1
|
Materne S, Possenti L, Pisani F, Vitullo P, Catalano A, Iacovelli NA, Franceschini M, Cavallo A, Cicchetti A, Zunino P, Rancati T. Patient-specific microvascular computational modeling for estimating radiotherapy outcomes. Comput Biol Med 2025; 190:110014. [PMID: 40132300 DOI: 10.1016/j.compbiomed.2025.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
This study presents a personalized computational framework for modeling the vascular microenvironment in head-and-neck cancer patients and evaluating the impact of microvasculature on radiotherapy outcomes. We first perform a population-based calibration of a microvascular model using data collected with a sublingual microscope from 62 patients, creating synthetic networks that capture microvascular features with a population-based approach. The calibrated models accurately reproduce key physiological parameters, such as red blood cells velocity, aligning with clinical data. Next, we personalize the model for nine patients, demonstrating that digital patient-specific microvascular networks can replicate individual vascular beds' structural and functional characteristics. Simulations highlight that, while morphological features improve with vascularization, red blood cells velocity is less predictable, revealing the limitations of using capillary density alone to describe microvascular complexity. We then integrate these microvascular models into a 3D virtual microenvironment to simulate oxygen delivery and radiotherapy response. Our results show that higher vascularization enhances oxygenation and reduces hypoxic regions, which correlates with improved tumor control probability. Additionally, our findings demonstrate how the properties of microvascular networks, radiosensitivity, and treatment parameters affect predicted radiotherapy outcomes. Our workflow supports the creation of microvascular digital twins, initialized using patient data from sublingual microscopy.
Collapse
Affiliation(s)
- Sophie Materne
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Francesco Pisani
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandra Catalano
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | | | - Marzia Franceschini
- Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Anna Cavallo
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
2
|
Tie X, Li H, Gao L, Liu P, Gao Y, Jin M, Duan G, Yi Z. Enhancing the management of locally advanced head and neck malignancies and cases with local/neck recurrence and metastasis through the integration of anlotinib with concurrent radiochemotherapy. Anticancer Drugs 2024; 35:774-779. [PMID: 38809804 DOI: 10.1097/cad.0000000000001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The aim of this study is to assess the effectiveness and safety of anlotinib in conjunction with concurrent radiochemotherapy for the treatment of locally advanced head and neck malignant tumors, including cases exhibiting local or neck recurrence and metastasis. Between June 2020 and June 2023, 42 patients diagnosed with locally advanced head and neck malignant tumors or presenting with local or neck recurrence and metastasis were recruited. These individuals received treatment that combined anlotinib with concurrent radiochemotherapy, followed by a minimum of two cycles of oral anlotinib upon completion of the initial treatment regimen. Among the 19 patients diagnosed with nasopharyngeal carcinoma, 14 patients attained a complete response, while four patients achieved partial response, resulting in an overall response rate of 94.74% (18/19). Conversely, among the 23 patients with non-nasopharyngeal carcinoma, two patients achieved complete response and 16 attained partial response, yielding a response rate of 78.26% (18/23). The 6-month progression-free survival rate was 95.24%. After treatment, serum vascular endothelial growth factor receptor levels exhibited a significant decrease compared with pretreatment levels. Notably, no instances of treatment-related serious adverse reactions were recorded. The combination of anlotinib with concurrent radiochemotherapy demonstrates favorable efficacy in managing locally advanced head and neck malignant tumors, including instances of local or neck recurrence and metastasis. Furthermore, the treatment regimen is characterized by an acceptable safety profile and tolerability.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingxin Jin
- Otolaryngology, Kaifeng Central Hospital, Kaifeng, Henan Province, China
| | - Guangting Duan
- Otolaryngology, Kaifeng Central Hospital, Kaifeng, Henan Province, China
| | | |
Collapse
|
3
|
Possenti L, Vitullo P, Cicchetti A, Zunino P, Rancati T. Modeling hypoxia-induced radiation resistance and the impact of radiation sources. Comput Biol Med 2024; 173:108334. [PMID: 38520919 DOI: 10.1016/j.compbiomed.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.
Collapse
Affiliation(s)
- Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
4
|
Köry J, Narain V, Stolz BJ, Kaeppler J, Markelc B, Muschel RJ, Maini PK, Pitt-Francis JM, Byrne HM. Enhanced perfusion following exposure to radiotherapy: A theoretical investigation. PLoS Comput Biol 2024; 20:e1011252. [PMID: 38363799 PMCID: PMC10903964 DOI: 10.1371/journal.pcbi.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/29/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour's response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies.
Collapse
Affiliation(s)
- Jakub Köry
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Vedang Narain
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jakob Kaeppler
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ruth J. Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip K. Maini
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Joe M. Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Vitullo P, Cicci L, Possenti L, Coclite A, Costantino ML, Zunino P. Sensitivity analysis of a multi-physics model for the vascular microenvironment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3752. [PMID: 37455669 DOI: 10.1002/cnm.3752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The vascular microenvironment is the scale at which microvascular transport, interstitial tissue properties and cell metabolism interact. The vascular microenvironment has been widely studied by means of quantitative approaches, including multi-physics mathematical models as it is a central system for the pathophysiology of many diseases, such as cancer. The microvascular architecture is a key factor for fluid balance and mass transfer in the vascular microenvironment, together with the physical parameters characterizing the vascular wall and the interstitial tissue. The scientific literature of this field has witnessed a long debate about which factor of this multifaceted system is the most relevant. The purpose of this work is to combine the interpretative power of an advanced multi-physics model of the vascular microenvironment with state of the art and robust sensitivity analysis methods, in order to determine the factors that most significantly impact quantities of interest, related in particular to cancer treatment. We are particularly interested in comparing the factors related to the microvascular architecture with the ones affecting the physics of microvascular transport. Ultimately, this work will provide further insight into how the vascular microenvironment affects cancer therapies, such as chemotherapy, radiotherapy or immunotherapy.
Collapse
Affiliation(s)
| | - Ludovica Cicci
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
- School of Biomedical Engineering & Imaging Sciences, King's College, London, UK
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alessandro Coclite
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, Italy
| | - Maria Laura Costantino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Hami R, Apeke S, Redou P, Gaubert L, Dubois LJ, Lambin P, Visvikis D, Boussion N. Predicting the Tumour Response to Radiation by Modelling the Five Rs of Radiotherapy Using PET Images. J Imaging 2023; 9:124. [PMID: 37367472 DOI: 10.3390/jimaging9060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells. To understand these interactions, five major biologic concepts called the "5 Rs" have emerged. These concepts include reoxygenation, DNA damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects of radiation on tumour growth. In this model, the oxygen level was varied in both time and space. When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was taken in account. This model also considered the repair of cells by giving a different probability of survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control probability curves were simulated. The result showed the evolution of tumours and normal cells. The increase in the cell number after radiation was seen in both normal and malignant cells, which proves that repopulation was included in this model. The proposed model predicts the tumour response to radiation and forms the basis for a more patient-specific clinical tool where related biological data will be included.
Collapse
Affiliation(s)
- Rihab Hami
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
| | - Sena Apeke
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Pascal Redou
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Laurent Gaubert
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Ludwig J Dubois
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Dimitris Visvikis
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| | - Nicolas Boussion
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| |
Collapse
|
7
|
Paczkowski M, Kretzschmar WW, Markelc B, Liu SK, Kunz-Schughart LA, Harris AL, Partridge M, Byrne HM, Kannan P. Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer. Commun Biol 2021; 4:6. [PMID: 33398023 PMCID: PMC7782740 DOI: 10.1038/s42003-020-01529-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Intratumoural heterogeneity (ITH) contributes to local recurrence following radiotherapy in prostate cancer. Recent studies also show that ecological interactions between heterogeneous tumour cell populations can lead to resistance in chemotherapy. Here, we evaluated whether interactions between heterogenous populations could impact growth and response to radiotherapy in prostate cancer. Using mixed 3D cultures of parental and radioresistant populations from two prostate cancer cell lines and a predator-prey mathematical model to investigate various types of ecological interactions, we show that reciprocal interactions between heterogeneous populations enhance overall growth and reduce radiation sensitivity. The type of interaction influences the time of regrowth after radiation, and, at the population level, alters the survival and cell cycle of each population without eliminating either one. These interactions can arise from oxygen constraints and from cellular cross-talk that alter the tumour microenvironment. These findings suggest that ecological-type interactions are important in radiation response and could be targeted to reduce local recurrence.
Collapse
Affiliation(s)
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bostjan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stanley K Liu
- Sunnybrook Research Institute and Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum, Dresden, Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site, Dresden, Germany
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Grimes DR, Jansen M, Macauley RJ, Scott JG, Basanta D. Evidence for hypoxia increasing the tempo of evolution in glioblastoma. Br J Cancer 2020; 123:1562-1569. [PMID: 32848201 PMCID: PMC7653934 DOI: 10.1038/s41416-020-1021-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is associated with metastatic disease, and while there have been many mechanisms proposed for why tumour hypoxia is associated with metastatic disease, it remains unclear whether one precise mechanism is the key reason or several in concert. Somatic evolution drives cancer progression and treatment resistance, fuelled not only by genetic and epigenetic mutation but also by selection from interactions between tumour cells, normal cells and physical micro-environment. Ecological habitats influence evolutionary dynamics, but the impact on tempo of evolution is less clear. METHODS We explored this complex dialogue with a combined clinical-theoretical approach by simulating a proliferative hierarchy under heterogeneous oxygen availability with an agent-based model. Predictions were compared against histology samples taken from glioblastoma patients, stained to elucidate areas of necrosis and TP53 expression heterogeneity. RESULTS Results indicate that cell division in hypoxic environments is effectively upregulated, with low-oxygen niches providing avenues for tumour cells to spread. Analysis of human data indicates that cell division is not decreased under hypoxia, consistent with our results. CONCLUSIONS Our results suggest that hypoxia could be a crucible that effectively warps evolutionary velocity, making key mutations more likely. Thus, key tumour ecological niches such as hypoxic regions may alter the evolutionary tempo, driving mutations fuelling tumour heterogeneity.
Collapse
Affiliation(s)
- David Robert Grimes
- School of Physical Sciences, Dublin City University, Dublin 9, Ireland.
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Marnix Jansen
- Departments of Endoscopy and Pathology, University College London Hospital, London, UK
| | - Robert J Macauley
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacob G Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation. Proc Natl Acad Sci U S A 2020; 117:27811-27819. [PMID: 33109723 PMCID: PMC7668105 DOI: 10.1073/pnas.2007770117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal tumor vascular structure. We investigate the role that anomalies in red blood cell transport plays in establishing oxygen heterogeneity in tumor tissue. We introduce a metric to characterize tumor vasculature (mean vessel length-to-diameter ratio, λ) and demonstrate how it predicts tissue-oxygen heterogeneity. We also report an increase in λ following treatment with the antiangiogenic agent DC101. Together, we propose λ as an effective way of monitoring the action of antiangiogenic agents and a proxy measure of oxygen heterogeneity in tumor tissue. Unraveling the causal relationship between tumor vascular structure and tissue oxygenation will pave the way for new personalized therapeutic approaches. Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumor, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that red blood cell (RBC) transport plays in establishing oxygen heterogeneity in tumor tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculated average vessel lengths L¯ and diameters d¯ from tumor allografts of three cancer cell lines and observed a substantial reduction in the ratio λ=L¯/d¯ compared to physiological conditions. Mathematical modeling reveals that small values of the ratio λ (i.e., λ<6) can bias hematocrit distribution in tumor vascular networks and drive heterogeneous oxygenation of tumor tissue. Finally, we show an increase in the value of λ in tumor vascular networks following treatment with the antiangiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumor tissue undergoing antiangiogenic treatment.
Collapse
|
10
|
Zhang Y, Qu H. Expression and clinical significance of aquaporin-1, vascular endothelial growth factor and microvessel density in gastric cancer. Medicine (Baltimore) 2020; 99:e21883. [PMID: 32899018 PMCID: PMC7478653 DOI: 10.1097/md.0000000000021883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the expression and clinical significance of aquaporin-1 (AQP1), vascular endothelial growth factor (VEGF) and microvessel density (MVD) in gastric cancer.A total of 79 gastric cancer patients who were admitted into Beijing Chao-Yang Hospital from January, 2018 to December, 2019 were involved in this study. Tumor specimens and para-cancerous normal tissues (> 2 cm away from the tumor) of all the enrolled patients were collected. Immunohistochemistry were performed to identify the expression of AQP1, VEGF, and MVD and the correlation between AQP1, VEGF, MVD, and clinicopathological parameters was analyzed.The expression of AQP1, VEGF and MVD in gastric cancer tissue was increased significantly compared with those in para-cancerous tissue (P < .05). AQP1, VEGF, and MVD were closely correlated with gastric cancer differentiation, lymph node metastasis, vascular tumor thrombosis and clinical stage (P < .05). Spearman correlation analysis showed that AQP1 was positively associated with VEGF expression (r = 0.497, P < .05). MVD was enhanced in VEGF or AQP1 positive cancer tissues compared with that in VEGF or AQP1 negative tissue (P < .05).Synergistic effect among AQP1, VEGF, and MVD is involved in occurrence and development of gastric cancer.
Collapse
|
11
|
From tumour perfusion to drug delivery and clinical translation of in silico cancer models. Methods 2020; 185:82-93. [PMID: 32147442 DOI: 10.1016/j.ymeth.2020.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
In silico cancer models have demonstrated great potential as a tool to improve drug design, optimise the delivery of drugs to target sites in the host tissue and, hence, improve therapeutic efficacy and patient outcome. However, there are significant barriers to the successful translation of in silico technology from bench to bedside. More precisely, the specification of unknown model parameters, the necessity for models to adequately reflect in vivo conditions, and the limited amount of pertinent validation data to evaluate models' accuracy and assess their reliability, pose major obstacles in the path towards their clinical translation. This review aims to capture the state-of-the-art in in silico cancer modelling of vascularised solid tumour growth, and identify the important advances and barriers to success of these models in clinical oncology. Particular emphasis has been put on continuum-based models of cancer since they - amongst the class of mechanistic spatio-temporal modelling approaches - are well-established in simulating transport phenomena and the biomechanics of tissues, and have demonstrated potential for clinical translation. Three important avenues in in silico modelling are considered in this contribution: first, since systemic therapy is a major cancer treatment approach, we start with an overview of the tumour perfusion and angiogenesis in silico models. Next, we present the state-of-the-art in silico work encompassing the delivery of chemotherapeutic agents to cancer nanomedicines through the bloodstream, and then review continuum-based modelling approaches that demonstrate great promise for successful clinical translation. We conclude with a discussion of what we view to be the key challenges and opportunities for in silico modelling in personalised and precision medicine.
Collapse
|
12
|
Lambert B, MacLean AL, Fletcher AG, Combes AN, Little MH, Byrne HM. Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. J Math Biol 2018; 76:1673-1697. [PMID: 29392399 PMCID: PMC5906521 DOI: 10.1007/s00285-018-1208-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Indexed: 12/11/2022]
Abstract
The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.
Collapse
Affiliation(s)
- Ben Lambert
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Adam L MacLean
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
| |
Collapse
|
13
|
Brüningk S, Powathil G, Ziegenhein P, Ijaz J, Rivens I, Nill S, Chaplain M, Oelfke U, Ter Haar G. Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments. J R Soc Interface 2018; 15:20170681. [PMID: 29343635 PMCID: PMC5805969 DOI: 10.1098/rsif.2017.0681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Combined radiotherapy and hyperthermia offer great potential for the successful treatment of radio-resistant tumours through thermo-radiosensitization. Tumour response heterogeneity, due to intrinsic, or micro-environmentally induced factors, may greatly influence treatment outcome, but is difficult to account for using traditional treatment planning approaches. Systems oncology simulation, using mathematical models designed to predict tumour growth and treatment response, provides a powerful tool for analysis and optimization of combined treatments. We present a framework that simulates such combination treatments on a cellular level. This multiscale hybrid cellular automaton simulates large cell populations (up to 107 cells) in vitro, while allowing individual cell-cycle progression, and treatment response by modelling radiation-induced mitotic cell death, and immediate cell kill in response to heating. Based on a calibration using a number of experimental growth, cell cycle and survival datasets for HCT116 cells, model predictions agreed well (R2 > 0.95) with experimental data within the range of (thermal and radiation) doses tested (0-40 CEM43, 0-5 Gy). The proposed framework offers flexibility for modelling multimodality treatment combinations in different scenarios. It may therefore provide an important step towards the modelling of personalized therapies using a virtual patient tumour.
Collapse
Affiliation(s)
- S Brüningk
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - G Powathil
- Department of Mathematics, College of Science, Swansea University, Swansea,, UK
| | - P Ziegenhein
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - J Ijaz
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - I Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - S Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - M Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - U Oelfke
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - G Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| |
Collapse
|
14
|
Szabó A, Merks RMH. Blood vessel tortuosity selects against evolution of aggressive tumor cells in confined tissue environments: A modeling approach. PLoS Comput Biol 2017; 13:e1005635. [PMID: 28715420 PMCID: PMC5536454 DOI: 10.1371/journal.pcbi.1005635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/31/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer is a disease of cellular regulation, often initiated by genetic mutation within cells, and leading to a heterogeneous cell population within tissues. In the competition for nutrients and growth space within the tumors the phenotype of each cell determines its success. Selection in this process is imposed by both the microenvironment (neighboring cells, extracellular matrix, and diffusing substances), and the whole of the organism through for example the blood supply. In this view, the development of tumor cells is in close interaction with their increasingly changing environment: the more cells can change, the more their environment will change. Furthermore, instabilities are also introduced on the organism level: blood supply can be blocked by increased tissue pressure or the tortuosity of the tumor-neovascular vessels. This coupling between cell, microenvironment, and organism results in behavior that is hard to predict. Here we introduce a cell-based computational model to study the effect of blood flow obstruction on the micro-evolution of cells within a cancerous tissue. We demonstrate that stages of tumor development emerge naturally, without the need for sequential mutation of specific genes. Secondly, we show that instabilities in blood supply can impact the overall development of tumors and lead to the extinction of the dominant aggressive phenotype, showing a clear distinction between the fitness at the cell level and survival of the population. This provides new insights into potential side effects of recent tumor vasculature normalization approaches.
Collapse
Affiliation(s)
- András Szabó
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Grogan JA, Connor AJ, Markelc B, Muschel RJ, Maini PK, Byrne HM, Pitt-Francis JM. Microvessel Chaste: An Open Library for Spatial Modeling of Vascularized Tissues. Biophys J 2017; 112:1767-1772. [PMID: 28494948 PMCID: PMC5425404 DOI: 10.1016/j.bpj.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Spatial models of vascularized tissues are widely used in computational physiology. We introduce a software library for composing multiscale, multiphysics models for applications including tumor growth, angiogenesis, osteogenesis, coronary perfusion, and oxygen delivery. Composition of such models is time consuming, with many researchers writing custom software. Recent advances in imaging have produced detailed three-dimensional (3D) datasets of vascularized tissues at the scale of individual cells. To fully exploit such data there is an increasing need for software that allows user-friendly composition of efficient, 3D models of vascularized tissues, and comparison of predictions with in vivo or in vitro experiments and alternative computational formulations. Microvessel Chaste can be used to build simulations of vessel growth and adaptation in response to mechanical and chemical stimuli; intra- and extravascular transport of nutrients, growth factors and drugs; and cell proliferation in complex 3D geometries. In addition, it can be used to develop custom software for integrating modeling with experimental data processing workflows, facilitated by a comprehensive Python interface to solvers implemented in C++. This article links to two reproducible example problems, showing how the library can be used to build simulations of tumor growth and angiogenesis with realistic vessel networks.
Collapse
Affiliation(s)
- James A Grogan
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | - Anthony J Connor
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom; Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Bostjan Markelc
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Joe M Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Affiliation(s)
- Zhihui Wang
- Center for Precision Biomedicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, (UTHealth) McGovern Medical School, Houston, TX 77030, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|