-in-Organoid Technology Platform: Current Status and Future Perspectives. Front Neurosci 2022; 16:842265. [PMID: 35557601 PMCID: PMC9086958 DOI: 10.3389/fnins.2022.842265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Advancements in stem cell technology together with an improved understanding of in vitro organogenesis have enabled new routes that exploit cell-autonomous self-organization responses of adult stem cells (ASCs) and homogenous pluripotent stem cells (PSCs) to grow complex, three-dimensional (3D), mini-organ like structures on demand, the so-called organoids. Conventional optical and electrical neurophysiological techniques to acquire functional data from brain organoids, however, are not adequate for chronic recordings of neural activity from these model systems, and are not ideal approaches for throughput screenings applied to drug discovery. To overcome these issues, new emerging approaches aim at fusing sensing mechanisms and/or actuating artificial devices within organoids. Here we introduce and develop the concept of the Lab-in-Organoid (LIO) technology for in-tissue sensing and actuation within 3D cell aggregates. This challenging technology grounds on the self-aggregation of brain cells and on integrated bioelectronic micro-scale devices to provide an advanced tool for generating 3D biological brain models with in-tissue artificial functionalities adapted for routine, label-free functional measurements and for assay's development. We complete previously reported results on the implementation of the integrated self-standing wireless silicon micro-devices with experiments aiming at investigating the impact on neuronal spheroids of sinusoidal electro-magnetic fields as those required for wireless power and data transmission. Finally, we discuss the technology headway and future perspectives.
Collapse
Affiliation(s)
- Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Lidia Giantomasi
- Microtechnology for Neuroelectronics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Joao F. Ribeiro
- Microtechnology for Neuroelectronics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Crepaldi
- Electronic Design Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Vincenzi
- Microtechnology for Neuroelectronics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Domenico Zito
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
29
|
Xu Z, Khalifa A, Mittal A, Nasrollahpourmotlaghzanjani M, Etienne-Cummings R, Sun NX, Cash SS, Shrivastava A. Analysis and Design Methodology of RF Energy Harvesting Rectifier Circuit for Ultra-Low Power Applications. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2022; 3:82-96. [PMID: 35647555 PMCID: PMC9139115 DOI: 10.1109/ojcas.2022.3169437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper reviews and analyses the design of popular radio frequency energy harvesting systems and proposes a method to qualitatively and quantitatively analyze their circuit architectures using new square-wave approximation method. This approach helps in simplifying design analysis. Using this analysis, we can establish no load output voltage characteristics, upper limit on rectifier efficiency, and maximum power characteristics of a rectifier. This paper will help guide the design of RF energy harvesting rectifier circuits for radio frequency identification (RFIDs), the Internet of Things (IoTs), wearable, and implantable medical device applications. Different application scenarios are explained in the context of design challenges, and corresponding design considerations are discussed in order to evaluate their performance. The pros and cons of different rectifier topologies are also investigated. In addition to presenting the popular rectifier topologies, new measurement results of these energy harvester topologies, fabricated in 65nm, 130nm and 180nm CMOS technologies are also presented.
Collapse
Affiliation(s)
- Ziyue Xu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam Khalifa
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ankit Mittal
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nian Xiang Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Aatmesh Shrivastava
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
30
|
Shah J, Quinkert C, Collar B, Williams M, Biggs E, Irazoqui P. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:233-243. [PMID: 35201991 PMCID: PMC9195150 DOI: 10.1109/tbcas.2022.3153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a wireless, fully implantable device for electrical stimulation of peripheral nerves consisting of a powering coil, a tuning network, a Zener diode, selectable stimulation parameters, and a stimulator IC, all encapsulated in biocompatible silicone. A wireless RF signal at 13.56 MHz powers the implant through the on-chip rectifier. The ASIC, designed in TSMC's 180 nm MS RF G process, occupies an area of less than 1.2 mm2. The IC enables externally selectable current-controlled stimulation through an on-chip read-only memory with a wide range of 32 stimulation parameters (90-750 µA amplitude, 100 µs or 1 ms pulse width, 15 or 50 Hz frequency). The IC generates the constant current waveform using an 8-bit binary weighted DAC and an H-Bridge. At the most power-hungry stimulation parameter, the average power consumption during a stimulus pulse is 2.6 mW with a power transfer efficiency of ∼5.2%. In addition to benchtop and acute testing, we chronically implanted two versions of the device (a design with leads and a leadless design) on two rats' sciatic nerves to verify the long-term efficacy of the IC and the full system. The leadless device had the following dimensions: height of 0.45 cm, major axis of 1.85 cm, and minor axis of 1.34 cm, with similar dimensions for the device with leads. Both devices were implanted and worked for experiments lasting from 21-90 days. To the best of our knowledge, the fabricated IC is the smallest constant-current stimulator that has been tested chronically.
Collapse
|
31
|
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022; 6:706-716. [PMID: 35361934 PMCID: PMC9213237 DOI: 10.1038/s41551-022-00873-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023]
Abstract
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals’ sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators. An endovascular wireless and battery-free millimetric implant enables the stimulation of peripheral nerves that are difficult to reach via traditional surgeries.
Collapse
|
32
|
Chen S, Li J, Gao Y, Li J, Dong H, Gu Z, Ren W. A Micromechanical Transmitter with Only One BAW Magneto-Electric Antenna. MICROMACHINES 2022; 13:mi13020272. [PMID: 35208399 PMCID: PMC8875784 DOI: 10.3390/mi13020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
Implantable medical devices have been facing the severe challenge of wireless communication for a long time. Acoustically actuated magnetoelectric (ME) transducer antennas have attracted lots of attention due to their miniaturization, high radiation efficiency and easy integration. Here, we fully demonstrate the possibility of using only one bulk acoustic wave (BAW) actuated ME transducer antenna (BAW ME antenna) for communication by describing the correspondence between the BAW ME antenna and components of the traditional transmitter in detail. Specifically, we first demonstrate that the signal could be modulated by applying a direct current (DC) magnetic bias and exciting different resonance modes of the BAW ME antenna with frequencies ranging from medium frequency (MF) (1.5 MHz) to medium frequency (UHF) (2 GHz). Then, two methods of adjusting the radiation power of the BAW ME antenna are proposed to realize signal amplification, including increasing the input voltage and using higher order resonance. Finally, a method based on electromagnetic (EM) perturbation is presented to simulate the transmission process of the BAW ME antenna via the finite element analysis (FEA) model. The simulation results match the radiation pattern of magnetic dipoles perfectly, which verifies both the model and our purpose.
Collapse
Affiliation(s)
- Si Chen
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
| | - Junru Li
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Correspondence:
| | - Yang Gao
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
- Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621010, China
| | - Jianbo Li
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
| | - Hongmei Dong
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
| | - Zhijun Gu
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
| | - Wanchun Ren
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (S.C.); (Y.G.); (J.L.); (H.D.); (Z.G.); (W.R.)
| |
Collapse
|
33
|
Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med 2021; 7:19. [PMID: 34937565 PMCID: PMC8697496 DOI: 10.1186/s42234-021-00080-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
In the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sunwoo Lee
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Wang W, Pun KP, Zhao B. A Current-Switching Technique for Intra-Body Communication With Miniaturized Electrodes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1343-1353. [PMID: 34748499 DOI: 10.1109/tbcas.2021.3125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical implants are required to be minimized in size to alleviate surgical pains. Battery and antenna are often the main bottlenecks in system miniaturization. Wireless power transfer (WPT) is a possible way to minimize or eliminate the battery. Medical implants with WPT often use backscattering for data communication due to its low power consumption and low hardware cost. However, the conventional backscattering approach with WPT requires a large implanted antenna to ensure a relatively high efficiency and enough signal-to-noise ratio (SNR) for demodulation. In this work, we propose a current-switching technique for intra-body communication to achieve a high SNR and data rate with a pair of small implanted electrodes. Instead of the conventional electric-field based WPT and communication, a current loop is configured in the body tissue for WPT, where a new passive-communication scheme is implemented at the same time. A prototype is implemented to validate the proposed technique, in which the implanted electrodes are designed to be as small as 200 μm × 200 μm, located 13 mm deep in the tissue. The system achieves a communication rate of 10 Mbps with a bit error rate (BER) of 8.4 ×10-4 over the 406 MHz MedRadio band, while the signal-to-blocker ratio and SNR are measured to be -35.7 dB and 12.4dB, respectively.
Collapse
|
35
|
Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C, Hu B, Feng J, Luo Z. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. NANO ENERGY 2021; 89:106327. [DOI: 10.1016/j.nanoen.2021.106327] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
36
|
Nasrollahpour M, Zaeimbashi M, Khalifa A, Liang X, Chen H, Sun N, Abrishami SMS, Martos-Repath I, Emam S, Cash S, Sun NX. Magnetoelectric (ME) Antenna for On-chip Implantable Energy Harvesting. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6167-6170. [PMID: 34892524 DOI: 10.1109/embc46164.2021.9629823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel magnetoelectric (ME) antenna is fabricated to be integrated to the on-chip energy harvesting circuit for brain-computer interface applications. The proposed ME antenna resonates at the frequency of 2.57 GHz while providing a bandwidth of 3.37 MHz. The proposed rectangular ME antenna wireless power transfer efficiency is 0.304 %, which is considerably higher than that of micro-coils.Clinical Relevance- This provides a suitable energy harvesting efficiency for wirelessly powering up the brain implant devices.
Collapse
|
37
|
Khalifa A, Weigand-Whittier J, Farrar CT, Cash S. Tracking the Migration of Injectable Microdevices in the Rodent Brain Using a 9.4T Magnetic Resonance Imaging Scanner. Front Neurosci 2021; 15:738589. [PMID: 34675768 PMCID: PMC8524135 DOI: 10.3389/fnins.2021.738589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Wirelessly powered microdevices are being miniaturized to improve safety, longevity, and spatial resolution in a wide range of biomedical applications. Some wireless microdevices have reached a point where they can be injected whole into the central nervous system. However, the state-of-the-art floating microdevices have not yet been tested in chronic brain applications, and there is a growing concern that the implants might migrate through neural tissue over time. Using a 9.4T MRI scanner, we attempt to address the migration question by tracking ultra-small devices injected in different areas of the brain (cortico-subcortical) of rats over 5 months. We demonstrate that injectable microdevices smaller than 0.01 mm3 remain anchored in the brain at the targeted injection site over this time period. Based on CD68 (microglia) and GFAP (astrocytes) immunoreactivity to the microdevice, we hypothesize that glial scar formation is preventing the migration of chronically implanted microdevices in the brain over time.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonah Weigand-Whittier
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
| | - Christian T Farrar
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
| | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Liu Y, Feig VR, Bao Z. Conjugated Polymer for Implantable Electronics toward Clinical Application. Adv Healthc Mater 2021; 10:e2001916. [PMID: 33899347 DOI: 10.1002/adhm.202001916] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Indexed: 12/21/2022]
Abstract
Owing to their excellent mechanical flexibility, mixed-conducting electrical property, and extraordinary chemical turnability, conjugated polymers have been demonstrated to be an ideal bioelectronic interface to deliver therapeutic effect in many different chronic diseases. This review article summarizes the latest advances in implantable electronics using conjugated polymers as electroactive materials and identifies remaining challenges and opportunities for developing electronic medicine. Examples of conjugated polymer-based bioelectronic devices are selectively reviewed in human clinical studies or animal studies with the potential for clinical adoption. The unique properties of conjugated polymers are highlighted and exemplified as potential solutions to address the specific challenges in electronic medicine.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Materials Research and Engineering Agency for Science, Technology and Research Singapore 138634 Singapore
| | - Vivian Rachel Feig
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhenan Bao
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| |
Collapse
|
39
|
Yoo S, Lee J, Joo H, Sunwoo S, Kim S, Kim D. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jonghun Lee
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Hyunwoo Joo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
40
|
Lee AH, Lee J, Jang J, Nurmikko A, Song YK. Wireless Addressable Cortical Microstimulators Powered by Near-Infrared Harvesting. ACS Sens 2021; 6:2728-2737. [PMID: 34236857 DOI: 10.1021/acssensors.1c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ensembles of autonomous, spatially distributed wireless stimulators can offer a versatile approach to patterned microstimulation of biological circuits such as the cortex. Here, we demonstrate the concept of a distributed, untethered, and addressable microstimulator, integrating an ultraminiaturized ASIC with a custom-designed GaAs photovoltaic (PV) microscale energy harvester, dubbed as an "optical neurograin (ONG)". An on-board Manchester-encoded near-infrared downlink delivers incident IR power and provides a synchronous clock across an ensemble of microdevices, triggering stimulus events by remote command. Each ONG has a unique device address and, when an incoming downlink bit sequence matches with this device identification (ID), the implant delivers a charge-balanced current stimulus to the target cortex. Present devices use 7-bit metal fuses fabricated during the CMOS process for their device ID, laser-scribed in post-processing, allowing in principle for a stimulator network of up to 128 nodes. We have characterized small ensembles of ONGs and shown a proof of concept of the system both on benchtop and in vivo rat rodent model.
Collapse
Affiliation(s)
- Ah-Hyoung Lee
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jihun Lee
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jungwoo Jang
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Yoon-Kyu Song
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Bailoor S, Seo JH, Dasi L, Schena S, Mittal R. Prosthetic Valve Monitoring via In Situ Pressure Sensors: In Silico Concept Evaluation using Supervised Learning. Cardiovasc Eng Technol 2021; 13:90-103. [PMID: 34145555 DOI: 10.1007/s13239-021-00553-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/02/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE Patients receiving transcatheter aortic valve replacement (TAVR) can benefit from continuous, longitudinal monitoring of valve prosthesis to prevent leaflet thrombosis-related complications. We present a computational proof-of-concept study of a novel, non-invasive and non-toxic valve monitoring technique for TAVs which uses pressure measurements from microsensors embedded on the valve stent. We perform a data-driven analysis to determine the signal processing and machine learning required to detect reduced mobility in individual leaflets. METHODS We use direct numerical simulations to describe hemodynamic differences in transvalvular flow in ascending aorta models with healthy and stenotic valves. A Cartesian-grid flow solver and a reduced-order valve model simulate the complex dynamics of blood flow and leaflet motion, respectively. The two-way fluid-structure interaction coupling is achieved using a sharp interface immersed boundary method. RESULTS From a dataset of 21 simulations, we show leaflets with reduced mobility result in large, asymmetric pressure fluctuations in their vicinity, particularly in the region extending from the aortic sinus to the sino-tubular junction (STJ). We train a linear classifier algorithm by correlating sinus and STJ pressure measurements on the stent surface to individual leaflet status. The algorithm was shown to have >90% accuracy for prospective detection of individual leaflet dysfunction. CONCLUSIONS We demonstrate that using only two discrete pressure measurements, per leaflet, on the TAV stent, individual leaflet status can be accurately predicted. Such a sensorized TAV system could enable safe and inexpensive detection of prosthetic valve dysfunction.
Collapse
Affiliation(s)
- Shantanu Bailoor
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lakshmi Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stefano Schena
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 2021; 12:3141. [PMID: 34035237 PMCID: PMC8149822 DOI: 10.1038/s41467-021-23256-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Ultra-compact wireless implantable medical devices are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission. Moreover, current implantable devices are reliant on differential recording of voltage or current across space and require direct contact between electrode and tissue. Here, we show an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250 × 174 µm2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields. The proposed ME antenna has a wireless PTE 1–2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the SAR limit. Furthermore, the antenna’s magnetic field detectivity of 300–500 pT allows the IMDs to record neural magnetic fields. Wireless implantable medical devices (IMDs) are hamstrung by both size and efficiency required for wireless power transfer. Here, Zaeimbashi et al. present a magnetoelectric nano-electromechanical systems that can harvest energy and sense weak magnetic fields like those arising from neural activity.
Collapse
|
43
|
Khalifa A, Eisape A, Coughlin B, Cash S. A simple method for implanting free-floating microdevices into the nervous tissue. J Neural Eng 2021; 18. [PMID: 33827069 DOI: 10.1088/1741-2552/abf590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Objective. Free-floating implantable neural interfaces are an emerging powerful paradigm for mapping and modulation of brain activity. Minuscule wirelessly-powered devices have the potential to provide minimally-invasive interactions with neurons in chronic research and medical applications. However, these devices face a seemingly simple problem-how can they be placed into nervous tissue rapidly, efficiently and in an essentially arbitrary location?Approach. We introduce a novel injection tool and describe a controlled injection approach that minimizes damage to the tissue.Main results.To validate the needle injectable tool and the presented delivery approach, we evaluate the spatial precision and rotational alignment of the microdevices injected into agarose, brain, and sciatic nerve with the aid of tissue clearing and MRI imaging. In this research, we limited the number of injections into the brain to four per rat as we are using microdevices that are designed for an adult head size on a rat model. We then present immunohistology data to assess the damage caused by the needle.Significance. By virtue of its simplicity, the proposed injection method can be used to inject microdevices of all sizes and shapes and will do so in a fast, minimally-invasive, and cost-effective manner. As a result, the introduced technique can be broadly used to accelerate the validation of these next-generation types of electrodes in animal models.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Adebayo Eisape
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Brian Coughlin
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
44
|
Eickhoff S, Jarvis JC. Pulse Shaping Strategies for Electroceuticals: A Comprehensive Survey of the Use of Interphase Gaps in Miniature Stimulation Systems. IEEE Trans Biomed Eng 2021; 68:1658-1667. [PMID: 33651679 DOI: 10.1109/tbme.2021.3063029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Interphase gaps (IPGs) are among the most commonly suggested pulse shape variations to try to enhance neural stimulation efficiency by reducing the action potential (AP) suppressing effect of an early anodic hyperpolarization. The majority of published literature on the effect of IPGs is based on investigations of monopolar stimulation configurations. However, many contemporary neuromodulation applications including the emerging field of electroceutical devices operate in a bipolar electrode configuration. METHODS We investigated the effect of IPGs and asymmetric biphasic current controlled pulses with reduced anodic amplitude on neural activation in both principal electrode configurations in a rodent in-vivo nerve muscle preparation. RESULTS In the monopolar electrode configuration, our findings of 10.9 ± 1.5% decreased stimulation amplitude with 200 μs IPGs in biphasic pulses of 40 μs phase width are in agreement with published literature in this configuration. Surprisingly, using the bipolar configuration, opposite effects of IPGs were observed and neural activation required up to 18.6 ± 3.1% (phase width 100 μs, IPG = 1000 μs) higher amplitudes. Electroneurogram recordings of the stimulated nerve revealed temporal differences in AP generation between the monopolar and bipolar configuration. In the bipolar configuration excitation first occurred in response to the middle field transition of biphasic pulses. CONCLUSION This is the first study to report consistently increased amplitude requirements with IPGs in bipolar stimulation configurations. SIGNIFICANCE Our findings must be taken into consideration when designing stimulation waveforms for neuromodulation devices that operate in a bipolar mode to avoid increased amplitude requirements that result in increased energy consumption.
Collapse
|
45
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
46
|
Dinis H, Mendes P. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosens Bioelectron 2021; 172:112781. [DOI: 10.1016/j.bios.2020.112781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
|
47
|
A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities. ELECTRONICS 2020. [DOI: 10.3390/electronics9122123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article describes the development of a radio frequency (RF) platform for electromagnetically modulated signals that makes use of a software-defined radio (SDR) to receive information from a novel magnetoelectric (ME) antenna capable of sensing low-frequency magnetic fields with ultra-low magnitudes. The platform is employed as part of research and development to utilize miniaturized ME antennas and integrated circuits for neural recording with wireless implantable devices. To prototype the reception of electromagnetically modulated signals from a sensor, a versatile Universal Software Radio Peripheral (USRP) and the GNU Radio toolkit are utilized to enable real-time signal processing under varying operating conditions. Furthermore, it is demonstrated how a radio frequency signal transmitted from the SDR can be captured by the ME antenna for wireless energy harvesting.
Collapse
|
48
|
Lee H, Mun JS, Jung WR, Lee S, Kang J, Kang W, Kim S, Park SM, Na DL, Shon YM, Kim SJ. Long-Term Non Anesthetic Preclinical Study Available Extra-Cranial Brain Activator (ECBA) System for the Future Minimally Invasive Human Neuro Modulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1393-1406. [PMID: 33112749 DOI: 10.1109/tbcas.2020.3034444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, electroceuticals have been spotlighted as an emerging treatment for various severe chronic brain diseases, owing to their intrinsic advantage of electrical interaction with the brain, which is the most electrically active organ. However, the majority of research has verified only the short-term efficacy through acute studies in laboratory tests owing to the lack of a reliable miniaturized platform for long-term animal studies. The construction of a sufficient integrated system for such a platform is extremely difficult because it requires multi-disciplinary work using state-of-the-art technologies in a wide range of fields. In this study, we propose a complete system of an implantable platform for long-term preclinical brain studies. Our proposed system, the extra-cranial brain activator (ECBA), consists of a titanium-packaged implantable module and a helmet-type base station that powers the module wirelessly. The ECBA can also be controlled by a remote handheld device. Using the ECBA, we performed a long-term non-anesthetic study with multiple canine subjects, and the resulting PET-CT scans demonstrated remarkable enhancement in brain activity relating to memory and sensory skills. Furthermore, the histological analysis and high-temperature aging test confirmed the reliability of the system for up to 31 months. Hence, the proposed ECBA system is expected to lead a new paradigm of human neuromodulation studies in the near future.
Collapse
|
49
|
Yu Z, Chen JC, Alrashdan FT, Avants BW, He Y, Singer A, Robinson JT, Yang K. MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1241-1252. [PMID: 33180732 PMCID: PMC8712272 DOI: 10.1109/tbcas.2020.3037862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents the first wireless and programmable neural stimulator leveraging magnetoelectric (ME) effects for power and data transfer. Thanks to low tissue absorption, low misalignment sensitivity and high power transfer efficiency, the ME effect enables safe delivery of high power levels (a few milliwatts) at low resonant frequencies ( ∼ 250 kHz) to mm-sized implants deep inside the body (30-mm depth). The presented MagNI (Magnetoelectric Neural Implant) consists of a 1.5-mm 2 180-nm CMOS chip, an in-house built 4 × 2 mm ME film, an energy storage capacitor, and on-board electrodes on a flexible polyimide substrate with a total volume of 8.2 mm 3. The chip with a power consumption of 23.7 μW includes robust system control and data recovery mechanisms under source amplitude variations (1-V variation tolerance). The system delivers fully-programmable bi-phasic current-controlled stimulation with patterns covering 0.05-to-1.5-mA amplitude, 64-to-512- μs pulse width, and 0-to-200-Hz repetition frequency for neurostimulation.
Collapse
|
50
|
Barbruni GL, Ros PM, Demarchi D, Carrara S, Ghezzi D. Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1160-1178. [PMID: 33201828 DOI: 10.1109/tbcas.2020.3038599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulators: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation.
Collapse
|