1
|
Namakshenas P, Bianchi L, Saccomandi P. A sensitivity analysis of laser thermotherapy efficacy in lung cancer treatment to the temperature dependence of thermal properties. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039480 DOI: 10.1109/embc53108.2024.10782808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Laser interstitial thermotherapy has shown potential in the treatment of inoperable lung cancers, which make up 70-80 % of all cases, thanks to the possibility of real-time ultrasound guidance, a fine introducer needle, and faster recovery after the procedure. To plan a laser ablation session through numerical modeling, the sensitivity analysis of the input parameters is necessary since simplifying the influential parameters could lead to a different treatment outcome.The purpose of this study is to determine the sensitivity of laser-induced ablated volume, an indicator of therapy efficacy, with regard to the temperature dependence of thermal properties in the clinical power ranges (i.e., between 2 W and 5 W at the wavelength of 1064 nm) for lung tissue. According to the results, the difference between ablated volumes derived from constant and temperature-dependent thermal properties grows with increasing power, reaching 17.5% and 60.3% under ex vivo and in vivo conditions at 5 W, respectively. As the blood perfusion rate strongly affects the thermal effects in tissue, the temperature dependency of this parameter cannot be ignored. The assumption of constant thermal properties is valid for ex vivo planning by acceptable error when the laser power is set at a low level, e.g., ~ 2% at 2 W and ~ 6% at 3 W.Clinical Relevance-The methods and results of this study set the basis for defining the accurate pre-planning of laser-induced thermotherapy of lung cancer.
Collapse
|
2
|
Singh S, Bianchi L, Korganbayev S, Namakshenas P, Melnik R, Saccomandi P. Non-Fourier Bioheat Transfer Analysis in Brain Tissue During Interstitial Laser Ablation: Analysis of Multiple Influential Factors. Ann Biomed Eng 2024; 52:967-981. [PMID: 38236341 PMCID: PMC11252202 DOI: 10.1007/s10439-023-03433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
This work presents the dual-phase lag-based non-Fourier bioheat transfer model of brain tissue subjected to interstitial laser ablation. The finite element method has been utilized to predict the brain tissue's temperature distributions and ablation volumes. A sensitivity analysis has been conducted to quantify the effect of variations in the input laser power, treatment time, laser fiber diameter, laser wavelength, and non-Fourier phase lags. Notably, in this work, the temperature-dependent thermal properties of brain tissue have been considered. The developed model has been validated by comparing the temperature obtained from the numerical and ex vivo brain tissue during interstitial laser ablation. The ex vivo brain model has been further extended to in vivo settings by incorporating the blood perfusion effects. The results of the systematic analysis highlight the importance of considering temperature-dependent thermal properties of the brain tissue, non-Fourier behavior, and microvascular perfusion effects in the computational models for accurate predictions of the treatment outcomes during interstitial laser ablation, thereby minimizing the damage to surrounding healthy tissue. The developed model and parametric analysis reported in this study would assist in a more accurate and precise prediction of the temperature distribution, thus allowing to optimize the thermal dosage during laser therapy in the brain.
Collapse
Affiliation(s)
- Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Pouya Namakshenas
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
| |
Collapse
|
3
|
Gomez Bustamante T, Mercado Montoya M, Berjano E, González-Suárez A, Kulstad E. Proactive esophageal cooling during laser cardiac ablation: A computer modeling study. Lasers Surg Med 2024; 56:392-403. [PMID: 38436122 DOI: 10.1002/lsm.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Laser ablation is increasingly used to treat atrial fibrillation (AF). However, atrioesophageal injury remains a potentially serious complication. While proactive esophageal cooling (PEC) reduces esophageal injury during radiofrequency ablation, the effects of PEC during laser ablation have not previously been determined. We aimed to evaluate the protective effects of PEC during laser ablation of AF by means of a theoretical study based on computer modeling. METHODS Three-dimensional mathematical models were built for 20 different cases including a fragment of atrial wall (myocardium), epicardial fat (adipose tissue), connective tissue, and esophageal wall. The esophagus was considered with and without PEC. Laser-tissue interaction was modeled using Beer-Lambert's law, Pennes' Bioheat equation was used to compute the resultant heating, and the Arrhenius equation was used to estimate the fraction of tissue damage (FOD), assuming a threshold of 63% to assess induced necrosis. We modeled laser irradiation power of 8.5 W over 20 s. Thermal simulations extended up to 250 s to account for thermal latency. RESULTS PEC significantly altered the temperature distribution around the cooling device, resulting in lower temperatures (around 22°C less in the esophagus and 9°C in the atrial wall) compared to the case without PEC. This thermal reduction translated into the absence of transmural lesions in the esophagus. The esophagus was thermally damaged only in the cases without PEC and with a distance equal to or shorter than 3.5 mm between the esophagus and endocardium (inner boundary of the atrial wall). Furthermore, PEC demonstrated minimal impact on the lesion created across the atrial wall, either in terms of maximum temperature or FOD. CONCLUSIONS PEC reduces the potential for esophageal injury without degrading the intended cardiac lesions for a variety of different tissue thicknesses. Thermal latency may influence lesion formation during laser ablation and may play a part in any collateral damage.
Collapse
Affiliation(s)
| | | | - Enrique Berjano
- Department of Electronic Engineering, BioMIT, Universitat Politècnica de València, Spain
| | - Ana González-Suárez
- Translational Medical Device Lab, School of Medicine, Lambe Institute for Translational Research, University of Galway, Ireland
- Valencian International University, Valencia, Spain
| | - Erik Kulstad
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Fan Y, Xu L, Liu S, Li J, Xia J, Qin X, Li Y, Gao T, Tang X. The State-of-the-Art and Perspectives of Laser Ablation for Tumor Treatment. CYBORG AND BIONIC SYSTEMS 2024; 5:0062. [PMID: 38188984 PMCID: PMC10769065 DOI: 10.34133/cbsystems.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 01/09/2024] Open
Abstract
Tumors significantly impact individuals' physical well-being and quality of life. With the ongoing advancements in optical technology, information technology, robotic technology, etc., laser technology is being increasingly utilized in the field of tumor treatment, and laser ablation (LA) of tumors remains a prominent area of research interest. This paper presents an overview of the recent progress in tumor LA therapy, with a focus on the mechanisms and biological effects of LA, commonly used ablation lasers, image-guided LA, and robotic-assisted LA. Further insights and future prospects are discussed in relation to these aspects, and the paper proposed potential future directions for the development of tumor LA techniques.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liancheng Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jialu Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Yafeng Li
- China Electronics Harvest Technology Co. Ltd., China
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Bianchi L, Fiorentini S, Gianella S, Gianotti S, Iadanza C, Asadi S, Saccomandi P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. SENSORS (BASEL, SWITZERLAND) 2023; 23:6865. [PMID: 37571648 PMCID: PMC10422510 DOI: 10.3390/s23156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (L.B.); (S.F.); (S.G.); (S.G.); (C.I.); (S.A.)
| |
Collapse
|
6
|
Singh S, Escobar A, Wang Z, Zhang Z, Ramful C, Xu CQ. Numerical Modeling and Simulation of Non-Invasive Acupuncture Therapy Utilizing Near-Infrared Light-Emitting Diode. Bioengineering (Basel) 2023; 10:837. [PMID: 37508864 PMCID: PMC10376585 DOI: 10.3390/bioengineering10070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Acupuncture is one of the most extensively used complementary and alternative medicine therapies worldwide. In this study, we explore the use of near-infrared light-emitting diodes (LEDs) to provide acupuncture-like physical stimulus to the skin tissue, but in a completely non-invasive way. A computational modeling framework has been developed to investigate the light-tissue interaction within a three-dimensional multi-layer model of skin tissue. Finite element-based analysis has been conducted, to obtain the spatiotemporal temperature distribution within the skin tissue, by solving Pennes' bioheat transfer equation, coupled with the Beer-Lambert law. The irradiation profile of the LED has been experimentally characterized and imposed in the numerical model. The experimental validation of the developed model has been conducted through comparing the numerical model predictions with those obtained experimentally on the agar phantom. The effects of the LED power, treatment duration, LED distance from the skin surface, and usage of multiple LEDs on the temperature distribution attained within the skin tissue have been systematically investigated, highlighting the safe operating power of the selected LEDs. The presented information about the spatiotemporal temperature distribution, and critical factors affecting it, would assist in better optimizing the desired thermal dosage, thereby enabling a safe and effective LED-based photothermal therapy.
Collapse
Affiliation(s)
- Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Andres Escobar
- Department of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zexi Wang
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zhiyi Zhang
- Advanced Electronics and Photonics Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Chundra Ramful
- Advanced Electronics and Photonics Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Chang-Qing Xu
- Department of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
7
|
Namakshenas P, Di Matteo FM, Bianchi L, Faiella E, Stigliano S, Quero G, Saccomandi P. Optimization of laser dosimetry based on patient-specific anatomical models for the ablation of pancreatic ductal adenocarcinoma tumor. Sci Rep 2023; 13:11053. [PMID: 37422486 PMCID: PMC10329695 DOI: 10.1038/s41598-023-37859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Laser-induced thermotherapy has shown promising potential for the treatment of unresectable primary pancreatic ductal adenocarcinoma tumors. Nevertheless, heterogeneous tumor environment and complex thermal interaction phenomena that are established under hyperthermic conditions can lead to under/over estimation of laser thermotherapy efficacy. Using numerical modeling, this paper presents an optimized laser setting for Nd:YAG laser delivered by a bare optical fiber (300 µm in diameter) at 1064 nm working in continuous mode within a power range of 2-10 W. For the thermal analysis, patient-specific 3D models were used, consisting of tumors in different portions of the pancreas. The optimized laser power and time for ablating the tumor completely and producing thermal toxic effects on the possible residual tumor cells beyond the tumor margins were found to be 5 W for 550 s, 7 W for 550 s, and 8 W for 550 s for the pancreatic tail, body, and head tumors, respectively. Based on the results, during the laser irradiation at the optimized doses, thermal injury was not evident either in the 15 mm lateral distances from the optical fiber or in the nearby healthy organs. The present computational-based predictions are also in line with the previous ex vivo and in vivo studies, hence, they can assist in the estimation of the therapeutic outcome of laser ablation for pancreatic neoplasms prior to clinical trials.
Collapse
Affiliation(s)
- Pouya Namakshenas
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | | | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Eliodoro Faiella
- Radiology Unit, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Serena Stigliano
- Operative Endoscopy Department, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Giuseppe Quero
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS di Roma, Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, 00168, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
| |
Collapse
|
8
|
Korganbayev S, De Landro M, Bianchi L, Verde J, Saccomandi P. Preliminary Results of Laser Ablation during In Vivo Experiments: Comparison of Thermal Effects Obtained with Bare and Diffuser Tip Applicators. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083042 DOI: 10.1109/embc40787.2023.10340179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This work is a step towards the analysis of the effect of different laser applicator tips used for laser ablation of liver for in vivo experiments. As the thermal outcome of this minimally invasive treatment for tumors depends upon the interaction between the tissue and the light, the emission pattern of the laser applicator has a key role in the shape and size of the final treated region. Hence, we have compared two different laser applicators: a bare tip fiber (emitting light from the tip and forward) and a diffuser tip fiber (emitting light at 360° circumferentially from the side of the fiber). The experiments have been carried out percutaneously in a preclinical scenario (anesthetized pigs), under computed tomography (CT) guidance. The thermal effects of the two applicators have been assessed in terms of real-time temperature distribution, by means of an array of 40 fiber Bragg grating (FBG) sensors, and in terms of cavitation and ablation volumes, measured through CT post-temperature due to breathing motion has been analyzed and filtered out. Results show that the maximum temperature reached 50.5 °C for the bare tip fiber experiment (measured at 6.24 mm distance from the applicator) and 60.9 °C for the diffuser tip fiber experiment (measured at 5.23 mm distance from the applicator). The diffuser tip fiber allowed to achieve a more symmetrical heat distribution than the bare tip fiber, and without cavitation volume.Clinical Relevance-This work shows the analysis of the thermal effects of different laser fiber tips to improve laser ablation treatment. The results obtained in the preclinical scenario well represent the expected clinical outcome in the treatment of hepatic tumors. Moreover, these findings can be applied to other fields in which laser ablation is the optimal therapeutic choice, such as neurosurgery.
Collapse
|
9
|
Prakash R, Yamamoto KK, Oca SR, Ross W, Codd PJ. Brain-Mimicking Phantom for Photoablation and Visualization. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2023; 2023:10.1109/ismr57123.2023.10130243. [PMID: 37274088 PMCID: PMC10237535 DOI: 10.1109/ismr57123.2023.10130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While the use of tissue-mimicking (TM) phantoms has been ubiquitous in surgical robotics, the translation of technology from laboratory experiments to equivalent intraoperative tissue conditions has been a challenge. The increasing use of lasers for surgical tumor resection has introduced the need to develop a modular, low-cost, functionally relevant TM phantom to model the complex laser-tissue interaction. In this paper, a TM phantom with mechanically and thermally similar properties as human brain tissue suited for photoablation studies and subsequent visualization is developed. The proposed study demonstrates the tuned phantom response to laser ablation for fixed laser power, time, and angle. Additionally, the ablated crater profile is visualized using optical coherence tomography (OCT), enabling high-resolution surface profile generation.
Collapse
Affiliation(s)
- Ravi Prakash
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Kent K. Yamamoto
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Siobhan R. Oca
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Weston Ross
- Department of Neurosurgery, Duke University School of Medicine
| | - Patrick J. Codd
- Department of Mechanical Engineering and Materials Science, Duke University
- Department of Neurosurgery, Duke University School of Medicine
| |
Collapse
|
10
|
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann Biomed Eng 2023; 51:1181-1198. [PMID: 36656452 PMCID: PMC10172290 DOI: 10.1007/s10439-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
This work proposes the characterization of the temperature dependence of the thermal properties of heart and lung tissues from room temperature up to > 90 °C. The thermal diffusivity (α), thermal conductivity (k), and volumetric heat capacity (Cv) of ex vivo porcine hearts and deflated lungs were measured with a dual-needle sensor technique. α and k associated with heart tissue remained almost constant until ~ 70 and ~ 80 °C, accordingly. Above ~ 80 °C, a more substantial variation in these thermal properties was registered: at 94 °C, α and k respectively experienced a 2.3- and 1.5- fold increase compared to their nominal values, showing average values of 0.346 mm2/s and 0.828 W/(m·K), accordingly. Conversely, Cv was almost constant until 55 °C and decreased afterward (e.g., Cv = 2.42 MJ/(m3·K) at 94 °C). Concerning the lung tissue, both its α and k were characterized by an exponential increase with temperature, showing a marked increment at supraphysiological and ablative temperatures (at 91 °C, α and k were equal to 2.120 mm2/s and 2.721 W/(m·K), respectively, i.e., 13.7- and 13.1-fold higher compared to their baseline values). Regression analysis was performed to attain the best-fit curves interpolating the measured data, thus providing models of the temperature dependence of the investigated properties. These models can be useful for increasing the accuracy of simulation-based preplanning frameworks of interventional thermal procedures, and the realization of tissue-mimicking materials.
Collapse
|
11
|
Sametova A, Kurmashev S, Ashikbayeva Z, Blanc W, Tosi D. Optical Fiber Distributed Sensing Network for Thermal Mapping in Radiofrequency Ablation Neighboring a Blood Vessel. BIOSENSORS 2022; 12:1150. [PMID: 36551117 PMCID: PMC9775312 DOI: 10.3390/bios12121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30-60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
Collapse
Affiliation(s)
- Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sabit Kurmashev
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| | - Wilfried Blanc
- Institute de Physique de Nice, CNRS UMR7010, Université Côte d’Azur, Avenue Joseph Vallot, 06108 Nice, France
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Gold Nanoparticles-Mediated Photothermal Therapy of Pancreas Using GATE: A New Simulation Platform. Cancers (Basel) 2022; 14:cancers14225686. [PMID: 36428778 PMCID: PMC9688087 DOI: 10.3390/cancers14225686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
This work presents the first investigation of gold nanorods (GNRs)-based photothermal therapy of the pancreas tumor using the Monte Carlo-based code implemented with Geant4 Application for Emission Tomography (GATE). The model of a human pancreas was obtained by segmenting an abdominal computed tomography (CT) scan, and its physical and chemical properties, were obtained from experimental and theoretical data. In GATE, GNRs-mediated hyperthermal therapy, simple heat diffusion as well as interstitial laser ablation were then modeled in the pancreas tumor by defining the optical parameters of this tissue when it is loaded with GNRs. Two different experimental setups on ex vivo pancreas tissue and GNRs-embedded water were devised to benchmark the developed Monte Carlo-based model for the hyperthermia in the pancreas alone and with GNRs, respectively. The influence of GNRs on heat distribution and temperature increase within the pancreas tumor was compared for two different power values (1.2 W and 2.1 W) when the tumor was exposed to 808 nm laser irradiation and with two different laser applicator diameters. Benchmark tests demonstrated the possibility of the accurate simulating of NPs-assisted thermal therapy and reproducing the experimental data with GATE software. Then, the output of the simulated GNR-mediated hyperthermia emphasized the importance of the precise evaluation of all of the parameters for optimizing the preplanning of cancer thermal therapy. Simulation results on temperature distribution in the pancreas tumor showed that the temperature enhancement caused by raising the power was increased with time in both the tumor with and without GNRs, but it was higher for the GNR-load tumor compared to tumor alone.
Collapse
|
13
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Orrico A, Korganbayev S, Bianchi L, De Landro M, Saccomandi P. Feedback-controlled laser ablation for cancer treatment: comparison of On-Off and PID control strategies . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5012-5015. [PMID: 36085688 DOI: 10.1109/embc48229.2022.9871972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laser ablation is a rising technique used to induce a localized temperature increment for tumor ablation. The outcomes of the therapy depend on the tissue thermal history. Monitoring devices help to assess the tissue thermal response, and their combination with a control strategy can be used to promptly address unexpected temperature changes and thus reduce unwanted thermal effects. In this application, numerical simulations can drive the selection of the laser control settings (i.e., laser power and gain parameters) and allow evaluating the thermal effects of the control strategies. In this study, the influence of different control strategies (On-Off and PID-based controls) is quantified considering the treatment time and the thermal effect on the tissue. Finite element model-based simulations were implemented to model the laser-tissue interaction, the heat-transfer, and the consequent thermal damage in liver tissue with tumor. The laser power was modulated based on the temperature feedback provided within the tumor safety margin. Results show that the chosen control strategy does not have a major influence on the extent of thermal damage but on the treatment duration; the percentage of necrosis within the tumor domain is 100% with both strategies, while the treatment duration is 630 s and 786 s for On-Off and PID, respectively. The choice of the control strategy is a trade-off between treatment duration and unwanted temperature overshoot during closed-loop laser ablation. Clinical Relevance-This work establishes that different temperature-based control of the laser ablation procedure does not have a major influence on the extent of thermal damage but on the duration of treatment.
Collapse
|
15
|
Soltani-Sarvestani MA, Cotin S, Saccomandi P. Unscented Kalman Filtering for Real Time Thermometry During Laser Ablation Interventions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3485-3488. [PMID: 36085919 DOI: 10.1109/embc48229.2022.9871282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a data-assimilation Bayesian framework in the context of laser ablation for the treatment of cancer. For solving the nonlinear estimation of the tissue temperature evolving during the therapy, the Unscented Kalman Filter (UKF) predicts the next thermal status and controls the ablation process, based on sparse temperature information. The purpose of this paper is to study the outcome of the prediction model based on UKF and to assess the influence of different model settings on the framework performances. In particular, we analyze the effects of the time resolution of the filter and the number and the location of the observations. Clinical Relevance - The application of a data-assimilation approach based on limited temperature information allows to monitor and predict in real-time the thermal effects induced by thermal therapy for tumors.
Collapse
|
16
|
Abstract
Significant research efforts have been devoted in the past decades to accurately modelling the complex heat transfer phenomena within biological tissues. These modeling efforts and analysis have assisted in a better understanding of the intricacies of associated biological phenomena and factors that affect the treatment outcomes of hyperthermic therapeutic procedures. In this contribution, we report a three-dimensional non-Fourier bio-heat transfer model of cardiac ablation that accounts for the three-phase-lags (TPL) in the heat propagation, viz., lags due to heat flux, temperature gradient, and thermal displacement gradient. Finite element-based COMSOL Multiphysics software has been utilized to predict the temperature distributions and ablation volumes. A comparative analysis has been conducted to report the variation in the treatment outcomes of cardiac ablation considering different bio-heat transfer models. The effect of variations in the magnitude of different phase lags has been systematically investigated. The fidelity and integrity of the developed model have been evaluated by comparing the results of the developed model with the analytical results of the recent studies available in the literature. This study demonstrates the importance of considering non-Fourier lags within biological tissue for predicting more accurately the characteristics important for the efficient application of thermal therapies.
Collapse
|
17
|
Schulmann N, Soltani-Sarvestani MA, De Landro M, Korganbayev S, Cotin S, Saccomandi P. Model-Based Thermometry for Laser Ablation Procedure Using Kalman Filters and Sparse Temperature Measurements. IEEE Trans Biomed Eng 2022; 69:2839-2849. [PMID: 35230944 DOI: 10.1109/tbme.2022.3155574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, we implement a data-assimilation Bayesian framework for the reconstruction of the spatiotemporal profile of the tissue temperature during laser irradiation. The predictions of a physical model simulating the heat transfer in the tissue are associated with sparse temperature measurements, using an Unscented Kalman Filter. We compare a standard state-estimation filtering procedure with a joint-estimation (state and parameters) approach: whereas in the state-estimation only the temperature is evaluated, in the joint-estimation the filter corrects also uncertain model parameters (i.e., the medium thermal diffusivity, and laser beam properties). We have tested the method on synthetic temperature data, and on the temperature measured on agar-gel phantom and porcine liver with fiber optic sensors. The joint-estimation allows retrieving an accurate estimate of the temperature distribution with a maximal error < 1.5 C in both synthetic and liver 1D data, and < 2 C in phantom 2D data. Our approach allows also suggesting a strategy for optimizing the temperature estimation based on the positions of the sensors. Under the constraint of using only two sensors, optimal temperature estimations are obtained when one sensor is placed in proximity of the source, and the other one is in a non-symmetrical position.
Collapse
|
18
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|