1
|
Wang W, Wang S, Zhang Y, Geng Y, Li D, Liu S. Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability. Comput Methods Biomech Biomed Engin 2025; 28:37-50. [PMID: 37982220 DOI: 10.1080/10255842.2023.2282952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/29/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.
Collapse
Affiliation(s)
- Weijie Wang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi, China
| | - Shaoping Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beijing, China
| | - Yuwei Zhang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Yixuan Geng
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Deng'ao Li
- College of Data Science, Taiyuan University of Technology, Shanxi, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi, China
| |
Collapse
|
2
|
Campanella S, Paragliola G, Cherubini V, Pierleoni P, Palma L. Towards Personalized AI-Based Diabetes Therapy: A Review. IEEE J Biomed Health Inform 2024; 28:6944-6957. [PMID: 39137085 DOI: 10.1109/jbhi.2024.3443137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Insulin pumps and other smart devices have recently made significant advancements in the treatment of diabetes, a disorder that affects people all over the world. The development of medical AI has been influenced by AI methods designed to help physicians make diagnoses, choose a course of therapy, and predict outcomes. In this article, we thoroughly analyse how AI is being used to enhance and personalize diabetes treatment. The search turned up 77 original research papers, from which we've selected the most crucial information regarding the learning models employed, the data typology, the deployment stage, and the application domains. We identified two key trends, enabled mostly by AI: patient-based therapy personalization and therapeutic algorithm optimization. In the meanwhile, we point out various shortcomings in the existing literature, like a lack of multimodal database analysis or a lack of interpretability. The rapid improvements in AI and the expansion of the amount of data already available offer the possibility to overcome these difficulties shortly and enable a wider deployment of this technology in clinical settings.
Collapse
|
3
|
Bonet J, Barbieri E, Santoro N, Dalla Man C. Modeling Glucose, Insulin, C-Peptide, and Lactate Interplay in Adolescents During an Oral Glucose Tolerance Test. J Diabetes Sci Technol 2024:19322968241266825. [PMID: 39076151 PMCID: PMC11572107 DOI: 10.1177/19322968241266825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Lactate is not considered just a "waste product" of anaerobic glycolysis anymore. It has been proved to play a key role in several metabolic diseases, such as in the metabolic dysfunction-associated steatotic liver disease, obesity, and diabetes. The capability of simulating glucose-insulin-lactate interaction would be useful to design and test drugs targeting lactate metabolism in such pathological conditions. Minimal models are available, which describe and quantify glucose-lactate interaction but models to simulate postprandial glucose-insulin-C-peptide-lactate time courses are missing. The aim of this study is to fill this gap. METHODS Starting from the Padova Type 2 Diabetes Simulator (T2DS), we first added a description of glucose-lactate kinetics and then created a population of 100 in silico subjects to match glucose-insulin-C-peptide-lactate data of 44 adolescents with/without obesity who underwent a standard oral glucose tolerance test (OGTT) of 75 g. RESULTS The developed model accurately predicts all molecules time courses, guaranteeing precise model parameter estimates (percent coefficient of variation [CV%] median [25th-75th percentile] = 19 [9-29]%). The generated in silico population shows good agreement with the clinical data in terms of area under the curve (AUC) (P = .6, .6, .9, .6 for glucose, insulin, C-peptide, and lactate, respectively) and parameter distributions (P > .1). CONCLUSIONS We have developed a simulator to describe glucose, insulin, C-peptide, and lactate kinetics during an OGTT, which captures the behavior of a real population of adolescents with/without obesity both in terms of average and intersubject variability. Such simulator can be used to investigate the pharmacodynamics of drugs targeting lactate metabolic pathway in various pathological conditions.
Collapse
Affiliation(s)
- Jacopo Bonet
- Department of Information Engineering, University of Padua, Padova, Italy
| | - Emiliano Barbieri
- Section of Pediatrics, Department of Translational Sciences, University of Naples Federico II, Napoli, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine and Health Sciences, “V. Tiberio” University of Molise, Campobasso, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padova, Italy
| |
Collapse
|
4
|
Cappon G, Facchinetti A. Digital Twins in Type 1 Diabetes: A Systematic Review. J Diabetes Sci Technol 2024:19322968241262112. [PMID: 38887022 PMCID: PMC11572256 DOI: 10.1177/19322968241262112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Digital twin is a new concept that is rapidly gaining recognition especially in the medical field. Indeed, being a virtual representation of real-world entities and processes, a digital twin can be used to accurately represent the patients' disease, clarify the treatment target, and realize personalized and precise therapies. However, despite being a revolutionary concept, the diffusion of digital twins in type 1 diabetes (T1D) is still limited. In this systematic review, we analyzed structure, operating conditions, and characteristics of digital twins being developed for T1D. Our search covered published documents until March 2024: 220 publications were identified, 37 of which were duplicated entries; in addition, 173 publications were removed after inspection of titles, abstracts, and keywords; and finally, 11 publications were fully reviewed, of which 8 were deemed eligible for inclusion. We found that all eight methodologies are not comprehensive multi-scale virtual replicas of the individual with T1D, but they all focus on describing glucose-insulin metabolism, aiming to simulate glucose concentration resultant from therapeutic interventions. In this review, we will compare and analyze different factors characterizing these digital twins, such as operating principles (mathematical model, twinning procedure, validation and assessment) and the key aspects for practical adoption (inclusion of physical activity, data required for twinning, open-source availability). We will conclude the paper listing which, in our opinion, are the current limitations and future directives of digital twins in T1D, hoping that this article can be helpful to researchers working on diabetes technologies to further develop the use of such an important instrument.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Visentin R, Schiavon M, Bonet J, Riz M, Wagenhuber B, Man CD. Tailoring the Padova Type 2 Diabetes Simulator for Treatment Guidance in Target Populations. IEEE Trans Biomed Eng 2024; 71:1780-1788. [PMID: 38198258 DOI: 10.1109/tbme.2024.3352153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The Padova type 2 diabetes (T2D) simulator (T2DS) has been recently proposed to optimize T2D treatments including novel long-acting insulins. It consists of a physiological model and an in silico population describing glucose dynamics, derived from early-stage T2D subjects studied with sophisticated tracer-based experimental techniques. This limits T2DS domain of validity to this specific sub-population. Conversely, running simulations in insulin-naïve or advanced T2D subjects, would be more valuable. However, it is rarely possible or cost-effective to run complex experiments in such populations. Therefore, we propose a method for tuning the T2DS to any desired T2D sub-population using published clinical data. As case study, we extended the T2DS to insulin-naïve T2D subjects, who need to start insulin therapy to compensate the reduced insulin function. METHODS T2DS model was identified based on literature data of the target population. The estimated parameters were used to generate a virtual cohort of insulin-naïve T2D subjects (inC1). A model of basal insulin degludec (IDeg) was also incorporated into the T2DS to enable basal insulin therapy. The resulting tailored T2DS was assessed by simulating IDeg therapy initiation and comparing simulated vs. clinical trial outcomes. For further validation, this procedure was reiterated to generate a new cohort of insulin-naïve T2D (inC2) assuming inC1 as target population. RESULTS No statistically significant differences were found when comparing fasting plasma glucose and IDeg dose, neither in clinical data vs. inC1, nor inC1 vs. inC2. CONCLUSIONS The tuned T2DS allowed reproducing the main findings of clinical studies in insulin-naïve T2D subjects. SIGNIFICANCE The proposed methodology makes the Padova T2DS usable for supporting treatment guidance in target T2D populations.
Collapse
|
6
|
Bonet J, Visentin R, Dalla Man C. Smart Algorithms for Efficient Insulin Therapy Initiation in Individuals With Type 2 Diabetes: An in Silico Study. J Diabetes Sci Technol 2024:19322968241245930. [PMID: 38646824 PMCID: PMC11571400 DOI: 10.1177/19322968241245930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
BACKGROUND Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN. METHOD To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process. RESULTS The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia. CONCLUSIONS Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.
Collapse
Affiliation(s)
- Jacopo Bonet
- Department of Information Engineering, University of Padua, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padua, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padova, Italy
| |
Collapse
|
7
|
Visentin R, Cobelli C, Sieber J, Dalla Man C. Short- and Long-Term Effects on Glucose Control of Nonadherence to Insulin Therapy in People With Type 2 Diabetes An In Silico Study. J Diabetes Sci Technol 2024; 18:309-317. [PMID: 38284154 PMCID: PMC10973843 DOI: 10.1177/19322968231223936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
BACKGROUND Strict adherence to multiple daily insulin (MDI) therapy is a cornerstone for the achievement of good glucose control in people with advanced type 2 diabetes (T2D). Here, we aim to in silico assess glucose control in T2D subjects with poor adherence to MDI therapy. METHODS We tuned the Padova T2D Simulator, originally describing early-stage T2D physiology, around advanced T2D people. One hundred in silico advanced T2D subjects were generated and equipped with optimal MDI therapy: specifically, basal and bolus insulin amounts and injection times were individualized for each subject by applying titration algorithms that iteratively update insulin dose based on glucose deviation from its target. Then, the effect of nonadhering to MDI therapy was assessed using standard glucose control metrics calculated in two 6-month 3-meal/day in silico scenarios: in Scenario 1, subjects received the optimal basal and prandial insulin bolus at each meal; in Scenario 2, subjects received optimal basal insulin and randomly delayed or skipped the prandial insulin bolus in 3 lunches during working days and 1 dinner during weekends. RESULTS A statistically significant degradation was found in all glucose control outcome metrics in Scenario 2 versus Scenario 1: e.g., percent time above 180 mg/dL increased by 22.2% and glucose management index by 0.2%. CONCLUSIONS Impaired adherence to MDI therapy in T2D leads to glucose control deteriorations in both short and long terms. Interestingly, short-term hyperglycemia seems being contrasted by residual endogenous insulin secretion, which statistically increased by 3-fold after delayed/skipped insulin boluses compared with optimal ones.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering,
University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Woman and Child’s Health,
University of Padua, Padua, Italy
| | | | - Chiara Dalla Man
- Department of Information Engineering,
University of Padua, Padua, Italy
| |
Collapse
|
8
|
Cappon G, Prendin F, Facchinetti A, Sparacino G, Favero SD. Individualized Models for Glucose Prediction in Type 1 Diabetes: Comparing Black-Box Approaches to a Physiological White-Box One. IEEE Trans Biomed Eng 2023; 70:3105-3115. [PMID: 37195837 DOI: 10.1109/tbme.2023.3276193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Accurate blood glucose (BG) prediction are key in next-generation tools for type 1 diabetes (T1D) management, such as improved decision support systems and advanced closed-loop control. Glucose prediction algorithms commonly rely on black-box models. Large physiological models, successfully adopted for simulation, were little explored for glucose prediction, mostly because their parameters are hard to individualize. In this work, we develop a BG prediction algorithm based on a personalized physiological model inspired by the UVA/Padova T1D Simulator. Then we compare white-box and advanced black-box personalized prediction techniques. METHODS A personalized nonlinear physiological model is identified from patient data through a Bayesian approach based on Markov Chain Monte Carlo technique. The individualized model was integrated within a particle filter (PF) to predict future BG concentrations. The black-box methodologies considered are non-parametric models estimated via gaussian regression (NP), three deep learning methods: long-short-term-memory (LSTM), gated recurrent unit (GRU), temporal convolutional networks (TCN), and a recursive autoregressive with exogenous input model (rARX). BG forecasting performances are assessed for several prediction horizons (PH) on 12 individuals with T1D, monitored in free-living conditions under open-loop therapy for 10 weeks. RESULTS NP models provide the most effective BG predictions by achieving a root mean square error (RMSE), RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE = 31.60 mg/dL, significantly outperforming: LSTM, GRU (for PH = 30 minutes), TCN, rARX, and the proposed physiological model for PH=30, 45 and 60 minutes. CONCLUSIONS Black-box strategies remain preferable for glucose prediction even when compared to a white-box model with sound physiological structure and individualized parameters.
Collapse
|
9
|
Wen S, Li H, Tao R. A 2-dimensional model framework for blood glucose prediction based on iterative learning control architecture. Med Biol Eng Comput 2023; 61:2593-2606. [PMID: 37395886 DOI: 10.1007/s11517-023-02866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
The accurate, timely, and personalized prediction for future blood glucose (BG) levels is undoubtedly needed for further advancement of diabetes management technologies. Human inherent circadian rhythm and regular lifestyle resulting in similarity of daily glycemic dynamics play a positive role in the prediction of blood glucose. Inspired by the iterative learning control (ILC) method in the field of automatic control, a 2-dimensional (2-D) model framework is constructed to predict the future blood glucose levels by taking both the short-range information within a day (intra-day) and long-range information between days (inter-day) into account. In this framework, the radial basis function neural network was applied to capture nonlinear relationships in glycemic metabolism, that is, short-range temporal dependence and long-range contemporaneous dependence on previous days. We build models for each patient, and the models were tested on the in silico datasets at various prediction horizons (PHs). The learning model developed in the 2-D framework successfully increases the accuracy and reduces the delay of predictions. This modeling framework provides a new point of view for BG level prediction and contributes to the development of personalized glucose management, such as hypoglycemia warning and glycemic control.
Collapse
Affiliation(s)
- Shuang Wen
- College of Information Sciences and Engineering, Northeastern University, No. 11 St. 3, Wenhua Road, Heping District, Shenyang, 110819, People's Republic of China
| | - Hongru Li
- College of Information Sciences and Engineering, Northeastern University, No. 11 St. 3, Wenhua Road, Heping District, Shenyang, 110819, People's Republic of China.
| | - Rui Tao
- College of Information Sciences and Engineering, Northeastern University, No. 11 St. 3, Wenhua Road, Heping District, Shenyang, 110819, People's Republic of China
| |
Collapse
|
10
|
Zhu T, Li K, Herrero P, Georgiou P. GluGAN: Generating Personalized Glucose Time Series Using Generative Adversarial Networks. IEEE J Biomed Health Inform 2023; 27:5122-5133. [PMID: 37134028 DOI: 10.1109/jbhi.2023.3271615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Time series data generated by continuous glucose monitoring sensors offer unparalleled opportunities for developing data-driven approaches, especially deep learning-based models, in diabetes management. Although these approaches have achieved state-of-the-art performance in various fields such as glucose prediction in type 1 diabetes (T1D), challenges remain in the acquisition of large-scale individual data for personalized modeling due to the elevated cost of clinical trials and data privacy regulations. In this work, we introduce GluGAN, a framework specifically designed for generating personalized glucose time series based on generative adversarial networks (GANs). Employing recurrent neural network (RNN) modules, the proposed framework uses a combination of unsupervised and supervised training to learn temporal dynamics in latent spaces. Aiming to assess the quality of synthetic data, we apply clinical metrics, distance scores, and discriminative and predictive scores computed by post-hoc RNNs in evaluation. Across three clinical datasets with 47 T1D subjects (including one publicly available and two proprietary datasets), GluGAN achieved better performance for all the considered metrics when compared with four baseline GAN models. The performance of data augmentation is evaluated by three machine learning-based glucose predictors. Using the training sets augmented by GluGAN significantly reduced the root mean square error for the predictors over 30 and 60-minute horizons. The results suggest that GluGAN is an effective method in generating high-quality synthetic glucose time series and has the potential to be used for evaluating the effectiveness of automated insulin delivery algorithms and as a digital twin to substitute for pre-clinical trials.
Collapse
|
11
|
Zhu T, Li K, Georgiou P. Offline Deep Reinforcement Learning and Off-Policy Evaluation for Personalized Basal Insulin Control in Type 1 Diabetes. IEEE J Biomed Health Inform 2023; 27:5087-5098. [PMID: 37607154 DOI: 10.1109/jbhi.2023.3303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recent advancements in hybrid closed-loop systems, also known as the artificial pancreas (AP), have been shown to optimize glucose control and reduce the self-management burdens for people living with type 1 diabetes (T1D). AP systems can adjust the basal infusion rates of insulin pumps, facilitated by real-time communication with continuous glucose monitoring. Deep reinforcement learning (DRL) has introduced new paradigms of basal insulin control algorithms. However, all the existing DRL-based AP controllers require extensive random online interactions between the agent and environment. While this can be validated in T1D simulators, it becomes impractical in real-world clinical settings. To this end, we propose an offline DRL framework that can develop and validate models for basal insulin control entirely offline. It comprises a DRL model based on the twin delayed deep deterministic policy gradient and behavior cloning, as well as off-policy evaluation (OPE) using fitted Q evaluation. We evaluated the proposed framework on an in silico dataset generated by the UVA/Padova T1D simulator, and the OhioT1DM dataset, a real clinical dataset. The performance on the in silico dataset shows that the offline DRL algorithm significantly increased time in range while reducing time below range and time above range for both adult and adolescent groups. Then, we used the OPE to estimate model performance on the clinical dataset, where a notable increase in policy values was observed for each subject. The results demonstrate that the proposed framework is a viable and safe method for improving personalized basal insulin control in T1D.
Collapse
|
12
|
Sujatha DV. Investigation on Modelling and Identification of Glucose Management system for normal individual and diabetic patient. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hobbs N, Samadi S, Rashid M, Shahidehpour A, Askari MR, Park M, Quinn L, Cinar A. A physical activity-intensity driven glycemic model for type 1 diabetes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107153. [PMID: 36183639 DOI: 10.1016/j.cmpb.2022.107153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE The glucose response to physical activity for a person with type 1 diabetes (T1D) depends upon the intensity and duration of the physical activity, plasma insulin concentrations, and the individual physical fitness level. To accurately model the glycemic response to physical activity, these factors must be considered. METHODS Several physiological models describing the glycemic response to physical activity are proposed by incorporating model terms proportional to the physical activity intensity and duration describing endogenous glucose production (EGP), glucose utilization, and glucose transfer from the plasma to tissues. Leveraging clinical data of T1D during physical activity, each model fit is assessed. RESULTS The proposed model with terms accommodating EGP, glucose transfer, and insulin-independent glucose utilization allow for an improved simulation of physical activity glycemic responses with the greatest reduction in model error (mean absolute percentage error: 16.11 ± 4.82 vs. 19.49 ± 5.87, p = 0.002). CONCLUSIONS The development of a physiologically plausible model with model terms representing each major contributor to glucose metabolism during physical activity can outperform traditional models with physical activity described through glucose utilization alone. This model accurately describes the relation of plasma insulin and physical activity intensity on glucose production and glucose utilization to generate the appropriately increasing, decreasing or stable glucose response for each physical activity condition. The proposed model will enable the in silico evaluation of automated insulin dosing algorithms designed to mitigate the effects of physical activity with the appropriate relationship between the reduction in basal insulin and the corresponding glycemic excursion.
Collapse
Affiliation(s)
- Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Andrew Shahidehpour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Mohammad Reza Askari
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Minsun Park
- College of Nursing, University of Illinois at Chicago. Chicago, IL, USA
| | - Laurie Quinn
- College of Nursing, University of Illinois at Chicago. Chicago, IL, USA
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA.
| |
Collapse
|
14
|
Cobelli C, Dalla Man C. Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials. J Diabetes Sci Technol 2022; 16:1270-1298. [PMID: 34032128 PMCID: PMC9445339 DOI: 10.1177/19322968211015268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several models have been proposed to describe the glucose system at whole-body, organ/tissue and cellular level, designed to measure non-accessible parameters (minimal models), to simulate system behavior and run in silico clinical trials (maximal models). Here, we will review the authors' work, by putting it into a concise historical background. We will discuss first the parametric portrait provided by the oral minimal models-building on the classical intravenous glucose tolerance test minimal models-to measure otherwise non-accessible key parameters like insulin sensitivity and beta-cell responsivity from a physiological oral test, the mixed meal or the oral glucose tolerance tests, and what can be gained by adding a tracer to the oral glucose dose. These models were used in various pathophysiological studies, which we will briefly review. A deeper understanding of insulin sensitivity can be gained by measuring insulin action in the skeletal muscle. This requires the use of isotopic tracers: both the classical multiple-tracer dilution and the positron emission tomography techniques are discussed, which quantitate the effect of insulin on the individual steps of glucose metabolism, that is, bidirectional transport plasma-interstitium, and phosphorylation. Finally, we will present a cellular model of insulin secretion that, using a multiscale modeling approach, highlights the relations between minimal model indices and subcellular secretory events. In terms of maximal models, we will move from a parametric to a flux portrait of the system by discussing the triple tracer meal protocol implemented with the tracer-to-tracee clamp technique. This allows to arrive at quasi-model independent measurement of glucose rate of appearance (Ra), endogenous glucose production (EGP), and glucose rate of disappearance (Rd). Both the fast absorbing simple carbs and the slow absorbing complex carbs are discussed. This rich data base has allowed us to build the UVA/Padova Type 1 diabetes and the Padova Type 2 diabetes large scale simulators. In particular, the UVA/Padova Type 1 simulator proved to be a very useful tool to safely and effectively test in silico closed-loop control algorithms for an artificial pancreas (AP). This was the first and unique simulator of the glucose system accepted by the U.S. Food and Drug Administration as a substitute to animal trials for in silico testing AP algorithms. Recent uses of the simulator have looked at glucose sensors for non-adjunctive use and new insulin molecules.
Collapse
Affiliation(s)
- Claudio Cobelli
- Department of Woman and Child’s Health University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
15
|
A simulator with realistic and challenging scenarios for virtual T1D patients undergoing CSII and MDI therapy. J Biomed Inform 2022; 132:104141. [PMID: 35835439 DOI: 10.1016/j.jbi.2022.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
In silico simulations have become essential for the development of diabetes treatments. However, currently available simulators are not challenging enough and often suffer from limitations in insulin and meal absorption variability, which is unable to realistically reflect the dynamics of people with type 1 diabetes (T1D). Additionally, T1D simulators are mainly designed for the testing of continuous subcutaneous insulin infusion (CSII) therapies. In this work, a simulator is presented that includes a generated virtual patient (VP) cohort and both fast- and long-acting Glargine-100 U/ml (Gla-100), Glargine-300 U/ml (Gla-300), and Degludec-100 U/ml (Deg-100) insulin models. Therefore, in addition to CSII therapies, multiple daily injections (MDI) therapies can also be tested. The Hovorka model and its published parameter probability distributions were used to generate cohorts of VPs that represent a T1D population. Valid patients are filtered through restrictions that guarantee that they are physiologically acceptable. To obtain more realistic scenarios, basal insulin profile patterns from the literature have been used to identify variability in insulin sensitivity. A library of mixed meals identified from real data has also been included. This work presents and validates a methodology for the creation of realistic VP cohorts that include physiological variability and a simulator that includes challenging and realistic scenarios for in silico testing. A cohort of 47 VPs has been generated and in silico simulations of both CSII and MDI therapies were performed in open-loop. The simulation outcome metrics were contrasted with literature results.
Collapse
|
16
|
Rosales N, De Battista H, Garelli F. Hypoglycemia prevention: PID-type controller adaptation for glucose rate limiting in Artificial Pancreas System. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Lopez-Zazueta C, Stavdahl O, Fougner AL. Low-Order Nonlinear Animal Model of Glucose Dynamics for a Bihormonal Intraperitoneal Artificial Pancreas. IEEE Trans Biomed Eng 2021; 69:1273-1280. [PMID: 34748476 DOI: 10.1109/tbme.2021.3125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The design of an Artificial Pancreas to regulate blood glucose levels requires reliable control methods. Model Predictive Control has emerged as a promising approach for glycemia control. However, model-based control methods require computationally simple and identifiable mathematical models that represent glucose dynamics accurately, which is challenging due to the complexity of glucose homeostasis. METHODS In this work, a simple model is deduced to estimate blood glucose concentration in subjects with Type 1 Diabetes Mellitus. Novel features in the model are power-law kinetics for intraperitoneal insulin absorption and a separate glucagon sensitivity state. Profile likelihood and a method based on singular value decomposition of the sensitivity matrix are carried out to assess parameter identifiability and guide a model reduction for improving the identification of parameters. RESULTS A reduced model with 10 parameters is obtained and calibrated, showing good fit to experimental data from pigs where insulin and glucagon boluses were delivered in the intraperitoneal cavity. CONCLUSION A simple model with power-law kinetics can accurately represent glucose dynamics submitted to intraperitoneal insulin and glucagon injections. IMPORTANCE The parameters of the reduced model were not found to lack of local practical or structural identifiability.
Collapse
|
18
|
Gutiérrez-Casares JR, Quintero J, Jorba G, Junet V, Martínez V, Pozo-Rubio T, Oliva B, Daura X, Mas JM, Montoto C. Methods to Develop an in silico Clinical Trial: Computational Head-to-Head Comparison of Lisdexamfetamine and Methylphenidate. Front Psychiatry 2021; 12:741170. [PMID: 34803764 PMCID: PMC8595241 DOI: 10.3389/fpsyt.2021.741170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory agencies encourage computer modeling and simulation to reduce the time and cost of clinical trials. Although still not classified in formal guidelines, system biology-based models represent a powerful tool for generating hypotheses with great molecular detail. Herein, we have applied a mechanistic head-to-head in silico clinical trial (ISCT) between two treatments for attention-deficit/hyperactivity disorder, to wit lisdexamfetamine (LDX) and methylphenidate (MPH). The ISCT was generated through three phases comprising (i) the molecular characterization of drugs and pathologies, (ii) the generation of adult and children virtual populations (vPOPs) totaling 2,600 individuals and the creation of physiologically based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) models, and (iii) data analysis with artificial intelligence methods. The characteristics of our vPOPs were in close agreement with real reference populations extracted from clinical trials, as did our PBPK models with in vivo parameters. The mechanisms of action of LDX and MPH were obtained from QSP models combining PBPK modeling of dosing schemes and systems biology-based modeling technology, i.e., therapeutic performance mapping system. The step-by-step process described here to undertake a head-to-head ISCT would allow obtaining mechanistic conclusions that could be extrapolated or used for predictions to a certain extent at the clinical level. Altogether, these computational techniques are proven an excellent tool for hypothesis-generation and would help reach a personalized medicine.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentin Junet
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | - Baldomero Oliva
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
19
|
Wang W, Wang S, Geng Y, Qiao Y, Wu T. An OGI model for personalized estimation of glucose and insulin concentration in plasma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8499-8523. [PMID: 34814309 DOI: 10.3934/mbe.2021420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma glucose concentration (PGC) and plasma insulin concentration (PIC) are two essential metrics for diabetic regulation, but difficult to be measured directly. Often, PGC and PIC are estimated from continuous glucose monitoring and insulin delivery data. Nevertheless, the inter-individual variability and external disturbance (e.g. carbohydrate intake) bring challenges for accurate estimations. This study is to estimate PGC and PIC adaptively by identifying personalized parameters and external disturbances. An observable glucose-insulin (OGI) dynamic model is established to describe insulin absorption, glucose regulation, and glucose transport. The model parameters and disturbances can be extended to observable state variables and be identified dynamically by Bayesian filtering estimators. Two basic Gaussian noise based Bayesian filtering estimators, extended Kalman filtering (EKF) and unscented Kalman filtering (UKF), are implemented. Recognizing the prevalence of non-Gaussian noise, in this study, two new filtering estimators: particle filtering with Gaussian noise (PFG), and particle filtering with mixed non-Gaussian noise (PFM) are designed and implemented. The proposed OGI model in conjunction with the estimators is evaluated using the data from 30 in-silico subjects and 10 human participants. For in-silico subjects, the OGI with PFM estimator has the ability to estimate PIC and PGC adaptively, achieving RMSE of PIC 9.49±3.81 mU/L, and PGC 0.89±0.19 mmol/L. For human, the OGI with PFM has the promise to identify disturbances (95.46%±0.65% accurate rate of meal identification). OGI model provides a way to fully personalize the parameters and external disturbances in real time, and has potential clinical utility for artificial pancreas.
Collapse
Affiliation(s)
- Weijie Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Shaoping Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - Yixuan Geng
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Yajing Qiao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Teresa Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University and College of Medicine, Mayo Clinic, Tempe AZ 85281, the USA
| |
Collapse
|
20
|
Pompa M, Panunzi S, Borri A, De Gaetano A. A comparison among three maximal mathematical models of the glucose-insulin system. PLoS One 2021; 16:e0257789. [PMID: 34570804 PMCID: PMC8476045 DOI: 10.1371/journal.pone.0257789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
The most well-known and widely used mathematical representations of the physiology of a diabetic individual are the Sorensen and Hovorka models as well as the UVAPadova Simulator. While the Hovorka model and the UVAPadova Simulator only describe the glucose metabolism of a subject with type 1 diabetes, the Sorensen model was formulated to simulate the behaviour of both normal and diabetic individuals. The UVAPadova model is the most known model, accepted by the FDA, with a high level of complexity. The Hovorka model is the simplest of the three models, well documented and used primarily for the development of control algorithms. The Sorensen model is the most complete, even though some modifications were required both to the model equations (adding useful compartments for modelling subcutaneous insulin delivery) and to the parameter values. In the present work several simulated experiments, such as IVGTTs and OGTTs, were used as tools to compare the three formulations in order to establish to what extent increasing complexity translates into richer and more correct physiological behaviour. All the equations and parameters used for carrying out the simulations are provided.
Collapse
Affiliation(s)
- Marcello Pompa
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
- Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Simona Panunzi
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
| | - Alessandro Borri
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
| | - Andrea De Gaetano
- CNR-IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Rome, Italy
- CNR-IRIB, Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica Palermo, Palermo, Italy
| |
Collapse
|
21
|
Olcomendy L, Pirog A, Lebreton F, Jaffredo M, Cassany L, Gucik Derigny D, Cieslak J, Henry D, Lang J, Catargi B, Raoux M, Bornat Y, Renaud S. Integrating an Islet-Based Biosensor in the Artificial Pancreas: In Silico Proof-of-Concept. IEEE Trans Biomed Eng 2021; 69:899-909. [PMID: 34469288 DOI: 10.1109/tbme.2021.3109096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Current treatment of type 1 diabetes by closed-loop approaches depends on continuous glucose monitoring. However, glucose readings alone are insufficient for an artificial pancreas to truthfully restore glucose homeostasis where additional physiological regulators of insulin secretion play a considerable role. Previously, we have developed an electrophysiological biosensor of pancreatic islet activity, which integrates these additional regulators through electrical measurement. This work aims at investigating the performance of the biosensor in a blood glucose control loop, to establish an in silico proof-of-concept. METHODS Two islet algorithm models were identified on experimental data recorded with the biosensor. First, we validated electrical measurement as a means to exploit the inner regulation capabilities of islets for intravenous glucose measurement and insulin infusion. Then, an artificial pancreas integrating the islet-based biosensor was compared to standard treatment approaches using subcutaneous routes. The closed-loop simulations were performed in the UVA/Padova T1DM Simulator where a series of realistic meal scenarios were applied to virtual diabetic patients. RESULTS With intravenous routes, the endogenous islet algorithms successfully restored glucose homeostasis for all patient categories (mean time in range exceeds 90%) while mitigating the risk of adverse glycaemic events (mean BGI < 2). Using subcutaneous routes, the biosensor-based artificial pancreas was as performing as standard treatments, and outperformed them under challenging conditions. CONCLUSION This work validates the concept of using pancreatic islets algorithms in an artificial pancreas in silico. SIGNIFICANCE Pancreatic islet endogenous algorithms obtained via an electrophysiological biosensor successfully regulate blood glucose levels of virtual type 1 diabetic patients.
Collapse
|
22
|
Caselli F, De Ninno A, Reale R, Businaro L, Bisegna P. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry. IEEE Trans Biomed Eng 2020; 68:340-349. [PMID: 32746004 DOI: 10.1109/tbme.2020.2995364] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cell counting and characterization is fundamental for medicine, science and technology. Coulter-type microfluidic devices are effective and automated systems for cell/particle analysis, based on the electrical sensing zone principle. However, their throughput and accuracy are limited by coincidences (i.e., two or more particles passing through the sensing zone nearly simultaneously), which reduce the observed number of particles and may lead to errors in the measured particle properties. In this work, a novel approach for coincidence resolution in microfluidic impedance cytometry is proposed. METHODS The approach relies on: (i) a microchannel comprising two electrical sensing zones and (ii) a model of the signals generated by coinciding particles. Maximum a posteriori probability (MAP) estimation is used to identify the model parameters and therefore characterize individual particle properties. RESULTS Quantitative performance assessment on synthetic data streams shows a counting sensitivity of 97% and a positive predictive value of 99% at concentrations of 2×106 particles/ml. An application to red blood cell analysis shows accurate particle characterization up to a throughput of about 2500 particles/s. An original formula providing the expected number of coinciding particles is derived, and good agreement is found between experimental results and theoretical predictions. CONCLUSION The proposed cytometer enables the decomposition of signals generated by coinciding particles into individual particle contributions, by using a Bayesian approach. SIGNIFICANCE This system can be profitably used in applications where accurate counting and characterization of cell/particle suspensions over a broad range of concentrations is required.
Collapse
|
23
|
Al-Matouq AA, Laleg-Kirati TM, Novara C, Rabbone I, Vincent T. Sparse Reconstruction of Glucose Fluxes Using Continuous Glucose Monitors. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1797-1809. [PMID: 30892232 DOI: 10.1109/tcbb.2019.2905198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new technique for estimating postprandial glucose flux profiles without the use of glucose tracers is proposed. A sparse vector space representation is first found for the space of plausible glucose flux profiles using sparse encoding. A Lasso formulation is then used to estimate the glucose fluxes that combines (1) known patient model parameters; (2) the vector space of plausible glucose flux profiles; (3) continuous glucose monitor measurements taken during the meal; (4) amount of insulin injected; (5) amount of meal carbohydrates; and (6) an estimate of the initial conditions. Three glucose fluxes are then estimated, namely; glucose rate of appearance from the intestine; endogenous glucose production from the liver; insulin dependent glucose utilization; and other important state variables. The simulation results show that the technique is capable of estimating the glucose fluxes with high accuracy, even for complex meal scenarios. The experimental results indicate that the technique is capable of reproducing the triple tracer measurements for three T1DM undergoing the triple tracer protocol while estimating the missing measurements for a certain model parameter selection.
Collapse
|
24
|
Schiavon M, Visentin R, Giegerich C, Sieber J, Dalla Man C, Cobelli C, Klabunde T. In Silico Head-to-Head Comparison of Insulin Glargine 300 U/mL and Insulin Degludec 100 U/mL in Type 1 Diabetes. Diabetes Technol Ther 2020; 22:553-561. [PMID: 32125178 PMCID: PMC7407002 DOI: 10.1089/dia.2020.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Second-generation long-acting insulin glargine 300 U/mL (Gla-300) and degludec 100 U/mL (Deg-100) provide novel basal insulin therapies for the treatment of type 1 diabetes (T1D). Both offer a flatter pharmacokinetic (PK) profile than the previous generation of long-acting insulins, thus improving glycemic control while reducing hypoglycemic events. This work describes an in silico head-to-head comparison of the two basal insulins on 24-h glucose profiles and was used to guide the design of a clinical trial. Materials and Methods: The Universities of Virginia (UVA)/Padova T1D simulator describes the intra-/interday variability of glucose-insulin dynamics and thus provides a robust bench-test for assessing glucose control for basal insulin therapies. A PK model describing subcutaneous absorption of Deg-100, in addition to the one already available for Gla-300, has been developed based on T1D clinical data and incorporated into the simulator. One hundred in silico T1D subjects received a basal insulin dose (Gla-300 or Deg-100) for 12 weeks (8 weeks uptitration, 4 weeks stable dosing) by morning or evening administration in a basal/bolus regimen. The virtual patients were uptitrated to their individual doses with two different titration rules. Results: The last 2-week simulated continuous glucose monitoring data were used to calculate various outcome metrics for both basal insulin treatments, with primary outcome being the percent time in glucose target (70-140 mg/dL). The simulations show no statistically significant difference for Gla-300 versus Deg-100 in the main endpoints. Conclusions: This work suggests comparable glucose control using either Gla-300 or Deg-100 and was used to guide the design of a clinical trial intended to compare second-generation long-acting insulin analogues.
Collapse
Affiliation(s)
- Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Clemens Giegerich
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Jochen Sieber
- Medical Affairs Diabetes Care EMEA, Becton, Dickinson and Company
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Thomas Klabunde
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
- Address correspondence to: Thomas Klabunde, PhD, Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Hochst, Frankfurt am Main D-65926, Germany
| |
Collapse
|
25
|
A systematic stochastic design strategy achieving an optimal tradeoff between peak BGL and probability of hypoglycaemic events for individuals having type 1 diabetes mellitus. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Cappon G, Facchinetti A, Sparacino G, Favero SD. A Bayesian Framework to Identify Type 1 Diabetes Physiological Models Using Easily Accessible Patient Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6914-6917. [PMID: 31947429 DOI: 10.1109/embc.2019.8856846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mathematical physiological models of type 1 diabetes (T1D) glucose-insulin dynamics have been of great help in designing and preliminary assessing new algorithm for glucose control. Derivation of models at the individual level is however difficult because of identifiability issues. Recently, fitting these models against data of real patients with T1D has been made possible by both the use of Bayesian estimation techniques and the availability of individual datasets including plasma glucose and insulin concentration samples gathered in clinical protocols. The aim of this work is to make a step further and develop a methodology able to estimate the parameters of T1D physiological models using easily accessible data only, i.e. continuous glucose monitoring (CGM) sensor, carbohydrate intakes (CHO), and exogenous insulin infusion (I) data. The methodology is tested on synthetic data of 100 patients generated by a composite model of glucose-insulin dynamics. To solve identifiability problems, a Bayesian approach numerically implemented by Markov Chain Monte Carlo (MCMC) has been used to obtain point estimates and confidence intervals of model unknown parameters exploiting a priori knowledge available from the literature. Results show goodness of model fit and acceptable precision of parameter estimates. The methodology is also successful in reconstructing of "non-accessible" glucose-insulin fluxes, i.e. glucose rate of appearance and plasma insulin. These preliminary results encourage further development of this framework and its assessment in more challenging setups.
Collapse
|
27
|
Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A. Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2020; 28:3-15. [PMID: 32699492 PMCID: PMC7375403 DOI: 10.1109/tcst.2018.2843785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
Collapse
Affiliation(s)
- Xia Yu
- School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Zacharie Maloney
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Elizabeth Littlejohn
- Kovler Diabetes Center, Department of Pediatrics and Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Laurie Quinn
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA, and also with the Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
28
|
Sánchez OD, Ruiz-Velázquez E, Alanís AY, Quiroz G, Torres-Treviño L. Parameter estimation of a meal glucose-insulin model for TIDM patients from therapy historical data. IET Syst Biol 2019; 13:8-15. [PMID: 30774111 DOI: 10.1049/iet-syb.2018.5038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of meal on blood glucose concentration is a key issue in diabetes mellitus because its estimation could be very useful in therapy decisions. In the case of type 1 diabetes mellitus (T1DM), the therapy based on automatic insulin delivery requires a closed-loop control system to maintain euglycaemia even in the postprandial state. Thus, the mathematical modelling of glucose metabolism is relevant to predict the metabolic state of a patient. Moreover, the eating habits are characteristic of each person, so it is of interest that the mathematical models of meal intake allow to personalise the glycaemic state of the patient using therapy historical data, that is, daily measurements of glucose and records of carbohydrate intake and insulin supply. Thus, here, a model of glucose metabolism that includes the effects of meal is analysed in order to establish criteria for data-based personalisation. The analysis includes the sensitivity and identifiability of the parameters, and the parameter estimation problem was resolved via two algorithms: particle swarm optimisation and evonorm. The results show that the mathematical model can be a useful tool to estimate the glycaemic status of a patient and personalise it according to her/his historical data.
Collapse
Affiliation(s)
- Oscar D Sánchez
- CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Col. Universitaria, 44430 Guadalajara, Jal., México
| | - Eduardo Ruiz-Velázquez
- CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Col. Universitaria, 44430 Guadalajara, Jal., México.
| | - Alma Y Alanís
- CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Col. Universitaria, 44430 Guadalajara, Jal., México
| | - Griselda Quiroz
- FIME, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, N.L., México
| | - Luis Torres-Treviño
- FIME, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, N.L., México
| |
Collapse
|
29
|
Fushimi E, Colmegna P, De Battista H, Garelli F, Sánchez-Peña R. Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement. J Diabetes Sci Technol 2019; 13:1035-1043. [PMID: 31339059 PMCID: PMC6835180 DOI: 10.1177/1932296819864585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Either under standard basal-bolus treatment or hybrid closed-loop control, subjects with type 1 diabetes are required to count carbohydrates (CHOs). However, CHO counting is not only burdensome but also prone to errors. Recently, an artificial pancreas algorithm that does not require premeal insulin boluses-the so-called automatic regulation of glucose (ARG)-was introduced. In its first pilot clinical study, although the exact CHO counting was not required, subjects still needed to announce the meal time and classify the meal size. METHOD An automatic switching signal generator (SSG) is proposed in this work to remove the manual mealtime announcement from the control strategy. The SSG is based on a Kalman filter and works with continuous glucose monitoring readings only. RESULTS The ARG algorithm with unannounced meals (ARGum) was tested in silico under the effect of different types of mixed meals and intrapatient variability, and contrasted with the ARG algorithm with announced meals (ARGam). Simulations reveal that, for slow-absorbing meals, the time in the euglycemic range, [70-180] mg/dL, increases using the unannounced strategy (ARGam: 78.1 [68.6-80.2]% (median [IQR]) and ARGum: 87.8 [84.5-90.6]%), while similar results were found with fast-absorbing meals (ARGam: 87.4 [86.0-88.9]% and ARGum: 87.6 [86.1-88.8]%). On the other hand, when intrapatient variability is considered, time in euglycemia is also comparable (ARGam: 81.4 [75.4-83.5]% and ARGum: 80.9 [77.0-85.1]%). CONCLUSION In silico results indicate that it is feasible to perform an in vivo evaluation of the ARG algorithm with unannounced meals.
Collapse
Affiliation(s)
- Emilia Fushimi
- Grupo de Control Aplicado (GCA), Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
- Emilia Fushimi. Instituto LEICI (Grupo de Control Aplicado), Depto. Electrotecnia, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP),, Calle 48 y116, La Plata 1900, Argentina.
| | - Patricio Colmegna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
- University of Virginia (UVA), Center for Diabetes Technology, Charlottesville, VA, USA
- Universidad Nacional de Quilmes (UNQ), Argentina
| | - Hernán De Battista
- Grupo de Control Aplicado (GCA), Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| | - Fabricio Garelli
- Grupo de Control Aplicado (GCA), Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| | - Ricardo Sánchez-Peña
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
- Universidad Nacional de Quilmes (UNQ), Argentina
| |
Collapse
|
30
|
Visentin R, Schiavon M, Giegerich C, Klabunde T, Man CD, Cobelli C. Incorporating Long-Acting Insulin Glargine Into the UVA/Padova Type 1 Diabetes Simulator for In Silico Testing of MDI Therapies. IEEE Trans Biomed Eng 2019; 66:2889-2896. [DOI: 10.1109/tbme.2019.2897851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Resalat N, El Youssef J, Tyler N, Castle J, Jacobs PG. A statistical virtual patient population for the glucoregulatory system in type 1 diabetes with integrated exercise model. PLoS One 2019; 14:e0217301. [PMID: 31344037 PMCID: PMC6657828 DOI: 10.1371/journal.pone.0217301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose We introduce two validated single (SH) and dual hormone (DH) mathematical models that represent an in-silico virtual patient population (VPP) for type 1 diabetes (T1D). The VPP can be used to evaluate automated insulin and glucagon delivery algorithms, so-called artificial pancreas (AP) algorithms that are currently being used to help people with T1D better manage their glucose levels. We present validation results comparing these virtual patients with true clinical patients undergoing AP control and demonstrate that the virtual patients behave similarly to people with T1D. Methods A single hormone virtual patient population (SH-VPP) was created that is comprised of eight differential equations that describe insulin kinetics, insulin dynamics and carbohydrate absorption. The parameters in this model that represent insulin sensitivity were statistically sampled from a normal distribution to create a population of virtual patients with different levels of insulin sensitivity. A dual hormone virtual patient population (DH-VPP) extended this SH-VPP by incorporating additional equations to represent glucagon kinetics and glucagon dynamics. The DH-VPP is comprised of thirteen differential equations and a parameter representing glucagon sensitivity, which was statistically sampled from a normal distribution to create virtual patients with different levels of glucagon sensitivity. We evaluated the SH-VPP and DH-VPP on a clinical data set of 20 people with T1D who participated in a 3.5-day outpatient AP study. Twenty virtual patients were matched with the 20 clinical patients by total daily insulin requirements and body weight. The identical meals given during the AP study were given to the virtual patients and the identical AP control algorithm that was used to control the glucose of the virtual patients was used on the clinical patients. We compared percent time in target range (70–180 mg/dL), time in hypoglycemia (<70 mg/dL) and time in hyperglycemia (>180 mg/dL) for both the virtual patients and the actual patients. Results The subjects in the SH-VPP performed similarly vs. the actual patients (time in range: 78.1 ± 5.1% vs. 74.3 ± 8.1%, p = 0.11; time in hypoglycemia: 3.4 ± 1.3% vs. 2.8 ± 1.7%, p = 0.23). The subjects in the DH-VPP also performed similarly vs. the actual patients (time in range: 75.6 ± 5.5% vs. 71.9 ± 10.9%, p = 0.13; time in hypoglycemia: 0.9 ± 0.8% vs. 1.3 ± 1%, p = 0.19). While the VPPs tended to over-estimate the time in range relative to actual patients, the difference was not statistically significant. Conclusions We have verified that a SH-VPP and a DH-VPP performed comparably with actual patients undergoing AP control using an identical control algorithm. The SH-VPP and DH-VPP may be used as a simulator for pre-evaluation of T1D control algorithms.
Collapse
Affiliation(s)
- Navid Resalat
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joseph El Youssef
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nichole Tyler
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jessica Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peter G. Jacobs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
32
|
Staal OM, Salid S, Fougner A, Stavdahl O. Kalman Smoothing for Objective and Automatic Preprocessing of Glucose Data. IEEE J Biomed Health Inform 2019; 23:218-226. [DOI: 10.1109/jbhi.2018.2811706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Chase JG, Desaive T, Bohe J, Cnop M, De Block C, Gunst J, Hovorka R, Kalfon P, Krinsley J, Renard E, Preiser JC. Improving glycemic control in critically ill patients: personalized care to mimic the endocrine pancreas. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:182. [PMID: 30071851 PMCID: PMC6091026 DOI: 10.1186/s13054-018-2110-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
There is considerable physiological and clinical evidence of harm and increased risk of death associated with dysglycemia in critical care. However, glycemic control (GC) currently leads to increased hypoglycemia, independently associated with a greater risk of death. Indeed, recent evidence suggests GC is difficult to safely and effectively achieve for all patients. In this review, leading experts in the field discuss this evidence and relevant data in diabetology, including the artificial pancreas, and suggest how safe, effective GC can be achieved in critically ill patients in ways seeking to mimic normal islet cell function. The review is structured around the specific clinical hurdles of: understanding the patient’s metabolic state; designing GC to fit clinical practice, safety, efficacy, and workload; and the need for standardized metrics. These aspects are addressed by reviewing relevant recent advances in science and technology. Finally, we provide a set of concise recommendations to advance the safety, quality, consistency, and clinical uptake of GC in critical care. This review thus presents a roadmap toward better, more personalized metabolic care and improved patient outcomes.
Collapse
Affiliation(s)
- J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA In-Silico Medicine, University of Liège, Liège, Belgium
| | - Julien Bohe
- Medical Intensive Care Unit, Lyon-Sud University Hospital, Pierre-Bénite, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, and Division of Endocrinology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Roman Hovorka
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Pierre Kalfon
- Service de Réanimation polyvalente, Hôpital Louis Pasteur, CH de Chartres, Chartres, France
| | - James Krinsley
- Division of Critical Care, Department of Medicine, Stamford Hospital, Columbia University College of Physicians and Surgeons, Stamford, CT, USA
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, and Institute of Functional Genomics, CNRS, INSERM, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jean-Charles Preiser
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
34
|
Artificial pancreas clinical trials: Moving towards closed-loop control using insulin-on-board constraints. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments. IEEE Trans Biomed Eng 2018; 65:1281-1290. [PMID: 28866479 DOI: 10.1109/tbme.2017.2746340] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
OBJECTIVE Type-1 diabetes (T1D) treatment requires exogenous insulin administrations finely tuned based on glucose monitoring to avoid hyper/hypoglycemia. The safety and effectiveness of insulin treatments is commonly assessed in clinical trials, which are time demanding and expensive. These limitations can be overtaken by in silico clinical trials (ISCT) that require realistic patient and treatment models. The aim is to develop a T1D patient decision simulator usable to perform reliable ISCT. METHODS The T1D patient decision simulator was developed by connecting the UVA/Padova T1D model, which describes glucose, insulin, and glucagon kinetics, with modules describing glucose monitoring devices, like self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM), the patient's behavior in making treatment decisions, and insulin administration. The reliability of the simulator was assessed by comparing its predictions with data collected in 44 T1D subjects using the Dexcom G5 Mobile CGM sensor as an adjunct to the Bayer Contour Next USB SMBG device. RESULTS Metrics like time spent in eu/hypo/hyperglycemia of simulated data well match those observed in subjects. In particular, mean time in euglycemia, mean time in hyperglycemia, and median time in hypoglycemia are 61.75% versus 63.60% (p-value = 0.4825), 33.38% versus 33.40% (p -value = 0.9950), and 3.17% versus 2.14% (p-value = 0.1134), respectively, in real versus simulated data. CONCLUSION The proposed simulator can be used to perform credible ISCT in realistic insulin treatment scenarios. SIGNIFICANCE The T1D patient decision simulator can be used to reliably assess novel insulin treatments, e.g., based on use of CGM only, in a realistic multiple-day scenario.
Collapse
|
36
|
Rosales N, De Battista H, Vehí J, Garelli F. Open-loop glucose control: Automatic IOB-based super-bolus feature for commercial insulin pumps. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 159:145-158. [PMID: 29650309 DOI: 10.1016/j.cmpb.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Although there has been significant progress towards closed-loop type 1 diabetes mellitus (T1DM) treatments, most diabetic patients still treat this metabolic disorder in an open-loop manner, based on insulin pump therapy (basal and bolus insulin infusion). This paper presents a method for automatic insulin bolus shaping based on insulin-on-board (IOB) as an alternative to conventional bolus dosing. METHODS The methodology presented allows the pump to generate the so-called super-bolus (SB) employing a two-compartment IOB dynamic model. The extra amount of insulin to boost the bolus and the basal cutoff time are computed using the duration of insulin action (DIA). In this way, the pump automatically re-establishes basal insulin when IOB reaches its basal level. Thus, detrimental transients caused by manual or a-priori computations are avoided. RESULTS The potential of this method is illustrated via in-silico trials over a 30 patients cohort in single meal and single day scenarios. In the first ones, improvements were found (standard treatment vs. automatic SB) both in percentage time in euglycemia (75g meal: 81.9 ± 15.59 vs. 89.51 ± 11.95, ρ ≃ 0; 100g meal: 75.12 ± 18.23 vs. 85.46 ± 14.96, ρ ≃ 0) and time in hypoglecymia (75g meal: 5.92 ± 14.48 vs. 0.97 ± 4.15, ρ=0.008; 100g meal: 9.5 ± 17.02 vs. 1.85 ± 7.05, ρ=0.014). In a single day scenario, considering intra-patient variability, the time in hypoglycemia was reduced (9.57 ± 14.48 vs. 4.21 ± 6.18, ρ=0.028) and improved the time in euglycemia (79.46 ± 17.46 vs. 86.29 ± 11.73, ρ=0.007). CONCLUSIONS The automatic IOB-based SB has the potential of a better performance in comparison with the standard treatment, particularly for high glycemic index meals with high carbohydrate content. Both glucose excursion and time spent in hypoglycemia were reduced.
Collapse
Affiliation(s)
- Nicolás Rosales
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET. Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina.
| | - Hernán De Battista
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET. Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Josep Vehí
- Institut d'Informàtica i Aplicacions, Universitat de Girona, Campus de Montilivi, Girona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Girona, Spain
| | - Fabricio Garelli
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET. Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
37
|
Bertachi A, Beneyto A, Ramkissoon CM, Vehí J. Assessment of Mitigation Methods to Reduce the Risk of Hypoglycemia for Announced Exercise in a Uni-hormonal Artificial Pancreas. Diabetes Technol Ther 2018; 20:285-295. [PMID: 29608335 DOI: 10.1089/dia.2017.0392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Moderate physical activity improves overall health conditions in subjects with type 1 diabetes. However, insulin management during and after exercise is challenging due to the effects of exercise on glycemic control. Artificial pancreas (AP) systems aim to automatically control blood glucose levels, but exercise-induced hypoglycemia is a major challenge for these systems, especially in uni-hormonal configurations. The aim of this work was to evaluate the ability of several feed-forward (FF) actions to prevent exercise-induced hypoglycemia in a closed-loop setting. METHODS A closed-loop control algorithm combined with FF actions aimed at eliminating exercise-induced hypoglycemia was evaluated in silico using the UVa/Padova type 1 diabetes simulator. The simulator was modified with an exercise model fitted to clinical data. The FF actions were evaluated in two scenarios: (1) exercise sessions during postprandial period and (2) exercise sessions during fasting period. RESULTS The mitigation methods proposed in this work were able to minimize the occurrence of hypoglycemic events related with exercise in both scenarios. The time spent in hypoglycemic range in the 2-h period after exercise decreased from 33.3% to 0.0% (P < 0.01) and from 41.3% to 0.0% (P < 0.01) in both scenarios tested. Besides that, the occurrence of hypoglycemic events after exercise sessions was also reduced. CONCLUSIONS The combination of the FF actions presented in this article within an AP system showed to be an effective strategy to mitigate the risk of hypoglycemia in front of aerobic exercise.
Collapse
Affiliation(s)
- Arthur Bertachi
- 1 Institute of Informatics and Applications, University of Girona , Girona, Spain
- 2 Federal University of Technology - Paraná (UTFPR) , Guarapuava, Brazil
| | - Aleix Beneyto
- 1 Institute of Informatics and Applications, University of Girona , Girona, Spain
| | | | - Josep Vehí
- 1 Institute of Informatics and Applications, University of Girona , Girona, Spain
- 3 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
| |
Collapse
|
38
|
|
39
|
Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C. The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day. J Diabetes Sci Technol 2018; 12:273-281. [PMID: 29451021 PMCID: PMC5851236 DOI: 10.1177/1932296818757747] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. METHOD Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject's basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of "dawn" phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. RESULTS One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. CONCLUSIONS The new modifications introduced in the T1D simulator allow to extend its domain of validity from "single-meal" to "single-day" scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Enrique Campos-Náñez
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Dayu Lv
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Marc Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
- Chiara Dalla Man, PhD, Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Chase JG, Preiser JC, Dickson JL, Pironet A, Chiew YS, Pretty CG, Shaw GM, Benyo B, Moeller K, Safaei S, Tawhai M, Hunter P, Desaive T. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online 2018; 17:24. [PMID: 29463246 PMCID: PMC5819676 DOI: 10.1186/s12938-018-0455-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
Collapse
Affiliation(s)
- J. Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jean-Charles Preiser
- Department of Intensive Care, Erasme University of Hospital, 1070 Brussels, Belgium
| | - Jennifer L. Dickson
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Antoine Pironet
- GIGA In Silico Medicine, University of Liege, 4000 Liege, Belgium
| | - Yeong Shiong Chiew
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Christopher G. Pretty
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Geoffrey M. Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Balazs Benyo
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Knut Moeller
- Department of Biomedical Engineering, Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thomas Desaive
- GIGA In Silico Medicine, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
41
|
Yu X, Turksoy K, Rashid M, Feng J, Frantz N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A. Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes. CONTROL ENGINEERING PRACTICE 2018; 71:129-141. [PMID: 29276347 PMCID: PMC5736323 DOI: 10.1016/j.conengprac.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements. To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The model fusion framework may be used in the development of an AP system for glucose regulation in patients with T1D.
Collapse
Affiliation(s)
- Xia Yu
- School of Information Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Nicole Frantz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Zacharie Maloney
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Elizabeth Littlejohn
- Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, IL 60637, USA
| | - Laurie Quinn
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
42
|
Soylu S, Danisman K. In silico testing of optimized Fuzzy P+D controller for artificial pancreas. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Viceconti M, Cobelli C, Haddad T, Himes A, Kovatchev B, Palmer M. In silico assessment of biomedical products: The conundrum of rare but not so rare events in two case studies. Proc Inst Mech Eng H 2017; 231:455-466. [PMID: 28427321 DOI: 10.1177/0954411917702931] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In silico clinical trials, defined as "The use of individualized computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention," have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market for biomedical products. We review some of the the literature on this topic, focusing in particular on those applications where the current practice is recognized as inadequate, as for example, the detection of unexpected severe adverse events too rare to be detected in a clinical trial, but still likely enough to be of concern. We then describe with more details two case studies, two successful applications of in silico clinical trial approaches, one relative to the University of Virginia/Padova simulator that the Food and Drug Administration has accepted as possible replacement for animal testing in the preclinical assessment of artificial pancreas technologies, and the second, an investigation of the probability of cardiac lead fracture, where a Bayesian network was used to combine in vivo and in silico observations, suggesting a whole new strategy of in silico-augmented clinical trials, to be used to increase the numerosity where recruitment is impossible, or to explore patients' phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern.
Collapse
Affiliation(s)
- Marco Viceconti
- 1 Department of Mechanical Engineering, INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, UK
| | - Claudio Cobelli
- 2 Department of Information Engineering, University of Padova, Padova, Italy
| | | | | | - Boris Kovatchev
- 4 Center for Diabetes Technology, The University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
44
|
Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehí J. Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PLoS One 2017; 12:e0187754. [PMID: 29112978 PMCID: PMC5675457 DOI: 10.1371/journal.pone.0187754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
The large patient variability in human physiology and the effects of variables such as exercise or meals challenge current prediction modeling techniques. Physiological models are very precise but they are typically complex and specific physiological knowledge is required. In contrast, data-based models allow the incorporation of additional inputs and accurately capture the relationship between these inputs and the outcome, but at the cost of losing the physiological meaning of the model. In this work, we designed a hybrid approach comprising physiological models for insulin and grammatical evolution, taking into account the clinical harm caused by deviations from the target blood glucose by using a penalizing fitness function based on the Clarke error grid. The prediction models were built using data obtained over 14 days for 100 virtual patients generated by the UVA/Padova T1D simulator. Midterm blood glucose was predicted for the 100 virtual patients using personalized models and different scenarios. The results obtained were promising; an average of 98.31% of the predictions fell in zones A and B of the Clarke error grid. Midterm predictions using personalized models are feasible when the configuration of grammatical evolution explored in this study is used. The study of new alternative models is important to move forward in the development of alarm-and-control applications for the management of type 1 diabetes and the customization of the patient's treatments. The hybrid approach can be adapted to predict short-term blood glucose values to detect continuous glucose-monitoring sensor errors and to estimate blood glucose values when the continuous glucose-monitoring system fails to provide them.
Collapse
Affiliation(s)
- Iván Contreras
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- * E-mail:
| | - Silvia Oviedo
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Josep Vehí
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
| |
Collapse
|
45
|
Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges. SENSORS 2016; 16:s16122093. [PMID: 27941663 PMCID: PMC5191073 DOI: 10.3390/s16122093] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022]
Abstract
Continuous glucose monitoring (CGM) sensors are portable devices that allow measuring and visualizing the glucose concentration in real time almost continuously for several days and are provided with hypo/hyperglycemic alerts and glucose trend information. CGM sensors have revolutionized Type 1 diabetes (T1D) management, improving glucose control when used adjunctively to self-monitoring blood glucose systems. Furthermore, CGM devices have stimulated the development of applications that were impossible to create without a continuous-time glucose signal, e.g., real-time predictive alerts of hypo/hyperglycemic episodes based on the prediction of future glucose concentration, automatic basal insulin attenuation methods for hypoglycemia prevention, and the artificial pancreas. However, CGM sensors’ lack of accuracy and reliability limited their usability in the clinical practice, calling upon the academic community for the development of suitable signal processing methods to improve CGM performance. The aim of this paper is to review the past and present algorithmic challenges of CGM sensors, to show how they have been tackled by our research group, and to identify the possible future ones.
Collapse
|
46
|
Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Predicting Insulin Treatment Scenarios with the Net Effect Method: Domain of Validity. Diabetes Technol Ther 2016; 18:694-704. [PMID: 27860496 DOI: 10.1089/dia.2016.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND A simulation methodology based on the net effect, a signal estimated from continuous glucose monitoring (CGM) and insulin data accounting for sources of glucose variability, for example, meals and exercise, has been proposed. This method has been recently used to "replay" real-life treatment scenarios and determine the minimal level of CGM sensor accuracy required for nonadjunctive use. Given the potential of the net effect method, it is important to assess its domain of validity. METHODS The UVA/Padova type 1 diabetes simulator is used to generate glucose and insulin data. The net effect signal is estimated and used to predict the glucose profiles resulting from the following therapy modifications: (1) basal insulin increase/decrease, (2) bolus reduction to prevent hypoglycemia, (3) bolus addition after CGM hyperalarms, (4) hypotreatment addition after CGM hypoalarms. Results of the net effect method are compared with the reference provided by the UVA/Padova simulator. RESULTS The net effect method (1) well predicts the effect of small basal insulin adjustments (±10%), but overestimates time in hypo/hyperglycemia for larger adjustments (±50%); (2) underestimates the bolus reduction required to prevent hypoglycemia; (3) underestimates time in hyperglycemia when introducing correction boluses; and (4) overestimates time in hypoglycemia when introducing hypotreatments. CONCLUSIONS The net effect method is reliable for small adjustments of basal insulin, while outside this domain of validity it can provide inaccurate results.
Collapse
Affiliation(s)
- Martina Vettoretti
- Department of Information Engineering, University of Padova , Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova , Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova , Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova , Padova, Italy
| |
Collapse
|