1
|
Du QW, Xiao F, Zheng L, Chen RD, Dong LN, Liu FY, Cheng ZG, Yu J, Liang P. Importance of the enhanced cooling system for more spherical ablation zones: Numerical simulation, ex vivo and in vivo validation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108383. [PMID: 39260163 DOI: 10.1016/j.cmpb.2024.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION This study aimed to investigate the efficacy of a small-gauge microwave ablation antenna (MWA) with an enhanced cooling system (ECS) for generating more spherical ablation zones. METHODS A comparison was made between two types of microwave ablation antennas, one with ECS and the other with a conventional cooling system (CCS). The finite element method was used to simulate in vivo ablation. Two types of antennas were used to create MWA zones for 5, 8, 10 min at 50, 60, and 80 W in ex vivo bovine livers (n = 6) and 5 min at 60 W in vivo porcine livers (n = 16). The overtreatment ratio, ablation aspect ratio, carbonization area, and other characteristcs of antennas were measured and compared using numerical simulation and gross pathologic examination. RESULTS In numerical simulation, the ECS antenna demonstrated a lower overtreatment ratio than the CCS antenna (1.38 vs 1.43 at 50 W 5 min, 1.19 vs 1.35 at 50 W 8 min, 1.13 vs 1.32 at 50 W 10 min, 1.28 vs 1.38 at 60 W 5 min, 1.14 vs 1.32 at 60 W 8 min, 1.10 vs 1.30 at 60 W 10 min). The experiments revealed that the ECS antenna generated ablation zones with a more significant aspect ratio (0.92 ± 0.03 vs 0.72 ± 0.01 at 50 W 5 min, 0.95 ± 0.02 vs 0.70 ± 0.01 at 50 W 8 min, 0.96 ± 0.01 vs 0.71 ± 0.04 at 50 W 10 min, 0.96 ± 0.01 vs 0.73 ± 0.02 at 60 W 5 min, 0.94 ± 0.03 vs 0.71 ± 0.03 at 60 W 8 min, 0.96 ± 0.02 vs 0.69 ± 0.04 at 60 W 10 min) and a smaller carbonization area (0.00 ± 0.00 cm2 vs 0.54 ± 0.06 cm2 at 50 W 5 min, 0.13 ± 0.03 cm2 vs 0.61 ± 0.09 cm2 at 50 W 8 min, 0.23 ± 0.05 cm2 vs 0.73 ± 0.05 m2 at 50 W 10 min, 0.00 ± 0.00 cm2 vs 1.59 ± 0.41 cm2 at 60 W 5 min, 0.23 ± 0.22 cm2 vs 2.11 ± 0.63 cm2 at 60 W 8 min, 0.57 ± 0.09 cm2 vs 2.55 ± 0.51 cm2 at 60 W 10 min). Intraoperative ultrasound images revealed a hypoechoic area instead of a hyperechoic area near the antenna. Hematoxylin-eosin staining of the dissected tissue revealed a correlation between the edge of the ablation zone and that of the hypoechoic area. CONCLUSIONS The ECS antenna can produce more spherical ablation zones with less charring and a clearer intraoperative ultrasound image of the ablation area than the CCS antenna.
Collapse
Affiliation(s)
- Qiao-Wei Du
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Fan Xiao
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Lin Zheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Ren-Dong Chen
- The Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Nan Dong
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Fang-Yi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Zhi-Gang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China.
| |
Collapse
|
2
|
Ahamed Kp S, Arunachalam K. Multifrequency operation of an intracavitary monopole with sliding broadband choke for delivering hyperthermia treatment with variable coverage. Electromagn Biol Med 2024; 43:256-266. [PMID: 39259681 DOI: 10.1080/15368378.2024.2389068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Microwave applicators reported for intracavitary hyperthermia (HT) operate at single frequency and deliver fixed treatment coverage at the tumor target. In this work, we report multifrequency operation of a water-cooled monopole antenna with a sliding broadband ferrite choke for delivering intracavitary HT to the cervix with variable spatial coverage. Spatially varying treatment coverage is achieved by varying the choke position with respect to the monopole using a mechanical sliding arrangement and exciting the antenna at the modified resonant frequency. Multifrequency operation of the antenna prototype is demonstrated over 700-1000 MHz using a straight intrauterine cervix applicator. Numerical simulations confirm the ability to deliver targeted HT with axial extent varying between 35.4 and 62.0 mm by controlling the sliding choke and coupling water temperature. Applicator prototype measurements in tissue mimicking phantoms confirm multifrequency operation of the antenna and its ability to induce axially varying intracavitary HT coverage to match the tumor size using a single applicator.
Collapse
Affiliation(s)
- Shabeeb Ahamed Kp
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Wu C, Huang H, Liu Y, Chen L, Yu S, Moser MAJ, Zhang W, Fang Z, Zhang B. Optimal design of aperiodic tri-slot antennas for the conformal ablation of liver tumors using an experimentally validated MWA computer model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107799. [PMID: 37703699 DOI: 10.1016/j.cmpb.2023.107799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE This study aims to demonstrate that the conformal microwave ablation (MWA) of liver tumors could be attained by optimizing the structure of an aperiodic tri-slot coaxial antenna, its insertion depth, and input power. METHODS A computational MWA model with an aperiodic tri-slot coaxial antenna operating at the frequency of 2.45 GHz was built and validated by both an ex vivo and a pilot in vivo experiment with porcine healthy livers. The validated in vivo computational MWA model implemented with a liver tumor was then used as a testbed to investigate the conformal ablation of liver tumors. Five liver tumors in different sizes and shapes were investigated. A genetic algorithm optimization method (NSGA-II) was used to optimize the structure of antenna, insertion depth of antenna, and microwave antenna input power for the conformal ablation of liver tumors. RESULTS The validation results showed that a good agreement in both the spatiotemporal temperature distribution and ablation zone was found between the computer model and the ex vivo experiments at both 45 W, 5 min and 60 W, 3 min treatments and the in vivo experiment at 45 W, 5 min treatment. The optimized simulation results confirmed that five cases of liver tumors in different sizes and shapes can be conformally ablated by optimizing the aperiodic tri-slot coaxial antenna, antenna insertion depth, and microwave antenna input power. CONCLUSION This paper demonstrates that the aperiodic tri-slot coaxial antenna can be optimized with the insertion depth and input power for the conformal ablation of liver tumors, regardless the size and shape of liver tumors.
Collapse
Affiliation(s)
- Chen Wu
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hangming Huang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yongfang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201412, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuangquan Yu
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Zheng Fang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.
| | - Bing Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Ahamed Kp S, Britto JP, Arunachalam K. Intracavitary Applicator for Sequential Delivery of Localized Hyperthermia Through Non-Metallic Uterine Tandem. IEEE Trans Biomed Eng 2023; 70:2955-2963. [PMID: 37130251 DOI: 10.1109/tbme.2023.3272398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, we report the design and demonstration of a flexible coaxial wire antenna with a low profile flexible choke for delivering localized hyperthermia (HT) treatment to the cervix through a custom designed uterine tandem applicator. Resistive and magnetic materials were investigated for determining the flexible choke design suited for intracavitary HT treatment at 915 MHz. Measurements of the intracavitary antenna with the flexible choke in tissue mimicking phantom and ex-vivo bovine muscle through the non-metallic uterine tandem prototype confirm the ability to deliver localized HT to the cervix at 915 MHz and 50 mm insertion depth.
Collapse
|
5
|
Sebek J, Park WKC, Geimer S, Van Citters DW, Farah A, Dupuy DE, Meaney PM, Prakash P. Computational modeling of microwave ablation with thermal accelerants. Int J Hyperthermia 2023; 40:2255755. [PMID: 37710404 DOI: 10.1080/02656736.2023.2255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
PURPOSE To develop a computational model of microwave ablation (MWA) with a thermal accelerant gel and apply the model toward interpreting experimental observations in ex vivo bovine and in vivo porcine liver. METHODS A 3D coupled electromagnetic-heat transfer model was implemented to characterize thermal profiles within ex vivo bovine and in vivo porcine liver tissue during MWA with the HeatSYNC thermal accelerant. Measured temperature dependent dielectric and thermal properties of the HeatSYNC gel were applied within the model. Simulated extents of MWA zones and transient temperature profiles were compared against experimental measurements in ex vivo bovine liver. Model predictions of thermal profiles under in vivo conditions in porcine liver were used to analyze thermal ablations observed in prior experiments in porcine liver in vivo. RESULTS Measured electrical conductivity of the HeatSYNC gel was ∼83% higher compared to liver at room temperature, with positive linear temperature dependency, indicating increased microwave absorption within HeatSYNC gel compared to tissue. In ex vivo bovine liver, model predicted ablation zone extents of (31.5 × 36) mm with the HeatSYNC, compared to (32.9 ± 2.6 × 40.2 ± 2.3) mm in experiments (volume differences 4 ± 4.1 cm3). Computational models under in vivo conditions in porcine liver suggest approximating the HeatSYNC gel spreading within liver tissue during ablations as a plausible explanation for larger ablation zones observed in prior in vivo studies. CONCLUSION Computational models of MWA with thermal accelerants provide insight into the impact of accelerant on MWA, and with further development, could predict ablations with a variety of gel injection sites.
Collapse
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| | | | - Shireen Geimer
- Expeditionary School at Black River, Ludlow, Vermont, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | - Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Sametova A, Kurmashev S, Ashikbayeva Z, Blanc W, Tosi D. Optical Fiber Distributed Sensing Network for Thermal Mapping in Radiofrequency Ablation Neighboring a Blood Vessel. BIOSENSORS 2022; 12:1150. [PMID: 36551117 PMCID: PMC9775312 DOI: 10.3390/bios12121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30-60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
Collapse
Affiliation(s)
- Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sabit Kurmashev
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| | - Wilfried Blanc
- Institute de Physique de Nice, CNRS UMR7010, Université Côte d’Azur, Avenue Joseph Vallot, 06108 Nice, France
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Huang X, Zhou Y, Wang C, Qi F, Luo P, Du H, Zhang Q, Liu Z, Yuan K, Qiu B. Development of a novel MR-conditional microwave needle for MR-guided interventional microwave ablation at 1.5T. Magn Reson Med 2022; 88:1886-1900. [PMID: 35775830 DOI: 10.1002/mrm.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop an MR-conditional microwave needle that generates a spherical ablation zone and clear MRI visibility for MR-guided microwave ablation. METHODS An MR-conditional microwave needle consisting of zirconia tip and TA18 titanium alloy tube was investigated. The numerical model was created to optimize the needle's geometry and analyze its performance. A geometrically optimized needle was produced using non-magnetic materials based on the electromagnetics simulation results. The needle's mechanical properties were tested per the Chinese pharmaceutical industry standard YY0899-2013. The MRI visibility performance and ablation characteristics of the needle was tested both in vitro (phantom) and in vivo (rabbit) at 1.5T. The RF-induced heating was evaluated in ex vivo porcine liver. RESULTS The needle's mechanical properties met the specified requirements. The needle susceptibility artifact was clearly visible both in vitro and in vivo. The needle artifact diameter (A) was small in in vivo (Ashaft: 4.96 ± 0.18 mm for T1W-FLASH, 3.13 ± 0.05 mm for T2-weighted fast spin-echo (T2W-FSE); Atip: 2.31 ± 0.09 mm for T1W-FLASH, 2.29 ± 0.08 mm for T2W-FSE; tip location error [TLE]: -0.94 ± 0.07 mm for T1W-FLASH, -1.10 ± 0.09 mm for T2W-FSE). Ablation zones generated by the needle were nearly spherical with an elliptical aspect ratio ranging from 0.79 to 0.90 at 30 W, 50 W for 3, 5, 10 min duration ex vivo ablations and 0.86 at 30 W for 10 min duration in vivo ablations. CONCLUSION The designed MR-conditional microwave needle offers excellent mechanical properties, reliable MRI visibility, insignificant RF-induced heating, and a sufficiently spherical ablation zone. Further clinical development of MR-guided microwave ablation appears warranted.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Yufu Zhou
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Changliang Wang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Fulang Qi
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Penghui Luo
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Huiyu Du
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Qing Zhang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Zhengrong Liu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Kecheng Yuan
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| |
Collapse
|
8
|
Sebek J, Cappiello G, Rahmani G, Zeinali N, Keating M, Fayemiwo M, Harkin J, McDaid L, Gardiner B, Sheppard D, Senanayake R, Gurnell M, O’Halloran M, Dennedy MC, Prakash P. Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors. Int J Hyperthermia 2022; 39:1264-1275. [PMID: 36137605 PMCID: PMC9820798 DOI: 10.1080/02656736.2022.2125590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To assess the feasibility of delivering microwave ablation for targeted treatment of aldosterone producing adenomas using image-based computational models. METHODS We curated an anonymized dataset of diagnostic 11C-metomidate PET/CT images of 14 patients with aldosterone producing adenomas (APA). A semi-automated approach was developed to segment the APA, adrenal gland, and adjacent organs within 2 cm of the APA boundary. The segmented volumes were used to implement patient-specific 3D electromagnetic-bioheat transfer models of microwave ablation with a 2.45 GHz directional microwave ablation applicator. Ablation profiles were quantitatively assessed based on the extent of the APA target encompassed by an ablative thermal dose, while limiting thermal damage to the adjacent normal adrenal tissue and sensitive critical structures. RESULTS Across the 14 patients, adrenal tumor volumes ranged between 393 mm3 and 2,395 mm3. On average, 70% of the adrenal tumor volumes received an ablative thermal dose of 240CEM43, while limiting thermal damage to non-target structures, and thermally sparing 83.5-96.4% of normal adrenal gland. Average ablation duration was 293 s (range: 60-600 s). Simulations indicated coverage of the APA with an ablative dose was limited when the axis of the ablation applicator was not well aligned with the major axis of the targeted APA. CONCLUSIONS Image-based computational models demonstrate the potential for delivering microwave ablation to APA targets within the adrenal gland, while limiting thermal damage to surrounding non-target structures.
Collapse
Affiliation(s)
- Jan Sebek
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Grazia Cappiello
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - George Rahmani
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | - Nooshin Zeinali
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Muireann Keating
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Michael Fayemiwo
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Jim Harkin
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Liam McDaid
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Bryan Gardiner
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Declan Sheppard
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | | | - Mark Gurnell
- Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Martin O’Halloran
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - M. Conall Dennedy
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.,Author to whom correspondence should be addressed: Punit Prakash, 3078 Engineering Hall, 1701D Platt St, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
9
|
Crocetti L, Amabile C, Scalise P, Tosoratti N, Bozzi E, Rossi P, Cervelli R, Cassarino S, Cioni R. Predicting the coagulation volume induced by microwave ablation of hepatocellular carcinoma: the role of deposited energy, ex-vivo bovine liver charts and central hyperdense area on post-treatment CT. Int J Hyperthermia 2021; 38:1486-1494. [PMID: 34927518 DOI: 10.1080/02656736.2021.1986642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To study the correlation between the overall coagulation zone (A) attained in percutaneous microwave ablation (MWA) of hepatocellular carcinomas (HCC) and: (1) the hyperdense zone (C) visible in the central part of zone A on post-treatment unenhanced CT scans; (2) the deposited energy; (3) the coagulation zones observed on ex-vivo bovine liver. MATERIALS AND METHODS The post-procedural computed tomography (CT) scans of HCCs treated with a single energy deployment through the same 2450 MHz MWA system were retrospectively analyzed, retrieving the dimensions of A and C zones and the deposited energy (E). Ex-vivo bovine liver MWA with the same system were performed and analyzed to determine the same quantities by gross-pathologic examination and CT imaging. RESULTS A total of 101 HCC treatments were analyzed. The average coagulation volumes increased linearly with deposited energy (1.11 cc/kJ, R2 = 0.90, 4.2 kJ ≤ E ≤ 48 kJ), similarly to ex-vivo findings (1.38 cc/kJ, R2 =0.97, 7.2 kJ ≤ E ≤ 144 kJ). The long axis (L) and short axis (D) of zones A and C held a fairly constant ratio both in-vivo (LC/LA=0.43 ± 0.13; DC/DA=0.42 ± 0.10) and ex-vivo (LC/LA = 0.49 ± 0.07; DC/DA = 0.28 ± 0.06). CONCLUSIONS The average dimensions of the ablation zone induced by the considered system on HCC increase linearly with the deposited energy and are fairly well predicted by the corresponding ex-vivo dimensions. The ratio between each linear dimension of A and C zones was found to be roughly constant over a large deposited energy span, both ex-vivo and in-vivo.
Collapse
Affiliation(s)
- Laura Crocetti
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Paola Scalise
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Elena Bozzi
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | - Piercarlo Rossi
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | - Rosa Cervelli
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Roberto Cioni
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Radosevic A, Prieto D, Burdío F, Berjano E, Prakash P, Trujillo M. Short pulsed microwave ablation: computer modeling and ex vivo experiments. Int J Hyperthermia 2021; 38:409-420. [PMID: 33719808 DOI: 10.1080/02656736.2021.1894358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study the differences between continuous and short-pulse mode microwave ablation (MWA). METHODS We built a computational model for MWA including a 200 mm long and 14 G antenna from Amica-Gen and solved an electromagnetic-thermal coupled problem using COMSOL Multiphysics. We compared the coagulation zone (CZ) sizes created with pulsed and continuous modes under ex vivo and in vivo conditions. The model was used to compare long vs. short pulses, and 1000 W high-powered short pulses. Ex vivo experiments were conducted to validate the model. RESULTS The computational models predicted the axial diameter of the CZ with an error of 2-3% and overestimated the transverse diameter by 9-11%. For short pulses, the ex vivo computer modeling results showed a trend toward larger CZ when duty cycles decreases. In general, short pulsed mode yielded higher CZ diameters and volumes than continuous mode, but the differences were not significant (<5%), as in terms of CZ sphericity. The same trends were observed in the simulations mimicking in vivo conditions. Both CZ diameter and sphericity were similar with short and long pulses. Short 1000 W pulses produced smaller sphericity and similar CZ sizes under in vivo and ex vivo conditions. CONCLUSIONS The characteristics of the CZ created by continuous and pulsed MWA show no significant differences from ex vivo experiments and computer simulations. The proposed idea of enlarging coagulation zones and improving their sphericity in pulsed mode was not evident in this study.
Collapse
Affiliation(s)
- Aleksandar Radosevic
- Department of Radiology, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Prieto
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| | | | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
11
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Huang H, Zhang L, Moser MAJ, Zhang W, Zhang B. A review of antenna designs for percutaneous microwave ablation. Phys Med 2021; 84:254-264. [PMID: 33773908 DOI: 10.1016/j.ejmp.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microwave (MW) antenna is a key element in microwave ablation (MWA) treatments as the means that energy is delivered in a focused manner to the tumor and its surrounding area. The energy delivered results in a rise in temperature to a lethal level, resulting in cell death in the ablation zone. The delivery of energy and hence the success of MWA is closely dependent on the structure of the antennas. Therefore, three design criteria, such as expected ablation zone pattern, efficiency of energy delivery, and minimization of the diameter of the antennas have been the focus along the evolution of the MW antenna. To further improve the performance of MWA in the treatment of various tumors through inventing novel antennas, this article reviews the state-of-the-art and summarizes the development of MW antenna designs regarding the three design criteria.
Collapse
Affiliation(s)
- Hangming Huang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lifeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University,Soochow University, Jiangsu, China
| | - Michael A J Moser
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
| |
Collapse
|
13
|
Lim HG, Kim H, Kim K, Park J, Kim Y, Yoo J, Heo D, Baik J, Park SM, Kim HH. Thermal Ablation and High-Resolution Imaging Using a Back-to-Back (BTB) Dual-Mode Ultrasonic Transducer: In Vivo Results. SENSORS (BASEL, SWITZERLAND) 2021; 21:1580. [PMID: 33668260 PMCID: PMC7956793 DOI: 10.3390/s21051580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
We present a back-to-back (BTB) structured, dual-mode ultrasonic device that incorporates a single-element 5.3 MHz transducer for high-intensity focused ultrasound (HIFU) treatment and a single-element 20.0 MHz transducer for high-resolution ultrasound imaging. Ultrasound image-guided surgical systems have been developed for lesion monitoring to ensure that ultrasonic treatment is correctly administered at the right locations. In this study, we developed a dual-element transducer composed of two elements that share the same housing but work independently with a BTB structure, enabling a mode change between therapy and imaging via 180-degree mechanical rotation. The optic fibers were embedded in the HIFU focal region of ex vivo chicken breasts and the temperature change was measured. Images were obtained in vivo mice before and after treatment and compared to identify the treated region. We successfully acquired B-mode and C-scan images that display the hyperechoic region indicating coagulation necrosis in the HIFU-treated volume up to a depth of 10 mm. The compact BTB dual-mode ultrasonic transducer may be used for subcutaneous thermal ablation and monitoring, minimally invasive surgery, and other clinical applications, all with ultrasound only.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
| | - Hyunhee Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Kyungmin Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Yeonggeun Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jinhee Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Dasom Heo
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Jinhwan Baik
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
14
|
Murat C, Palandoken M, Kaya I, Kaya A. A novel ISM band reflector type applicator design for microwave ablation systems. Electromagn Biol Med 2021; 40:286-300. [PMID: 33583285 DOI: 10.1080/15368378.2021.1885434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this paper, a radiation performance improved novel applicator is proposed which is called as reflector type microwave applicator as a part of microwave ablation (MWA) system operating at 2.45 GHz with experimentally measured bandwidth of 300 MHz in Industrial Scientific Medical (ISM) band for the local extermination of tumor with highly localized microwave power. The design principle of MW applicator is based on the structural formation of coaxial transmission line fed dielectric loaded with the metallic circular reflector for the near field energy concentration inside the tumorous tissue. To generate localized electromagnetic waves, a novel reflector type microwave applicator is designed by placing an aluminum disk near the 10 mm dielectric radiator section. The proposed applicator design has been numerically studied with finite integration technique (FIT) in CST Microwave Studio to develop the near field radiation pattern affecting the ablation level of tumorous tissue. In the light of performed numerical calculations, maximum SAR (Specific Absorption Rate) value on 1.76 g tumorous sample can be achieved to 208 W/kg under 15 W microwave power accepted by proposed probe. The experimental results confirm that proposed applicator can be utilized highly localized MWA applicator for cancer treatment hence the surface temperature of cylindrical shaped tumor sample which has the dimensions of 14.4 mm diameter and 8 mm height reaches from 25 to 68.3°C in 10 min.
Collapse
Affiliation(s)
- Caner Murat
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Merih Palandoken
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Irfan Kaya
- Department of Mechanical Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Adnan Kaya
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
15
|
Mohtashami Y, Behdad N, Hagness SC. Ex Vivo Performance of a Flexible Microwave Ablation Antenna. IEEE Trans Biomed Eng 2020; 68:1680-1689. [PMID: 33125323 DOI: 10.1109/tbme.2020.3033986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE In this study, we investigate the performance of a flexible microwave ablation antenna for generating localized ablation zones. METHODS We designed a helical dipole antenna to operate at 1.9 GHz in egg white and liver. Semi-rigid prototypes of the antenna were fabricated and used to perform ablation experiments in egg white and perfused liver. Pulsed and continuous-wave power deliveries at different power levels were used. Flexible prototypes of the antenna were fabricated and used to perform ex vivo ablation experiments in perfused liver. RESULTS Pulsing was effective in reducing the shaft heating of semi-rigid cables. The antenna was capable of producing substantial ablation zones in perfused liver. Typical diameters (perpendicular to the antenna axis) of generated ablation zones with semi-rigid antennas in egg white and perfused liver were 30 mm and 20 mm, respectively. The flexible antenna had a good impedance match while bent. Average diameter of generated ablation zones by the flexible antenna with 10-W continuous-wave experiments in perfused liver was 26 mm. No significant difference was observed between the performances of semi-rigid and flexible prototypes. CONCLUSION The flexible helical dipole antenna is capable of maintaining its good impedance match while bent and can generate substantial ablation zones in presence of perfusion. SIGNIFICANCE The proposed flexible antenna is promising for minimally invasive treatment of tumors that are otherwise inaccessible by rigid antennas. One example is lung where a catheter-based deployment of the flexible antenna into the tumor via airways may substantially reduce risks associated with using rigid antennas.
Collapse
|
16
|
Trujillo M, Prakash P, Faridi P, Radosevic A, Curto S, Burdio F, Berjano E. How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices. Int J Hyperthermia 2020; 37:1131-1138. [PMID: 32996794 PMCID: PMC7714001 DOI: 10.1080/02656736.2020.1823022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose: To compare the size of the coagulation (CZ) and periablational (PZ) zones created with two commercially available devices in clinical use for radiofrequency (RFA) and microwave ablation (MWA), respectively. Methods: Computer models were used to simulate RFA with a 3-cm Cool-tip applicator and MWA with an Amica-Gen applicator. The Arrhenius model was used to compute the damage index (Ω). CZ was considered when Ω> 4.6 (>99% of damaged cells). Regions with 0.6<Ω< 2.1 were considered as the PZ (tissue that has undergone moderate sub-ablative hyperthermia). The ratio of PZ volume to CZ volume (PZ/CZ) was regarded as a measure of performance, since a low value implies achieving a large CZ while keeping the PZ small. Results: Ten-min RFA (51 W) created smaller periablational zones than 10-min MWA (11.3 cm3 vs. 17.2 22.9 cm3, for 60 100 W MWA, respectively). Prolonging duration from 5 to 10 min increased the PZ in MWA more than in RFA (2.7 cm3 for RFA vs. 8.3–11.9 cm3 for 60–100 W MWA, respectively). PZ/CZ for RFA were relatively high (65–69%), regardless of ablation time, while those for MWA were highly dependent on the duration (increase of up to 25% between 5 and 10 min) and on the applied power (smaller values as power was raised, 102% for 60 W vs. 81% for 100 W, both for 10 min). The lowest PZ/CZ across all settings was 56%, obtained with 100 W-5 min MWA. Conclusions: Although RFA creates smaller periablational zones than MWA, 100 W-5 min MWA provides the lowest PZ/CZ.
Collapse
Affiliation(s)
- Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Pegah Faridi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Sergio Curto
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
17
|
Faridi P, Keselman P, Fallahi H, Prakash P. Experimental assessment of microwave ablation computational modeling with MR thermometry. Med Phys 2020; 47:3777-3788. [PMID: 32506550 DOI: 10.1002/mp.14318] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Computational models are widely used during the design and characterization of microwave ablation (MWA) devices, and have been proposed for pretreatment planning. Our objective was to assess three-dimensional (3D) transient temperature and ablation profiles predicted by MWA computational models with temperature profiles measured experimentally using magnetic resonance (MR) thermometry in ex vivo bovine liver. MATERIALS AND METHODS We performed MWA in ex vivo tissue under MR guidance using a custom, 2.45 GHz water-cooled applicator. MR thermometry data were acquired for 2 min prior to heating, during 5-10 min microwave exposures, and for 3 min following heating. Fiber-optic temperature sensors were used to validate the accuracy of MR temperature measurements. A total of 13 ablation experiments were conducted using 30-50 W applied power at the applicator input. MWA computational models were implemented using the finite element method, and incorporated temperature-dependent changes in tissue physical properties. Model-predicted ablation zone extents were compared against MRI-derived Arrhenius thermal damage maps using the Dice similarity coefficient (DSC). RESULTS Prior to heating, the observed standard deviation of MR temperature data was in the range of 0.3-0.7°C. Mean absolute error between MR temperature measurements and fiber-optic temperature probes during heating was in the range of 0.5-2.8°C. The mean DSC between model-predicted ablation zones and MRI-derived Arrhenius thermal damage maps for 13 experimental set-ups was 0.95. When comparing simulated and experimentally (i.e. using MRI) measured temperatures, the mean absolute error (MAE %) relative to maximum temperature change was in the range 5%-8.5%. CONCLUSION We developed a system for characterizing 3D transient temperature and ablation profiles with MR thermometry during MWA in ex vivo liver tissue, and applied the system for experimental validation of MWA computational models.
Collapse
Affiliation(s)
- Pegah Faridi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Paul Keselman
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hojjatollah Fallahi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
18
|
Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas. ELECTRONICS 2020. [DOI: 10.3390/electronics9030535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is worldwide known that the most common type of cancer among women is breast cancer. Traditional procedures involve surgery, chemotherapy and radiation therapy; however, these treatments are invasive and have serious side effects. For this reason, minimally invasive thermal treatments like microwave ablation are being considered. In this study, thermal behavior of three types of slot-coaxial antennas for breast cancer microwave ablation is presented. By using finite element method (FEM), all antennas were modeled to estimate the heat transfer in breast tumor tissue surrounded by healthy breast tissue. Experimentation was carried out by using the antennas inserted inside sphere-shaped-tumor phantoms with two different diameters, 1.0 and 1.5 cm. A microwave radiation system was used to apply microwave energy to each designed antenna, which were located into the phantom. A non-interfering thermometry system was used to measure the temperature increase during the experimentation. Temperature increases, recorded by the thermal sensors placed inside the tumor phantom surrounded by healthy breast phantom, were used to validate the FEM models. The results conclude that, in all the cases, after 240 s, the three types of coaxial slot antenna reached the temperature needed produce hyperthermia of the tumor volume considered in this paper.
Collapse
|
19
|
Numerical Analysis of Human Cancer Therapy Using Microwave Ablation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microwave ablation is one type of hyperthermia treatment of cancer that involves heating tumor cells. This technique uses electromagnetic wave effects to kill cancer cells. A micro-coaxial antenna is introduced into the biological tissue. The radiation emitted by the antenna is absorbed by the tissue and leads to the heating of cancer cells. The diffuse increase in temperature should reach a certain value to achieve the treatment of cancer cells but it should be less than a certain other value to avoid damaging normal cells. This is why hyperthermia treatment should be carefully monitored. A numerical simulation is useful and may provide valuable information. The bio-heat equation and Maxwell’s equations are solved using the finite element method. Electro-thermal effects, temperature distribution profile, specific absorption rate (SAR), and fraction of necrotic tissue within cancer cells are analyzed. The results show that SAR and temperature distribution are strongly affected by input microwave power. High microwave power causes a high SAR value and raises the temperature above 50 °C, which may destroy healthy cells. It is revealed that with a power of 10 W, the tumor cells will be killed without damaging the surrounding tissue.
Collapse
|
20
|
Abstract
Microwave (MW) ablation has emerged as a minimally invasive therapeutic modality and is in clinical use for treatment of unresectable tumors and cardiac arrhythmias, neuromodulation, endometrial ablation, and other applications. Components of image-guided MW ablation systems include high-power MW sources, ablation applicators that deliver power from the generator to the target tissue, cooling systems, energy-delivery control algorithms, and imaging guidance systems tailored to specific clinical indications. The applicator incorporates a MW antenna that radiates MW power into the surrounding tissue. A variety of antenna designs have been developed for MW ablation with the objective of efficiently transferring MW power to tissue, with a radiation pattern well matched to the size and shape of the targeted tissue. Here, we survey advances in percutaneous, endocavitary, and endoscopic antenna designs as an integral element of MW ablation applicators for a diverse set of clinical applications.
Collapse
Affiliation(s)
- Hojjatollah Fallahi
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas
| |
Collapse
|
21
|
Kemeny N, Kurilova I, Li J, Camacho JC, Sofocleous CT. Liver-Directed and Systemic Therapies for Colorectal Cancer Liver Metastases. Cardiovasc Intervent Radiol 2019; 42:1240-1254. [PMID: 31312902 DOI: 10.1007/s00270-019-02284-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
|
22
|
Strigari L, Minosse S, D'Alessio D, Farina L, Cavagnaro M, Cassano B, Pinto R, Vallati G, Lopresto V. Microwave thermal ablation using CT-scanner for predicting the variation of ablated region over time: advantages and limitations. Phys Med Biol 2019; 64:115021. [PMID: 30995620 DOI: 10.1088/1361-6560/ab1a67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims at investigating in real-time the structural and dynamical changes occurring in an ex vivo tissue during a microwave thermal ablation (MTA) procedure. The experimental set-up was based on ex vivo liver tissue inserted in a dedicated box, in which 3 fibre-optic (FO) temperature probes were introduced to measure the temperature increase over time. Computed tomography (CT) imaging technique was exploited to experimentally study in real-time the Hounsfield Units (HU) modification occurring during MTA. The collected image data were processed with a dedicated MATLAB tool, developed to analyse the FO positions and HU modifications from the CT images acquired over time before and during the ablation procedures. The radial position of a FO temperature probe (rFO) and the value of HU in the region of interest (ROI) containing the probe (HUo), along with the corresponding value of HU in the contralateral ROI with respect to the MTA antenna applicator (HUc), were determined and registered over time during and after the MTA procedure. Six experiments were conducted to confirm results. The correlation between temperature and the above listed predictors was investigated using univariate and multivariate analysis. At the multivariate analysis, the time, rFO and HUc resulted significant predictive factors of the logarithm of measured temperature. The correlation between predicted and measured temperatures was 0.934 (p < 0.001). The developed tool allows identifying and registering the image-based parameters useful for predicting the temperature variation over time in each investigated voxel by taking into consideration the HU variation.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, IFO, via Elio Chianesi, 53, 00144, Rome, Italy. Current address: Department of Medical Physics, St. Orsola-Malpighi University Hospital, via Massarenti 9 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fallahi H, Clausing D, Shahzad A, O’Halloran M, Dennedy MC, Prakash P. Microwave antennas for thermal ablation of benign adrenal adenomas. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab068b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Solbiati M, Muglia R, Goldberg SN, Ierace T, Rotilio A, Passera KM, Marre I, Solbiati L. A novel software platform for volumetric assessment of ablation completeness. Int J Hyperthermia 2019; 36:337-343. [PMID: 30729818 DOI: 10.1080/02656736.2019.1569267] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To retrospectively evaluate the accuracy of a novel software platform for assessing completeness of percutaneous thermal ablations. MATERIALS & METHODS Ninety hepatocellular carcinomas (HCCs) in 50 patients receiving percutaneous ultrasound-guided microwave ablation (MWA) that resulted in apparent technical success at 24-h post-ablation computed tomography (CT) and with ≥1-year imaging follow-up were randomly selected from a 320 HCC ablation database (2010-2016). Using a novel volumetric registration software, pre-ablation CT volumes of the HCCs without and with the addition of a 5 mm safety margin, and corresponding post-ablation necrosis volumes were segmented, co-registered and overlapped. These were compared to visual side-by-side inspection of axial images. RESULTS At 1-year follow-up, CT showed absence of local tumor progression (LTP) in 69/90 (76.7%) cases and LTP in 21/90 (23.3%). For HCCs classified by the software as "incomplete tumor treatments", LTP developed in 13/17 (76.5%) and all 13 (100%) of these LTPs occurred exactly where residual non-ablated tumor was identified by retrospective software analysis. HCCs classified as "complete ablation with <100% 5 mm ablative margins" had LTP in 8/49 (16.3%), while none of 24 HCCs with "complete ablation including 100% 5 mm ablative margins" had LTP. Differences in LTP between both partially ablated HCCs vs completely ablated HCCs, and ablated HCCs with <100% vs with 100% 5 mm margins were statistically significant (p < .0001 and p = .036, respectively). Thus, 13/21 (61.9%) incomplete tumor treatments could have been detected immediately, were the software available at the time of ablation. CONCLUSIONS A novel software platform for volumetric assessment of ablation completeness may increase the detection of incompletely ablated tumors, thereby holding the potential to avoid subsequent recurrences.
Collapse
Affiliation(s)
| | - Riccardo Muglia
- b Department of Biomedical Sciences , Humanitas University , Rozzano , Milan , Italy
| | - S Nahum Goldberg
- c Department of Radiology , Hadassah Hebrew University Medical Centre , Jerusalem , Israel
- d Department of Radiology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Tiziana Ierace
- e Department of Radiology , Humanitas Clinical and Research Center , Rozzano , Milan , Italy
| | | | | | | | - Luigi Solbiati
- b Department of Biomedical Sciences , Humanitas University , Rozzano , Milan , Italy
- e Department of Radiology , Humanitas Clinical and Research Center , Rozzano , Milan , Italy
| |
Collapse
|
25
|
Scapaticci R, Lopresto V, Pinto R, Cavagnaro M, Crocco L. Monitoring Thermal Ablation via Microwave Tomography: An Ex Vivo Experimental Assessment. Diagnostics (Basel) 2018; 8:E81. [PMID: 30563280 PMCID: PMC6316129 DOI: 10.3390/diagnostics8040081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/19/2022] Open
Abstract
Thermal ablation treatments are gaining a lot of attention in the clinics thanks to their reduced invasiveness and their capability of treating non-surgical patients. The effectiveness of these treatments and their impact in the hospital's routine would significantly increase if paired with a monitoring technique able to control the evolution of the treated area in real-time. This is particularly relevant in microwave thermal ablation, wherein the capability of treating larger tumors in a shorter time needs proper monitoring. Current diagnostic imaging techniques do not provide effective solutions to this issue for a number of reasons, including economical sustainability and safety. Hence, the development of alternative modalities is of interest. Microwave tomography, which aims at imaging the electromagnetic properties of a target under test, has been recently proposed for this scope, given the significant temperature-dependent changes of the dielectric properties of human tissues induced by thermal ablation. In this paper, the outcomes of the first ex vivo experimental study, performed to assess the expected potentialities of microwave tomography, are presented. The paper describes the validation study dealing with the imaging of the changes occurring in thermal ablation treatments. The experimental test was carried out on two ex vivo bovine liver samples and the reported results show the capability of microwave tomography of imaging the transition between ablated and untreated tissue. Moreover, the discussion section provides some guidelines to follow in order to improve the achievable performances.
Collapse
Affiliation(s)
- Rosa Scapaticci
- National Research Council of Italy-Institute for the Electromagnetic Sensing of the Environment, 80124 Napoli, Italy.
| | - Vanni Lopresto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Division of Health Protection Technologies, Casaccia Research Center, 00123 Rome, Italy.
| | - Rosanna Pinto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Division of Health Protection Technologies, Casaccia Research Center, 00123 Rome, Italy.
| | - Marta Cavagnaro
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy.
| | - Lorenzo Crocco
- National Research Council of Italy-Institute for the Electromagnetic Sensing of the Environment, 80124 Napoli, Italy.
| |
Collapse
|
26
|
Vorländer C, David Kohlhase K, Korkusuz Y, Erbelding C, Luboldt W, Baser I, Korkusuz H. Comparison between microwave ablation and bipolar radiofrequency ablation in benign thyroid nodules: differences in energy transmission, duration of application and applied shots. Int J Hyperthermia 2018; 35:216-225. [DOI: 10.1080/02656736.2018.1489984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Christian Vorländer
- Department of Endocrine Surgery, Burgerhospital Frankfurt, Frankfurt, Germany
| | | | - Yücel Korkusuz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Erbelding
- Department of Nuclear Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Ilknur Baser
- German Center of Thermoablation, Frankfurt, Germany
| | | |
Collapse
|
27
|
Ge M, Jiang H, Huang X, Zhou Y, Zhi D, Zhao G, Chen Y, Wang L, Qiu B. A multi-slot coaxial microwave antenna for liver tumor ablation. Phys Med Biol 2018; 63:175011. [PMID: 30102247 DOI: 10.1088/1361-6560/aad9c5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a multi-slot coaxial antenna with a pi impedance matching network for liver tumor ablation. A multi-slot radiating probe was optimized by using the modified genetic algorithm to produce a near-spherical heating zone with significantly increased possibility of conformal treatment. A pi impedance matching network was designed to match the feeding transmission line and antenna without increasing antenna size. The reflection coefficient, ablation zone shape, specific absorption rate, and temperature were determined by a finite element electromagnetic simulation using COMSOL. Experimental validations were designed to evaluate the proposed antenna. Both simulation and experimental results show that the proposed antenna has the ability for liver tumor ablation, which offers faster heating rates in the heating center and more localized heating distribution than the conventional single-slot antenna.
Collapse
Affiliation(s)
- Mengke Ge
- Centers for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, People's Republic of China. These authors contributed equally to this work and should be considered co-first authors
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Feasibility of Using a Novel 2.45 GHz Double Short Distance Slot Coaxial Antenna for Minimally Invasive Cancer Breast Microwave Ablation Therapy: Computational Model, Phantom, and In Vivo Swine Experimentation. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:5806753. [PMID: 29854360 PMCID: PMC5964617 DOI: 10.1155/2018/5806753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Microwave ablation (MWA) by using coaxial antennas is a promising alternative for breast cancer treatment. A double short distance slot coaxial antenna as a newly optimized applicator for minimally invasive treatment of breast cancer is proposed. To validate and to analyze the feasibility of using this method in clinical treatment, a computational model, phantom, and breast swine in vivo experimentation were carried out, by using four microwave powers (50 W, 30 W, 20 W, and 10 W). The finite element method (FEM) was used to develop the computational model. Phantom experimentation was carried out in breast phantom. The in vivo experimentation was carried out in a 90 kg swine sow. Tissue damage was estimated by comparing control and treated micrographs of the porcine mammary gland samples. The coaxial slot antenna was inserted in swine breast glands by using image-guided ultrasound. In all cases, modeling, in vivo and phantom experimentation, and ablation temperatures (above 60°C) were reached. The in vivo experiments suggest that this new MWA applicator could be successfully used to eliminate precise and small areas of tissue (around 20–30 mm2). By modulating the power and time applied, it may be possible to increase/decrease the ablation area.
Collapse
|
29
|
Matthew Hawkins C, Towbin AJ, Roebuck DJ, Monroe EJ, Gill AE, Thakor AS, Towbin RB, Cahill AM, Lungren MP. Role of interventional radiology in managing pediatric liver tumors : Part 2: percutaneous interventions. Pediatr Radiol 2018; 48:565-580. [PMID: 29396792 DOI: 10.1007/s00247-018-4072-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/22/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Hepatoblastoma and hepatocellular carcinoma (HCC) are the most common pediatric liver malignancies, with hepatoblastoma occurring more commonly in younger children and HCC occurring more commonly in older children and adolescents. Although surgical resection (including transplant when necessary) and systemic chemotherapy have improved overall survival rate for hepatoblastoma to approximately 80% from 30%, a number of children with this tumor type are not eligible for operative treatment. In contradistinction, pediatric HCC continues to carry a dismal prognosis with an overall 5-year survival rate of 30%. The Paediatric Hepatic International Tumour Trial (PHITT) is an international trial aimed at evaluating both existing and emerging oncologic therapies for primary pediatric liver tumors. Interventional radiology offers a number of minimally invasive procedures that aid in diagnosis and therapy of pediatric liver tumors. For diagnosis, the PHITT biopsy guidelines emphasize and recommend percutaneous image-guided tumor biopsy. Additionally, both percutaneous and endovascular procedures provide therapeutic alternatives that have been, to this point, only minimally utilized in the pediatric population. Specifically, percutaneous ablation offers a number of cytotoxic technologies that can potentially eradicate disease or downstage children with unresectable disease. Percutaneous portal vein embolization is an additional minimally invasive procedure that might be useful to induce remnant liver hypertrophy prior to extended liver resection in the setting of a primary liver tumor. PHITT offers an opportunity to collect data from children treated with these emerging therapeutic options across the world. The purpose of this manuscript is to describe the potential role of minimally invasive percutaneous transhepatic procedures, as well as review the existing data largely stemming from the adult HCC experience.
Collapse
Affiliation(s)
- C Matthew Hawkins
- Department of Radiology and Imaging Sciences, Division of Interventional Radiology and Image-guided Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Radiology and Imaging Sciences, Division of Pediatric Radiology, Emory University School of Medicine, Children's Healthcare of Atlanta at Egleston, 1364 Clifton Road NE, Suite D112, Atlanta, GA, 30322, USA.
| | - Alexander J Towbin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Derek J Roebuck
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Eric J Monroe
- Department of Radiology, Division of Interventional Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Anne E Gill
- Department of Radiology and Imaging Sciences, Division of Interventional Radiology and Image-guided Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Division of Pediatric Radiology, Emory University School of Medicine, Children's Healthcare of Atlanta at Egleston, 1364 Clifton Road NE, Suite D112, Atlanta, GA, 30322, USA
| | - Avnesh S Thakor
- Department of Radiology, Lucille Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Richard B Towbin
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Anne Marie Cahill
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew P Lungren
- Department of Radiology, Lucille Packard Children's Hospital, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Lopresto V, Strigari L, Farina L, Minosse S, Pinto R, D’Alessio D, Cassano B, Cavagnaro M. CT-based investigation of the contraction ofex vivotissue undergoing microwave thermal ablation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aaaf07] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Deshazer G, Hagmann M, Merck D, Sebek J, Moore KB, Prakash P. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Med Phys 2017; 44:4859-4868. [DOI: 10.1002/mp.12359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Garron Deshazer
- Department of Radiation Oncology; Siteman Cancer Center; Barnes-Jewish Hospital & Washington University School of Medicine; 4921 Parkview Pl St. Louis MO 63110 USA
- Department of Diagnostic Imaging; Rhode Island Hospital; 593 Eddy Street Providence RI 02903 USA
| | - Mark Hagmann
- Perseon Medical; 2188 W 2200 S Salt Lake City UT 84119 USA
| | - Derek Merck
- Department of Diagnostic Imaging; Rhode Island Hospital; 593 Eddy Street Providence RI 02903 USA
| | - Jan Sebek
- Department of Electrical and Computer Engineering; Kansas State University; Manhattan KS 66506 USA
| | - Kent B. Moore
- Perseon Medical; 2188 W 2200 S Salt Lake City UT 84119 USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering; Kansas State University; Manhattan KS 66506 USA
| |
Collapse
|
32
|
Lopresto V, Pinto R, Farina L, Cavagnaro M. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning. Med Eng Phys 2017. [PMID: 28647287 DOI: 10.1016/j.medengphy.2017.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model.
Collapse
Affiliation(s)
- Vanni Lopresto
- ENEA, Division of Health Protection Technologies, Casaccia Research Centre, Rome, Italy.
| | - Rosanna Pinto
- ENEA, Division of Health Protection Technologies, Casaccia Research Centre, Rome, Italy
| | | | | |
Collapse
|
33
|
Nguyen PT, Abbosh A, Crozier S. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization. IEEE Trans Biomed Eng 2017; 64:1335-1344. [DOI: 10.1109/tbme.2016.2602233] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Sartori S, Di Vece F, Ermili F, Tombesi P. Laser ablation of liver tumors: An ancillary technique, or an alternative to radiofrequency and microwave? World J Radiol 2017; 9:91-96. [PMID: 28396723 PMCID: PMC5368631 DOI: 10.4329/wjr.v9.i3.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is currently the most popular and used ablation modality for the treatment of non surgical patients with primary and secondary liver tumors, but in the last years microwave ablation (MWA) is being technically improved and widely rediscovered for clinical use. Laser thermal ablation (LTA) is by far less investigated and used than RFA and MWA, but the available data on its effectiveness and safety are quite good and comparable to those of RFA and MWA. All the three hyperthermia-based ablative techniques, when performed by skilled operators, can successfully treat all liver tumors eligible for thermal ablation, and to date in most centers of interventional oncology or interventional radiology the choice of the technique usually depends on the physician's preference and experience, or technical availability. However, RFA, MWA, and LTA have peculiar advantages and limitations that can make each of them more suitable than the other ones to treat patients and tumors with different characteristics. When all the three thermal ablation techniques are available, the choice among RFA, MWA, and LTA should be guided by their advantages and disadvantages, number, size, and location of the liver nodules, and cost-saving considerations, in order to give patients the best treatment option.
Collapse
|
35
|
Amabile C, Ahmed M, Solbiati L, Meloni MF, Solbiati M, Cassarino S, Tosoratti N, Nissenbaum Y, Ierace T, Goldberg SN. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int J Hyperthermia 2017; 33:34-42. [PMID: 27443519 DOI: 10.1080/02656736.2016.1196830] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/30/2016] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The aim of this study was to compare the performance of a microwave ablation (MWA) apparatus in preclinical and clinical settings. MATERIALS AND METHOD The same commercial 2.45 GHz MWA apparatus was used throughout this study. In total 108 ablations at powers ranging from 20 to 130 W and lasting from 3 to 30 min were obtained on ex vivo bovine liver; 28 ablations at 60 W, 80 W and 100 W lasting 5 and 10 min were then obtained in an in vivo swine model. Finally, 32 hepatocellular carcinomas (HCCs) and 19 liver metastases in 46 patients were treated percutaneously by administering 60 W for either 5 or 10 min. The treatment outcome was characterised in terms of maximum longitudinal and transversal axis of the induced ablation zone. RESULTS Ex vivo ablation volumes increased linearly with deposited energy (r2 = 0.97), with higher sphericity obtained at lower power for longer ablation times. Larger ablations were obtained on liver metastases compared to HCCs treated with 60 W for 10 min (p < 0.003), as ablation diameters were 4.1 ± 0.6 cm for metastases and 3.7 ± 0.3 cm for HCC, with an average sphericity index of 0.70 ± 0.04. The results on the in vivo swine model at 60 W were substantially smaller than the ex vivo and clinical results (either populations). No statistically significant difference was observed between ex vivo results at 60 W and HCC results (p > 0.08). CONCLUSIONS For the selected MW ablation device, ex vivo data on bovine liver was more predictive of the actual clinical performance on liver malignancies than an in vivo porcine model. Equivalent MW treatments yielded a significantly different response for HCC and metastases at higher deposited energy, suggesting that outcomes are not only device-specific but must also be characterised on a tissue-by-tissue basis.
Collapse
Affiliation(s)
| | - Muneeb Ahmed
- b Department of Radiology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts , USA
| | - Luigi Solbiati
- c Department of Interventional Oncologic Radiology , General Hospital of Busto Arsizio , Busto Arsizio , Italy
| | | | - Marco Solbiati
- e Department of Electronics, Information and Bioengineering , Politecnico di Milano , Milan , Italy
| | | | | | - Yitzhak Nissenbaum
- e Department of Electronics, Information and Bioengineering , Politecnico di Milano , Milan , Italy
| | - Tiziana Ierace
- c Department of Interventional Oncologic Radiology , General Hospital of Busto Arsizio , Busto Arsizio , Italy
| | - S Nahum Goldberg
- b Department of Radiology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts , USA
- f Department of Radiology , Hadassah Hebrew University Medical Centre , Jerusalem , Israel
| |
Collapse
|
36
|
Sartori S, Tombesi P, Di Vece F. Thermal ablation in colorectal liver metastases: Lack of evidence or lack of capability to prove the evidence? World J Gastroenterol 2017. [PMID: 27053843 DOI: 10.3748/wjg.v22.il3.3511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many studies suggest that combined multimodality treatments including ablative therapies may achieve better outcomes than systemic chemotherapy alone in patients with colorectal liver metastases. Nevertheless, ablative therapies are not yet considered as effective options because their efficacy has never been proved by randomized controlled trials (RCT). However, there are in literature no trials that failed in demonstrating the effectiveness of ablative treatments: what are lacking, are the trials. All the attempts to organize phase III studies on this topic failed as a result of non accrual. Just one prospective RCT comparing radiofrequency ablation combined with systemic chemotherapy vs chemotherapy alone has been published. It was designed as a phase III study, but it was closed early because of slow accrual, and was downscaled to phase II study, with the consequent limits in drawing definite conclusions on the benefit of combined treatment. However, the combination treatment met the primary end point of the study and obtained a significantly higher 3-year progression-free survival than systemic chemotherapy alone. It is very unlikely that ultimate efficacy of ablation treatments will ever be tested again, and the best available evidence points toward a benefit for the combination strategy using ablative treatments and chemotherapy.
Collapse
Affiliation(s)
- Sergio Sartori
- Sergio Sartori, Paola Tombesi, Francesca Di Vece, Section of Interventional Ultrasound, St Anna Hospital, 44100 Ferrara, Italy
| | - Paola Tombesi
- Sergio Sartori, Paola Tombesi, Francesca Di Vece, Section of Interventional Ultrasound, St Anna Hospital, 44100 Ferrara, Italy
| | - Francesca Di Vece
- Sergio Sartori, Paola Tombesi, Francesca Di Vece, Section of Interventional Ultrasound, St Anna Hospital, 44100 Ferrara, Italy
| |
Collapse
|
37
|
Shyn PB, Bird JR, Koch RM, Tatli S, Levesque VM, Catalano PJ, Silverman SG. Hepatic Microwave Ablation Zone Size: Correlation with Total Energy, Net Energy, and Manufacturer-Provided Chart Predictions. J Vasc Interv Radiol 2016; 27:1389-1396. [DOI: 10.1016/j.jvir.2016.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023] Open
|
38
|
Ryan TP, Brace CL. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int J Hyperthermia 2016; 33:3-14. [DOI: 10.1080/02656736.2016.1214884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Christopher L. Brace
- Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
39
|
Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:4846738. [PMID: 27642364 PMCID: PMC5013241 DOI: 10.1155/2016/4846738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 06/30/2016] [Indexed: 11/21/2022]
Abstract
This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.
Collapse
|
40
|
Lopresto V, Pinto R, Farina L, Cavagnaro M. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances. Int J Hyperthermia 2016; 33:83-100. [PMID: 27431328 DOI: 10.1080/02656736.2016.1214883] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microwave thermal ablation (MTA) is a minimally invasive therapeutic technique aimed at destroying pathologic tissues through a very high temperature increase induced by the absorption of an electromagnetic field at microwave (MW) frequencies. Open problems, which are delaying MTA applications in clinical practice, are mainly linked to the extremely high temperatures, up to 120 °C, reached by the tissue close to the antenna applicator, as well as to the ability of foreseeing and controlling the shape and dimension of the thermally ablated area. Recent research was devoted to the characterisation of dielectric, thermal and physical properties of tissue looking at their changes with the increasing temperature, looking for possible developments of reliable, automatic and personalised treatment planning. In this paper, a review of the recently obtained results as well as new unpublished data will be presented and discussed.
Collapse
Affiliation(s)
- V Lopresto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - R Pinto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - L Farina
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| | - M Cavagnaro
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
41
|
Amabile C, Farina L, Lopresto V, Pinto R, Cassarino S, Tosoratti N, Goldberg SN, Cavagnaro M. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model. Int J Hyperthermia 2016; 33:101-109. [DOI: 10.1080/02656736.2016.1208292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Laura Farina
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome
| | - Vanni Lopresto
- Division of Health Protection Technologies, Casaccia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Rosanna Pinto
- Division of Health Protection Technologies, Casaccia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | | | - S. Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Marta Cavagnaro
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome
| |
Collapse
|
42
|
Deshazer G, Prakash P, Merck D, Haemmerich D. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int J Hyperthermia 2016; 33:74-82. [PMID: 27431040 DOI: 10.1080/02656736.2016.1206630] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION For computational models of microwave ablation (MWA), knowledge of the antenna design is necessary, but the proprietary design of clinical applicators is often unknown. We characterised the specific absorption rate (SAR) during MWA experimentally and compared to a multi-physics simulation. METHODS An infrared (IR) camera was used to measure SAR during MWA within a split ex vivo liver model. Perseon Medical's short-tip (ST) or long-tip (LT) MWA antenna were placed on top of a tissue sample (n = 6), and microwave power (15 W) was applied for 6 min, while intermittently interrupting power. Tissue surface temperature was recorded via IR camera (3.3 fps, 320 × 240 resolution). SAR was calculated intermittently based on temperature slope before and after power interruption. Temperature and SAR data were compared to simulation results. RESULTS Experimentally measured SAR changed considerably once tissue temperatures exceeded 100 °C, contrary to simulation results. The ablation zone diameters were 1.28 cm and 1.30 ± 0.03 cm (transverse), and 2.10 cm and 2.66 ± -0.22 cm (axial), for simulation and experiment, respectively. The average difference in temperature between the simulation and experiment were 5.6 °C (ST) and 6.2 °C (LT). Dice coefficients for 1000 W/kg SAR iso-contour were 0.74 ± 0.01 (ST) and 0.77 (± 0.03) (LT), suggesting good agreement of SAR contours. CONCLUSION We experimentally demonstrated changes in SAR during MWA ablation, which were not present in simulation, suggesting inaccuracies in dielectric properties. The measured SAR may be used in simplified computer simulations to predict tissue temperature when the antenna geometry is unknown.
Collapse
Affiliation(s)
- Garron Deshazer
- a Department of Diagnostic Imaging , Rhode Island Hospital , Providence , Rhode Island , USA
| | - Punit Prakash
- b Department of Electrical and Computer Engineering , Kansas State University , Manhattan , Kansas , USA
| | - Derek Merck
- a Department of Diagnostic Imaging , Rhode Island Hospital , Providence , Rhode Island , USA
| | - Dieter Haemmerich
- c Department of Pediatrics , Medical University of South Carolina , Charleston , South Carolina , USA
| |
Collapse
|
43
|
Sebek J, Curto S, Bortel R, Prakash P. Analysis of minimally invasive directional antennas for microwave tissue ablation. Int J Hyperthermia 2016; 33:51-60. [DOI: 10.1080/02656736.2016.1195519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
- Department of Circuit Theory, Czech Technical University, Prague, Czech Republic
| | - Sergio Curto
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Radoslav Bortel
- Department of Circuit Theory, Czech Technical University, Prague, Czech Republic
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
44
|
Sebek J, Albin N, Bortel R, Natarajan B, Prakash P. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Med Phys 2016; 43:2649. [DOI: 10.1118/1.4947482] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
45
|
Du Y, Zhang L, Sang L, Wu D. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy. Technol Health Care 2016; 24 Suppl 2:S675-82. [PMID: 27177098 DOI: 10.3233/thc-161195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.
Collapse
Affiliation(s)
- Yongxing Du
- Inner Mongolia University of Science and Technology, Baotou, Mongolia, China
| | - Lingze Zhang
- Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lulu Sang
- Inner Mongolia University of Science and Technology, Baotou, Mongolia, China
| | - Daocheng Wu
- Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Sartori S, Tombesi P, Di Vece F. Thermal ablation in colorectal liver metastases: Lack of evidence or lack of capability to prove the evidence? World J Gastroenterol 2016; 22:3511-3515. [PMID: 27053843 PMCID: PMC4814637 DOI: 10.3748/wjg.v22.i13.3511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Many studies suggest that combined multimodality treatments including ablative therapies may achieve better outcomes than systemic chemotherapy alone in patients with colorectal liver metastases. Nevertheless, ablative therapies are not yet considered as effective options because their efficacy has never been proved by randomized controlled trials (RCT). However, there are in literature no trials that failed in demonstrating the effectiveness of ablative treatments: what are lacking, are the trials. All the attempts to organize phase III studies on this topic failed as a result of non accrual. Just one prospective RCT comparing radiofrequency ablation combined with systemic chemotherapy vs chemotherapy alone has been published. It was designed as a phase III study, but it was closed early because of slow accrual, and was downscaled to phase II study, with the consequent limits in drawing definite conclusions on the benefit of combined treatment. However, the combination treatment met the primary end point of the study and obtained a significantly higher 3-year progression-free survival than systemic chemotherapy alone. It is very unlikely that ultimate efficacy of ablation treatments will ever be tested again, and the best available evidence points toward a benefit for the combination strategy using ablative treatments and chemotherapy.
Collapse
|
47
|
Poggi G, Tosoratti N, Montagna B, Picchi C. Microwave ablation of hepatocellular carcinoma. World J Hepatol 2015; 7:2578-2589. [PMID: 26557950 PMCID: PMC4635143 DOI: 10.4254/wjh.v7.i25.2578] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA.
Collapse
|
48
|
Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation--what should you use and why? Radiographics 2015; 10:47-57. [PMID: 25208284 DOI: 10.1053/j.tvir.2007.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Image-guided thermal ablation is an evolving and growing treatment option for patients with malignant disease of multiple organ systems. Treatment indications have been expanding to include benign tumors as well. Specifically, the most prevalent indications to date have been in the liver (primary and metastatic disease, as well as benign tumors such as hemangiomas and adenomas), kidney (primarily renal cell carcinoma, but also benign tumors such as angiomyolipomas and oncocytomas), lung (primary and metastatic disease), and soft tissue and/or bone (primarily metastatic disease and osteoid osteomas). Each organ system has different underlying tissue characteristics, which can have profound effects on the resulting thermal changes and ablation zone. Understanding these issues is important for optimizing clinical results. In addition, thermal ablation technology has evolved rapidly during the past several decades, with substantial technical and procedural improvements that can help improve clinical outcomes and safety profiles. Staying up to date on these developments is challenging but critical because the physical properties underlying the different ablation modalities and the appropriate use of adjuncts will have a tremendous effect on treatment results. Ultimately, combining an understanding of the physical properties of the ablation modalities with an understanding of the thermal kinetics in tissue and using the most appropriate ablation modality for each patient are key to optimizing clinical outcomes. Suggested algorithms are described that will help physicians choose among the various ablation modalities for individual patients.
Collapse
Affiliation(s)
- J Louis Hinshaw
- From the Departments of Radiology (J.L.H., M.G.L., T.J.Z., F.T.L., C.L.B.), Biomedical Engineering (C.L.B.), and Medical Physics (C.L.B.), University of Wisconsin, 600 Highland Ave, E3 366, Madison, WI 53792-3252
| | | | | | | | | |
Collapse
|
49
|
Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation--what should you use and why? Radiographics 2015; 34:1344-62. [PMID: 25208284 DOI: 10.1148/rg.345140054] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Image-guided thermal ablation is an evolving and growing treatment option for patients with malignant disease of multiple organ systems. Treatment indications have been expanding to include benign tumors as well. Specifically, the most prevalent indications to date have been in the liver (primary and metastatic disease, as well as benign tumors such as hemangiomas and adenomas), kidney (primarily renal cell carcinoma, but also benign tumors such as angiomyolipomas and oncocytomas), lung (primary and metastatic disease), and soft tissue and/or bone (primarily metastatic disease and osteoid osteomas). Each organ system has different underlying tissue characteristics, which can have profound effects on the resulting thermal changes and ablation zone. Understanding these issues is important for optimizing clinical results. In addition, thermal ablation technology has evolved rapidly during the past several decades, with substantial technical and procedural improvements that can help improve clinical outcomes and safety profiles. Staying up to date on these developments is challenging but critical because the physical properties underlying the different ablation modalities and the appropriate use of adjuncts will have a tremendous effect on treatment results. Ultimately, combining an understanding of the physical properties of the ablation modalities with an understanding of the thermal kinetics in tissue and using the most appropriate ablation modality for each patient are key to optimizing clinical outcomes. Suggested algorithms are described that will help physicians choose among the various ablation modalities for individual patients.
Collapse
Affiliation(s)
- J Louis Hinshaw
- From the Departments of Radiology (J.L.H., M.G.L., T.J.Z., F.T.L., C.L.B.), Biomedical Engineering (C.L.B.), and Medical Physics (C.L.B.), University of Wisconsin, 600 Highland Ave, E3 366, Madison, WI 53792-3252
| | | | | | | | | |
Collapse
|
50
|
Design, development and microwave inter-comparison of dual slot antenna configurations for localized hepatic tumor management. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:593-601. [PMID: 26467919 DOI: 10.1007/s13246-015-0384-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
Slot antennas are generally preferred for localized liver cancer treatment modalities due to desired radiation characteristics. An iterative thermal/microwave numerical routine is used to analyze regular and miniature slot antenna configurations at 5.8 GHz. A thermal/microwave solver determines the specific absorption rate to malignant tissues as a pre- processing step to compute microwave solution in terms of propagation wave number, return loss and insertion loss. The regular and miniature dual slots antenna geometries were then developed to estimate the return loss characteristics against antennas slot lengths at a constant frequency of 5.8 GHz. Results reveal that the regular geometry has return loss less than -5 dB as compared to <-25 dB return loss for miniature slot antenna configuration. Furthermore, 5.8 GHz antenna geometry provides physical size reduction up to 50 %, lower fabrication cost and is a better minimally invasive choice due to further packed thermal ablation spots.
Collapse
|