1
|
Mai Y, Debruille K, Mikhail I, Gupta V, Murray E, Frantsuzov R, Paull B. Measuring Nitrite and Nitrate in Rain and River Water Samples Using a Portable Ion Chromatograph in Step-gradient Mode and High Sensitivity Detection Flow Cell. J Sep Sci 2025; 48:e70134. [PMID: 40259533 PMCID: PMC12012291 DOI: 10.1002/jssc.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
With the increasing environmental pollution issues, there is a growing need for sensitive and real-time monitoring of pollutants. Nitrite and nitrate are common nutrients that are related to water quality. This study aims to enhance nitrate and nitrite detection capabilities using a portable ion chromatography-based nutrient analyzer, Aquamonitrix. By optimizing it for ultra-low detection limits (LODs), we address challenges in environmental water quality assessment in Tasmania, Australia. Using step-gradient mode with a stereolithography three-dimensional printed flow cell with a 5 cm optical path length, a 300 µL injection loop, and 60 mM KOH as eluent, LODs of 0.004 µg/mL for nitrite and 0.023 µg/mL for nitrate were achieved. Further improving to 0.008 µg/mL for nitrate with a 10 cm optical path length flow cell and 120 mM NaCl as eluent. A repeatability assessment over 84 automatic runs showed a relative standard deviation under 1.42% for peak area and 0.49% for retention time. The system demonstrated tolerance to salinity, handling up to 5 parts per thousand in artificial seawater. Comparative analysis of environmental samples revealed that nitrate levels in Tasmanian rainwater were five times lower than in Ireland. An average concentration of 2.08 µg/mL nitrate was found in Tamar River samples, aligning with local commercial lab data. Real-time, on-site analysis along the Derwent River detected an average nitrate concentration of 0.17 µg/mL. Validation against conventional standard ion chromatography showed no significant differences (p > 0.05), underscoring Aquamonitrix's robustness for field-based water quality monitoring. A 5-day deployment of Aquamonitrix further demonstrated the system's reliability under significant temperature fluctuations between day and night.
Collapse
Affiliation(s)
- Yonglin Mai
- Australian Centre for Research on Separation Science, School of Natural Sciences (Chemistry)University of TasmaniaHobartAustralia
| | - Kurt Debruille
- Australian Centre for Research on Separation Science, School of Natural Sciences (Chemistry)University of TasmaniaHobartAustralia
| | - Ibraam Mikhail
- Australian Centre for Research on Separation Science, School of Natural Sciences (Chemistry)University of TasmaniaHobartAustralia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science, School of Natural Sciences (Chemistry)University of TasmaniaHobartAustralia
| | - Eoin Murray
- Research & DevelopmentAquamonitrix Ltd.TullowIreland
- Research & DevelopmentT.E. Laboratories Ltd. (TelLab)TullowIreland
| | | | - Brett Paull
- Australian Centre for Research on Separation Science, School of Natural Sciences (Chemistry)University of TasmaniaHobartAustralia
| |
Collapse
|
2
|
Mohan JM, Dudala S, Amreen K, Javed A, Dubey SK, Goel S. Microfluidic Device Integrated With PDMS Microchannel and Unmodified ITO Glass Electrodes for Highly Sensitive, Specific, and Point-of-Care Detection of Copper and Mercury. IEEE Trans Nanobioscience 2023; 22:881-888. [PMID: 37022373 DOI: 10.1109/tnb.2023.3241827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work delves upon developing a two-layer plasma-bonded microfluidic device with a microchannel layer and electrodes for electroanalytical detection of heavy metal ions. The three-electrode system was realized on an ITO-glass slide by suitably etching the ITO layer with the help of CO2 laser. The microchannel layer was fabricated using a PDMS soft-lithography method wherein the mold created by maskless lithography. The optimized dimensions opted to develop a microfluidic device with length of 20 mm, width of 0.5 mm and gap of 1 mm. The device, with bare unmodified ITO electrodes, was tested to detect Cu and Hg by a portable potentiostat connected with a smartphone. The analytes were introduced in the microfluidic device with a peristaltic pump at an optimal flow rate of [Formula: see text]/min. The device exhibited sensitive electro-catalytic sensing of both the metals by achieving an oxidation peak at -0.4 V and 0.1 V for Cu and Hg respectively. Furthermore, square wave voltammetry (SWV) approach was used to analyze the scan rate effect and concentration effect. The device also used to simultaneously detect both the analytes. During simultaneous sensing of Hg and Cu, the linear range was observed between [Formula: see text] to [Formula: see text], the limit of detection (LOD) was found to be [Formula: see text] and [Formula: see text] for Cu and Hg respectively. Further, no interference with other co-existing metal ions was found manifesting the specificity of the device to Cu and Hg. Finally, the device was successfully tested with real samples like tap water, lake water, and serum with remarkable recovery percentages. Such portable devices pave way for detecting various heavy metal ions in a point-of-care environment. The developed device can also be used for detection of other heavy metals like cadmium, lead, zinc etc., by modifying the working electrode with the various nanocomposites.
Collapse
|
3
|
Li Z, Liu H, Wang D, Zhang M, Yang Y, Ren TL. Recent advances in microfluidic sensors for nutrients detection in water. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Mollaie E, Asiaei S, Aryan H. Nitrite enhanced detection from saliva by simple geometrical modifications of paper-based micromixers. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:88. [PMID: 36246785 PMCID: PMC9554860 DOI: 10.1007/s10404-022-02596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Dysregulation of nitric oxide (NO) and it's two relatively stable metabolites, nitrite, and nitrate, in SARS-CoV-2, are reported in infected populations, especially for nitrates levels > 68.4 μmol/L. In this paper, we measure the abnormal presence of nitrite in the saliva by developing a cheap μPAD for colorimetric detection through the modified Griess reaction. This includes a diazotization reaction between nitrite and Griess reagent, including Sulfanilamide and N-Naphthyl-ethylenediamine in an acidic medium, causing a pink Azo compound. The modifications are suggested by a numerical method model that couples the mass flux with the porosity medium equations (convection, diffusion and, dispersion) that improves the mixing process. The mixing index was quantified from the concentration deviation method via simulation of a homogeneous two-phase flow in a porous environment. Five μPAD designs were fabricated to verify the simulation results of mixing enhancement on the Griess reactants in saliva samples. The investigated geometries include straight, helical, zig-zag, square wave, and inclined jagged shapes fabricated by direct laser writing, suitable for low cost, mass fabrication. Inclined jagged micromixer exhibited the best performance with up to 40% improvement compared with the simple straight geometry. Deliberate geometrical modifications, exemplified here in a jagged micromixer on paper, cut the limit of detection (LOD) by at least half without impacting the linear detection range.
Collapse
Affiliation(s)
- Elham Mollaie
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-Microfluidics/MEMS Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hiwa Aryan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
- Clinical Research Development Center of Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Mohan JM, Amreen K, Javed A, Dubey SK, Goel S. Miniaturized 3D printed electrochemical platform with optimized Fibrous carbon electrode for non-interfering hypochlorite sensing. CHEMOSPHERE 2022; 302:134915. [PMID: 35568213 DOI: 10.1016/j.chemosphere.2022.134915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
3D printing technology based electrochemical device can provide ease of fabrication, cost effectiveness, rapid detection and lower limit of detection. Herein, a novel, customized, portable and inexpensive 3D printed electrochemical device, has been presented. Fibrous carbon Toray paper, deposited with gold nanoparticles through electrodeposition, used as a working electrode which Further device was tested with 1 mM sodium hypochlorite using cyclic voltammetry (CV) and square wave voltammetry (SWV) in 0.1 M PBS. Hypochlorite has a pivotal role in supporting the growing chemical and paper industries and finds diverse uses in several clinical applications. It is primarily used for disinfecting food, water and surfaces. The scan rate study was carried out from 20 mVs-1 to 250 mVs-1 using cyclic voltammetry technique. The diffusion coefficient obtained from scan rate effect was 1.39 × 10-6 cm2s-1. The concentration range was evaluated with SWV technique, in a linear range of 0.6 μM-40 μM, with a detection limit of 0.7 μM. The device was further analyzed to ensure non-interference from co-existing chemicals like sodium chloride, potassium nitrate, sodium carbonate, sodium nitrite. Real sample analysis was done with sea, artificial sea and tap water with impressive recovery values. In summary, the developed working electrode can be customized and modified based on testing analyte; thus, the proposed device can be used for various other biochemical analytes.
Collapse
Affiliation(s)
- Jaligam Murali Mohan
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nano Electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Arshad Javed
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Satish Kumar Dubey
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nano Electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
6
|
Guembe-García M, González-Ceballos L, Arnaiz A, Fernández-Muiño MA, Sancho MT, Osés SM, Ibeas S, Rovira J, Melero B, Represa C, García JM, Vallejos S. Easy Nitrite Analysis of Processed Meat with Colorimetric Polymer Sensors and a Smartphone App. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37051-37058. [PMID: 35920554 PMCID: PMC9389542 DOI: 10.1021/acsami.2c09467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have developed an in situ methodology for determining nitrite concentration in processed meats that can also be used by unskilled personnel. It is based on a colorimetric film-shaped sensory polymer that changes its color upon contacting the meat and a mobile app that automatically calculates the manufacturing and residual nitrite concentration by only taking digital photographs of sensory films and analyzing digital color parameters. The film-shaped polymer sensor detects nitrite anions by an azo-coupling reaction, since they activate this reaction between two of the four monomers that the copolymer is based on. The sensory polymer is complemented with an app, which analyzes the color in two different digital color spaces (RGB and HSV) and performs a set of 32 data fittings representing the concentration of nitrite versus eight different variables, finally providing the nitrite concentration of the test samples using the best fitting curve. The calculated concentration of nitrite correlates with a validated method (ISO 2918: 1975) usually used to determine nitrite, and no statistically significant difference between these methods and our proposed one has been found in our study (26 meat samples, 8 prepared, and 18 commercial). Our method represents a great advance in terms of analysis time, simplicity, and orientation to use by average citizens.
Collapse
Affiliation(s)
- Marta Guembe-García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lara González-Ceballos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miguel A Fernández-Muiño
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - M Teresa Sancho
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Sandra M Osés
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Beatriz Melero
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Cesar Represa
- Departamento de Ingeniería Electromecánica, Escuela Politécnica Superior, Universidad de Burgos, Avenida Cantabria s/n, 09006 Burgos, Spain
| | - José M García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
7
|
Shi Y, Shen Z. Recent Advances in Flexible RF MEMS. MICROMACHINES 2022; 13:mi13071088. [PMID: 35888905 PMCID: PMC9315774 DOI: 10.3390/mi13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022]
Abstract
Microelectromechanical systems (MEMS) that are based on flexible substrates are widely used in flexible, reconfigurable radio frequency (RF) systems, such as RF MEMS switches, phase shifters, reconfigurable antennas, phased array antennas and resonators, etc. When attempting to accommodate flexible deformation with the movable structures of MEMS, flexible RF MEMS are far more difficult to structurally design and fabricate than rigid MEMS devices or other types of flexible electronics. In this review, we survey flexible RF MEMS with different functions, their flexible film materials and their fabrication process technologies. In addition, a fabrication process for reconfigurable three-dimensional (3D) RF devices based on mechanically guided assembly is introduced. The review is very helpful to understand the overall advances in flexible RF MEMS, and serves the purpose of providing a reference source for innovative researchers working in this field.
Collapse
Affiliation(s)
- Yingli Shi
- School of Materials and Energy, University of Electronic Science and Technology of China (USETC), Chengdu 610054, China;
| | - Zhigang Shen
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University (BUAA), Beijing 100191, China
- Correspondence:
| |
Collapse
|
8
|
Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing. SENSORS 2022; 22:s22030910. [PMID: 35161655 PMCID: PMC8838366 DOI: 10.3390/s22030910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
In this study, we present a highly integrated design of organic optoelectronic devices for Point-of-Need (PON) nitrite (NO2−) measurement. The spectrophotometric investigation of nitrite concentration was performed utilizing the popular Griess reagent and a reflection-based photometric unit with an organic light emitting diode (OLED) and an organic photodetector (OPD). In this approach a nitrite concentration dependent amount of azo dye is formed, which absorbs light around ~540 nm. The organic devices are designed for sensitive detection of absorption changes caused by the presence of this azo dye without the need of a spectrometer. Using a green emitting TCTA:Ir(mppy)3 OLED (peaking at ~512 nm) and a DMQA:DCV3T OPD with a maximum sensitivity around 530 nm, we successfully demonstrated the operation of the OLED–OPD pair for nitrite sensing with a low limit of detection 46 µg/L (1.0 µM) and a linearity of 99%. The hybrid integration of an OLED and an OPD with 0.5 mm × 0.5 mm device sizes and a gap of 0.9 mm is a first step towards a highly compact, low cost and highly commercially viable PON analytic platform. To our knowledge, this is the first demonstration of a fully organic-semiconductor-based monolithic integrated platform for real-time PON photometric nitrite analysis.
Collapse
|
9
|
Concilia G, Lai A, Thurgood P, Pirogova E, Baratchi S, Khoshmanesh K. Investigating the mechanotransduction of transient shear stress mediated by Piezo1 ion channel using a 3D printed dynamic gravity pump. LAB ON A CHIP 2022; 22:262-271. [PMID: 34931212 DOI: 10.1039/d1lc00927c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic systems are widely used for studying the mechanotransduction of flow-induced shear stress in mechanosensitive cells. However, these studies are generally performed under constant flow rates, mainly, due to the deficiency of existing pumps for generating transient flows. To address this limitation, we have developed a unique dynamic gravity pump to generate transient flows in microfluidics. The pump utilises a motorised 3D-printed cam-lever mechanism to change the inlet pressure of the system in repeated cycles. 3D printing technology facilitates the rapid and low-cost prototyping of the pump. Customised transient flow patterns can be generated by modulating the profile, size, and rotational speed of the cam, location of the hinge along the lever, and the height of the syringe. Using this unique dynamic gravity pump, we investigated the mechanotransduction of shear stress in HEK293 cells stably expressing Piezo1 mechanosensitive ion channel under transient flows. The controllable, simple, low-cost, compact, and modular design of the pump makes it suitable for studying the mechanobiology of shear sensitive cells under transient flows.
Collapse
Affiliation(s)
| | - Austin Lai
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | |
Collapse
|
10
|
Dudala S, Srikanth S, Dubey SK, Javed A, Goel S. Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli. MICROMACHINES 2021; 12:mi12091037. [PMID: 34577681 PMCID: PMC8470320 DOI: 10.3390/mi12091037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022]
Abstract
This paper reports on single step and rapid fabrication of interdigitated electrodes (IDEs) using an inkjet printing-based approach. A commercial inkjet-printed circuit board (PCB) printer was used to fabricate the IDEs on a glass substrate. The inkjet printer was optimized for printing IDEs on a glass substrate using a carbon ink with a specified viscosity. Electrochemical impedance spectroscopy in the frequency range of 1 Hz to 1 MHz was employed for chemical sensing applications using an electrochemical workstation. The IDE sensors demonstrated good nitrite quantification abilities, detecting a low concentration of 1 ppm. Taste simulating chemicals were used to experimentally analyze the ability of the developed sensor to detect and quantify tastes as perceived by humans. The performance of the inkjet-printed IDE sensor was compared with that of the IDEs fabricated using maskless direct laser writing (DLW)-based photolithography. The DLW–photolithography-based fabrication approach produces IDE sensors with excellent geometric tolerances and better sensing performance. However, inkjet printing provides IDE sensors at a fraction of the cost and time. The inkjet printing-based IDE sensor, fabricated in under 2 min and costing less than USD 0.3, can be adapted as a suitable IDE sensor with rapid and scalable fabrication process capabilities.
Collapse
Affiliation(s)
- Sohan Dudala
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
| | - Sangam Srikanth
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Arshad Javed
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Correspondence:
| |
Collapse
|