1
|
Zhu R, Wang Y, Dai LY. CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction. J Comput Biol 2025; 32:47-63. [PMID: 39602201 DOI: 10.1089/cmb.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Numerous biological experiments have demonstrated that microRNA (miRNA) is involved in gene regulation within cells, and mutations and abnormal expression of miRNA can cause a myriad of intricate diseases. Forecasting the association between miRNA and diseases can enhance disease prevention and treatment and accelerate drug research, which holds considerable importance for the development of clinical medicine and drug research. This investigation introduces a contrastive learning-augmented hypergraph neural network model, termed CLHGNNMDA, aimed at predicting associations between miRNAs and diseases. Initially, CLHGNNMDA constructs multiple hypergraphs by leveraging diverse similarity metrics related to miRNAs and diseases. Subsequently, hypergraph convolution is applied to each hypergraph to extract feature representations for nodes and hyperedges. Following this, autoencoders are employed to reconstruct information regarding the feature representations of nodes and hyperedges and to integrate various features of miRNAs and diseases extracted from each hypergraph. Finally, a joint contrastive loss function is utilized to refine the model and optimize its parameters. The CLHGNNMDA framework employs multi-hypergraph contrastive learning for the construction of a contrastive loss function. This approach takes into account inter-view interactions and upholds the principle of consistency, thereby augmenting the model's representational efficacy. The results obtained from fivefold cross-validation substantiate that the CLHGNNMDA algorithm achieves a mean area under the receiver operating characteristic curve of 0.9635 and a mean area under the precision-recall curve of 0.9656. These metrics are notably superior to those attained by contemporary state-of-the-art methodologies.
Collapse
Affiliation(s)
- Rong Zhu
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Yong Wang
- Laboratory Experimental Teaching and Equipment Management Center, Qufu Normal University, Rizhao, China
| | - Ling-Yun Dai
- School of Computer Science, Qufu Normal University, Rizhao, China
| |
Collapse
|
2
|
Daroch A, Purohit R. MDbDMRP: A novel molecular descriptor-based computational model to identify drug-miRNA relationships. Int J Biol Macromol 2025; 287:138580. [PMID: 39657879 DOI: 10.1016/j.ijbiomac.2024.138580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
MicroRNAs (miRNAs) are important in gene expression regulation and many other biological processes and have emerged as promising therapeutic targets. Identifying potential drug-miRNA relationships is helpful in disease therapy and pharmaceutical engineering in medical research. However, accurately predicting these relationships remains a significant computational challenge. This study introduces MDbDMRP, a novel molecular descriptors-based drug-miRNA relationship prediction computational model designed to address this challenge. MDbDMRP leverages the power of machine learning to predict new drug-miRNA associations and non-associations. The model achieves exceptional performance, exceeding an average score of 0.92 across various evaluation metrics, including accuracy, precision, recall, and F1-score. Furthermore, it demonstrates a remarkable ability to distinguish between positive and negative interactions, as evidenced by an outstanding AUC-ROC score of 0.9864. The results obtained from MDbDMRP were further validated through molecular docking, reinforcing its performance. These results position MDbDMRP as a valuable tool for researchers aiming to unlock the potential of miRNAs in drug discovery.
Collapse
Affiliation(s)
- Amit Daroch
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Palampur, HP 176061, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Peng Y, Chu S, Huang X, Cheng Y. PPDAMEGCN: Predicting piRNA-Disease Associations Based on Multi-Edge Type Graph Convolutional Network. IET Syst Biol 2025; 19:e70011. [PMID: 40120103 PMCID: PMC11929523 DOI: 10.1049/syb2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Recently, many studies have proven that Piwi-interacting RNAs (piRNAs) play key roles in various biological processes and also associate with human complicated diseases. Therefore, in order to accelerate the traditional biomedical experimental methods for determining piRNA-disease associations, many computational approaches have been proposed. However, piRNA-disease associations can be classified into known and unknown associations, each of which may provide distinct types of information. Traditional graph convolutional networks (GCNs) typically treat all edges in a graph as identical, overlooking the fact that different edge types may carry different signals and influence the learning process in unique ways. In this study, we also provide a new piRNA-disease association prediction method, called PPDAMEGCN, based on a multi-edge type graph convolutional network. First, we calculate the piRNA sequence similarity based on the piRNA sequence information and Smith-Waterman method. The disease semantic similarity is also computed by disease ontology (DO). In addition, we calculate the Gaussian interaction profile (GIP) kernel similarities of piRNA and diseases through the known piRNA-disease associations. Then, we construct the piRNA similarity network by integrating the piRNA's sequence similarity and GIP similarity. We also construct the disease similarity network by integrating disease's semantic similarity and GIP similarity. Finally, we obtain the piRNA and disease embeddings by the multi-edge type graph convolutional network model on the heterogenous piRNA-disease association network. The piRNA-disease pair association probability score is calculated by a multilayer perceptron (MLP) with its concatenated embedding. We also compare PPDAMEGCN to other piRNA-disease prediction methods. The experimental results show that our method outperforms compared methods.
Collapse
Affiliation(s)
- Yinglong Peng
- School of Information and IntelligenceXiangXi Vocational and Technical College for NationalitiesJishouChina
| | - Shuang Chu
- School of InformaticsHunan University of Chinese MedicineChangshaChina
| | - Xindi Huang
- School of InformaticsHunan University of Chinese MedicineChangshaChina
| | - Yan Cheng
- School of InformaticsHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
4
|
Liu Y, Wu Q, Zhou L, Liu Y, Li C, Wei Z, Peng W, Yue Y, Zhu X. Disentangled similarity graph attention heterogeneous biological memory network for predicting disease-associated miRNAs. BMC Genomics 2024; 25:1161. [PMID: 39623332 PMCID: PMC11610307 DOI: 10.1186/s12864-024-11078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The association between MicroRNAs (miRNAs) and diseases is crucial in treating and exploring many diseases or cancers. Although wet-lab methods for predicting miRNA-disease associations (MDAs) are effective, they are often expensive and time-consuming. Significant advancements have been made using Graph Neural Network-based methods (GNN-MDAs) to address these challenges. However, these methods still face limitations, such as not considering nodes' deep-level similarity associations and hierarchical learning patterns. Additionally, current models do not retain the memory of previously learned heterogeneous historical information about miRNAs or diseases, only focusing on parameter learning without the capability to remember heterogeneous associations. RESULTS This study introduces the K-means disentangled high-level biological similarity to utilize potential hierarchical relationships fully and proposes a Graph Attention Heterogeneous Biological Memory Network architecture (DiGAMN) with memory capabilities. Extensive experiments were conducted across four datasets, comparing the DiGAMN model and its disentangling method against ten state-of-the-art non-disentangled methods and six traditional GNNs. DiGAMN excelled, achieving AUC scores of 96.35%, 96.10%, 96.01%, and 95.89% on the Data1 to Data4 datasets, respectively, surpassing all other models. These results confirm the superior performance of DiGAMN and its disentangling method. Additionally, various ablation studies were conducted to validate the contributions of different modules within the framework, and's encoding statuses and memory units of DiGAMN were visualized to explore the utility and functionality of its modules. Case studies confirmed the effectiveness of DiGAMN's predictions, identifying several new disease-associated miRNAs. CONCLUSIONS DiGAMN introduces the use of a disentangled biological similarity approach for the first time and successfully constructs a Disentangled Graph Attention Heterogeneous Biological Memory Network model. This network can learn disentangled representations of similarity information and effectively store the potential biological entanglement information of miRNAs and diseases. By integrating disentangled similarity information with a heterogeneous attention memory network, DiGAMN enhances the model's ability to capture and utilize complex underlying biological data, significantly outperforming many existing models. The concepts used in this method also provide new perspectives for predicting miRNAs associated with diseases.
Collapse
Affiliation(s)
- Yinbo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Le Zhou
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Liu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- China University of Petroleum, Beijing, Beijing, 102249, China
| | - Chao Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhuoyu Wei
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Peng
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yi Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
5
|
Cao X, Lu P. DCSGMDA: A dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations. Comput Biol Chem 2024; 113:108201. [PMID: 39255626 DOI: 10.1016/j.compbiolchem.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Numerous studies have shown that microRNAs (miRNAs) play a key role in human diseases as critical biomarkers. Its abnormal expression is often accompanied by the emergence of specific diseases. Therefore, studying the relationship between miRNAs and diseases can deepen the insights of their pathogenesis, grasp the process of disease onset and development, and promote drug research of specific diseases. However, many undiscovered relationships between miRNAs and diseases remain, significantly limiting research on miRNA-disease correlations. To explore more potential correlations, we propose a dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations (DCSGMDA). Firstly, we constructed similarity networks for miRNAs and diseases, as well as an association relationship network. Secondly, potential features were fully mined using stacked deep learning and gradient decomposition networks, along with dual-channel convolutional neural networks. Finally, correlations were scored by a multilayer perceptron. We performed 5-fold and 10-fold cross-validation experiments on DCSGMDA using two datasets based on the Human MicroRNA Disease Database (HMDD). Additionally, parametric, ablation, and comparative experiments, along with case studies, were conducted. The experimental results demonstrate that DCSGMDA performs well in predicting miRNA-disease associations.
Collapse
Affiliation(s)
- Xu Cao
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu, China.
| | - Pengli Lu
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu, China.
| |
Collapse
|
6
|
Ning Q, Zhao Y, Gao J, Chen C, Yin M. Hierarchical Hypergraph Learning in Association- Weighted Heterogeneous Network for miRNA- Disease Association Identification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2531-2542. [PMID: 39475747 DOI: 10.1109/tcbb.2024.3485788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification.
Collapse
|
7
|
Fu L, Yao Z, Zhou Y, Peng Q, Lyu H. ACLNDA: an asymmetric graph contrastive learning framework for predicting noncoding RNA-disease associations in heterogeneous graphs. Brief Bioinform 2024; 25:bbae533. [PMID: 39441244 PMCID: PMC11497849 DOI: 10.1093/bib/bbae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.
Collapse
Affiliation(s)
- Laiyi Fu
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
- Research Institute, Xi’an Jiaotong University, Zhejiang, Hangzhou, Zhejiang 311200, China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, Sichuan 610036, China
| | - ZhiYuan Yao
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Yangyi Zhou
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Qinke Peng
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Hongqiang Lyu
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| |
Collapse
|
8
|
Ji C, Yu N, Wang Y, Ni J, Zheng C. SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1191-1201. [PMID: 38446654 DOI: 10.1109/tcbb.2024.3373772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples K-hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA.
Collapse
|
9
|
Guo Y, Yi M. THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network. Brief Funct Genomics 2024; 23:384-394. [PMID: 37738503 DOI: 10.1093/bfgp/elad042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA-disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA-disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA's ability in discovering known relationships between circRNA candidates and diseases.
Collapse
Affiliation(s)
- Yuwei Guo
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| |
Collapse
|
10
|
Han GS, Gao Q, Peng LZ, Tang J. Hessian Regularized
L
2
,
1
-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction. Interdiscip Sci 2024; 16:176-191. [PMID: 38099958 DOI: 10.1007/s12539-023-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 02/22/2024]
Abstract
Since the identification of microRNAs (miRNAs), empirical research has demonstrated their crucial involvement in the functioning of organisms. Investigating miRNAs significantly bolsters efforts related to averting, diagnosing, and treating intricate human maladies. Yet, exploring every conceivable miRNA-disease association consumes significant resources and time within conventional wet experiments. On the computational front, forecasting potential miRNA-disease connections serves as a valuable source of preliminary insights for medical investigators. As a result, we have developed a novel matrix factorization model known as Hessian-regularizedL 2 , 1 nonnegative matrix factorization in combination with deep learning for predicting associations between miRNAs and diseases, denoted asH R L 2 , 1 -NMF-DF. In particular, we introduce a novel iterative fusion approach to integrate all similarities. This method effectively diminishes the sparsity of the initial miRNA-disease associations matrix. Additionally, we devise a mixed model framework that utilizes deep learning, matrix decomposition, and singular value decomposition to capture and depict the intricate nonlinear features of miRNA and disease. The prediction performance of the six matrix factorization methods is improved by comparison and analysis, similarity matrix fusion, data preprocessing, and parameter adjustment. The AUC and AUPR obtained by the new matrix factorization model under fivefold cross validation are comparative or better with other matrix factorization models. Finally, we select three diseases including lung tumor, bladder tumor and breast tumor for case analysis, and further extend the matrix factorization model based on deep learning. The results show that the hybrid algorithm combining matrix factorization with deep learning proposed in this paper can predict miRNAs related to different diseases with high accuracy.
Collapse
Affiliation(s)
- Guo-Sheng Han
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China.
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Qi Gao
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Ling-Zhi Peng
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jing Tang
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
11
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
12
|
Dara M, Azarpira N, Motazedian N, Hossein-Aghdaie M, Dehghani SM, Geramizadeh B, Esfandiari E. Expression of miR-let7b and miR-19b in progressive familial intrahepatic cholestasis (PFIC) children. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:24-31. [PMID: 36934840 DOI: 10.1016/j.gastrohep.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a group of small non-coding RNAs that bind to the target mRNA and regulate gene expression. Recently circulating microRNAs were investigated as markers of diseases and therapeutic targets. Although various studies analyze the miRNA expression in liver disease, these studies on PFIC are few. Progressive familial intrahepatic cholestasis (PFIC) is a rare liver disease with autosomal recessive inheritance. Most children with PFIC progress to cirrhosis and liver failure and consequently need to have a liver transplant. The aim of this study is the investigation of the miR-19b and miR-let7b expression levels in Iranian PFIC children. METHODS 25 PFIC patients, 25 healthy children and 25 Biliary Atresia patients were considered as case and two control groups respectively. Blood samples were obtained and Liver function tests (LFTs) were measured. After RNA extraction and cDNA synthesis, quantitative PCR was performed using specific primers for miR-19b and miR-let7b. The U6 gene is used as an internal control. RESULTS qPCR on PFIC patients' samples demonstrated that the miR-19b and the miR-let7b expression were significantly decreased in patients compared to the control groups, with a p-value<0.0001 and p-value=0.0006 receptively. CONCLUSION In conclusion, circulating micro-RNA like miR-19b and miR-let7b have a potential opportunity to be a non-invasive diagnostic marker or therapeutic target for PFIC in the future.
Collapse
Affiliation(s)
- Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Esfandiari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Qumsiyeh E, Salah Z, Yousef M. miRGediNET: A comprehensive examination of common genes in miRNA-Target interactions and disease associations: Insights from a grouping-scoring-modeling approach. Heliyon 2023; 9:e22666. [PMID: 38090011 PMCID: PMC10711121 DOI: 10.1016/j.heliyon.2023.e22666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 06/15/2024] Open
Abstract
In the broad and complex field of biological data analysis, researchers frequently gather information from a single source or database. Despite being a widespread practice, this has disadvantages. Relying exclusively on a single source can limit our comprehension as it may omit various perspectives that could be obtained by combining multiple knowledge bases. Acknowledging this shortcoming, we report on miRGediNET, a novel approach combining information from three biological databases. Our investigation focuses on microRNAs (miRNAs), small non-coding RNA molecules that regulate gene expression post-transcriptionally. We delve deeply into the knowledge of these miRNA's interactions with genes and the possible effects these interactions may have on different diseases. The scientific community has long recognized a direct correlation between the progression of specific diseases and miRNAs, as well as the genes they target. By using miRGediNET, we go beyond simply acknowledging this relationship. Rather, we actively look for the critical genes that could act as links between the actions of miRNAs and the mechanisms underlying disease. Our methodology, which carefully identifies and investigates these important genes, is supported by a strategic framework that may open up new possibilities for comprehending diseases and creating treatments. We have developed a tool on the Knime platform as a concrete application of our research. This tool serves as both a validation of our study and an invitation to the larger community to interact with, investigate, and build upon our findings. miRGediNET is publicly accessible on GitHub at https://github.com/malikyousef/miRGediNET, providing a collaborative environment for additional research and innovation for enthusiasts and fellow researchers.
Collapse
Affiliation(s)
- Emma Qumsiyeh
- Department of Computer Science and Information Technology, Al-Quds University, Palestine
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology, Arab American University, Ramallah, Palestine
| | - Malik Yousef
- Information Technology Engineering, Al-Quds University, Abu Dis, Palestine
| |
Collapse
|
14
|
Gao S, Kuang Z, Duan T, Deng L. DEJKMDR: miRNA-disease association prediction method based on graph convolutional network. Front Med (Lausanne) 2023; 10:1234050. [PMID: 37780568 PMCID: PMC10536249 DOI: 10.3389/fmed.2023.1234050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Numerous studies have shown that miRNAs play a crucial role in the investigation of complex human diseases. Identifying the connection between miRNAs and diseases is crucial for advancing the treatment of complex diseases. However, traditional methods are frequently constrained by the small sample size and high cost, so computational simulations are urgently required to rapidly and accurately forecast the potential correlation between miRNA and disease. In this paper, the DEJKMDR, a graph convolutional network (GCN)-based miRNA-disease association prediction model is proposed. The novelty of this model lies in the fact that DEJKMDR integrates biomolecular information on miRNA and illness, including functional miRNA similarity, disease semantic similarity, and miRNA and disease similarity, according to their Gaussian interaction attribute. In order to minimize overfitting, some edges are randomly destroyed during the training phase after DropEdge has been used to regularize the edges. JK-Net, meanwhile, is employed to combine various domain scopes through the adaptive learning of nodes in various placements. The experimental results demonstrate that this strategy has superior accuracy and dependability than previous algorithms in terms of predicting an unknown miRNA-disease relationship. In a 10-fold cross-validation, the average AUC of DEJKMDR is determined to be 0.9772.
Collapse
Affiliation(s)
- Shiyuan Gao
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Tao Duan
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
15
|
Li ZW, Wang QK, Yuan CA, Han PY, You ZH, Wang L. Predicting MiRNA-Disease Associations by Graph Representation Learning Based on Jumping Knowledge Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2629-2638. [PMID: 35925844 DOI: 10.1109/tcbb.2022.3196394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Growing studies have shown that miRNAs are inextricably linked with many human diseases, and a great deal of effort has been spent on identifying their potential associations. Compared with traditional experimental methods, computational approaches have achieved promising results. In this article, we propose a graph representation learning method to predict miRNA-disease associations. Specifically, we first integrate the verified miRNA-disease associations with the similarity information of miRNA and disease to construct a miRNA-disease heterogeneous graph. Then, we apply a graph attention network to aggregate the neighbor information of nodes in each layer, and then feed the representation of the hidden layer into the structure-aware jumping knowledge network to obtain the global features of nodes. The output features of miRNAs and diseases are then concatenated and fed into a fully connected layer to score the potential associations. Through five-fold cross-validation, the average AUC, accuracy and precision values of our model are 93.30%, 85.18% and 88.90%, respectively. In addition, for three case studies of the esophageal tumor, lymphoma and prostate tumor, 46, 45 and 45 of the top 50 miRNAs predicted by our model were confirmed by relevant databases. Overall, our method could provide a reliable alternative for miRNA-disease association prediction.
Collapse
|
16
|
Ha J, Park S. NCMD: Node2vec-Based Neural Collaborative Filtering for Predicting MiRNA-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1257-1268. [PMID: 35849666 DOI: 10.1109/tcbb.2022.3191972] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous studies have reported that micro RNAs (miRNAs) play pivotal roles in disease pathogenesis based on the deregulation of the expressions of target messenger RNAs. Therefore, the identification of disease-related miRNAs is of great significance in understanding human complex diseases, which can also provide insight into the design of novel prognostic markers and disease therapies. Considering the time and cost involved in wet experiments, most recent works have focused on the effective and feasible modeling of computational frameworks to uncover miRNA-disease associations. In this study, we propose a novel framework called node2vec-based neural collaborative filtering for predicting miRNA-disease association (NCMD) based on deep neural networks. Initially, NCMD exploits Node2vec to learn low-dimensional vector representations of miRNAs and diseases. Next, it utilizes a deep learning framework that combines the linear ability of generalized matrix factorization and nonlinear ability of a multilayer perceptron. Experimental results clearly demonstrate the comparable performance of NCMD relative to the state-of-the-art methods according to statistical measures. In addition, case studies on breast cancer, lung cancer and pancreatic cancer validate the effectiveness of NCMD. Extensive experiments demonstrate the benefits of modeling a neural collaborative-filtering-based approach for discovering novel miRNA-disease associations.
Collapse
|
17
|
Zhu Y, Zhang F, Zhang S, Yi M. Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder. Methods 2023; 211:1-9. [PMID: 36709790 DOI: 10.1016/j.ymeth.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Long non-coding RNA (lncRNA) are shown to be closely associated with cancer metastatic events (CME, e.g., cancer cell invasion, intravasation, extravasation, proliferation) that collaboratively accelerate malignant cancer spread and cause high mortality rate in patients. Clinical trials may accurately uncover the relationships between lncRNAs and CMEs; however, it is time-consuming and expensive. With the accumulation of data, there is an urgent need to find efficient ways to identify these relationships. Herein, a graph embedding representation-based predictor (VGEA-LCME) for exploring latent lncRNA-CME associations is introduced. In VGEA-LCME, a heterogeneous combined network is constructed by integrating similarity and linkage matrix that can maintain internal and external characteristics of networks, and a variational graph auto-encoder serves as a feature generator to represent arbitrary lncRNA and CME pair. The final robustness predicted result is obtained by ensemble classifier strategy via cross-validation. Experimental comparisons and literature verification show better remarkable performance of VGEA-LCME, although the similarities between CMEs are challenging to calculate. In addition, VGEA-LCME can further identify organ-specific CMEs. To the best of our knowledge, this is the first computational attempt to discover the potential relationships between lncRNAs and CMEs. It may provide support and new insight for guiding experimental research of metastatic cancers. The source code and data are available at https://github.com/zhuyuan-cug/VGAE-LCME.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China; Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China; Engineering Research Center of Intelligent Technology for Geo-Exploration, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| | - Feng Zhang
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 974 Heping Avenue, Qingshan District, 430081, Wuhan, Hubei, China.
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Yao D, Nong L, Qin M, Wu S, Yao S. Identifying circRNA-miRNA interaction based on multi-biological interaction fusion. Front Microbiol 2022; 13:987930. [PMID: 36620017 PMCID: PMC9815023 DOI: 10.3389/fmicb.2022.987930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
CircRNA is a new type of non-coding RNA with a closed loop structure. More and more biological experiments show that circRNA plays important roles in many diseases by regulating the target genes of miRNA. Therefore, correct identification of the potential interaction between circRNA and miRNA not only helps to understand the mechanism of the disease, but also contributes to the diagnosis, treatment, and prognosis of the disease. In this study, we propose a model (IIMCCMA) by using network embedding and matrix completion to predict the potential interaction of circRNA-miRNA. Firstly, the corresponding adjacency matrix is constructed based on the experimentally verified circRNA-miRNA interaction, circRNA-cancer interaction, and miRNA-cancer interaction. Then, the Gaussian kernel function and the cosine function are used to calculate the circRNA Gaussian interaction profile kernel similarity, circRNA functional similarity, miRNA Gaussian interaction profile kernel similarity, and miRNA functional similarity. In order to reduce the influence of noise and redundant information in known interactions, this model uses network embedding to extract the potential feature vectors of circRNA and miRNA, respectively. Finally, an improved inductive matrix completion algorithm based on the feature vectors of circRNA and miRNA is used to identify potential interactions between circRNAs and miRNAs. The 10-fold cross-validation experiment is utilized to prove the predictive ability of the IIMCCMA. The experimental results show that the AUC value and AUPR value of the IIMCCMA model are higher than other state-of-the-art algorithms. In addition, case studies show that the IIMCCMA model can correctly identify the potential interactions between circRNAs and miRNAs.
Collapse
Affiliation(s)
- Dunwei Yao
- Department of Gastroenterology, The People’s Hospital of Baise, Baise, China,The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lidan Nong
- Department of Child Healthcare, Baise Maternal and Child Hospital, Baise, China
| | - Minzhen Qin
- Department of Gastroenterology, The People’s Hospital of Baise, Baise, China,The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shengbin Wu
- The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China,Department of Pulmonary and Critical Care Medicine, The People's Hospital of Baise, Baise, China
| | - Shunhan Yao
- Medical College of Guangxi University, Nanning, China,*Correspondence: Shunhan Yao,
| |
Collapse
|
19
|
DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network. Methods 2022; 208:35-41. [DOI: 10.1016/j.ymeth.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
20
|
Lan W, Dong Y, Chen Q, Liu J, Wang J, Chen YPP, Pan S. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3530-3538. [PMID: 34506289 DOI: 10.1109/tcbb.2021.3111607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accumulating evidences have shown that circRNA plays an important role in human diseases. It can be used as potential biomarker for diagnose and treatment of disease. Although some computational methods have been proposed to predict circRNA-disease associations, the performance still need to be improved. In this paper, we propose a new computational model based on Improved Graph convolutional network and Negative Sampling to predict CircRNA-Disease Associations. In our method, it constructs the heterogeneous network based on known circRNA-disease associations. Then, an improved graph convolutional network is designed to obtain the feature vectors of circRNA and disease. Further, the multi-layer perceptron is employed to predict circRNA-disease associations based on the feature vectors of circRNA and disease. In addition, the negative sampling method is employed to reduce the effect of the noise samples, which selects negative samples based on circRNA's expression profile similarity and Gaussian Interaction Profile kernel similarity. The 5-fold cross validation is utilized to evaluate the performance of the method. The results show that IGNSCDA outperforms than other state-of-the-art methods in the prediction performance. Moreover, the case study shows that IGNSCDA is an effective tool for predicting potential circRNA-disease associations.
Collapse
|
21
|
Dong TN, Schrader J, Mücke S, Khosla M. A message passing framework with multiple data integration for miRNA-disease association prediction. Sci Rep 2022; 12:16259. [PMID: 36171337 PMCID: PMC9519928 DOI: 10.1038/s41598-022-20529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022] Open
Abstract
Micro RNA or miRNA is a highly conserved class of non-coding RNA that plays an important role in many diseases. Identifying miRNA-disease associations can pave the way for better clinical diagnosis and finding potential drug targets. We propose a biologically-motivated data-driven approach for the miRNA-disease association prediction, which overcomes the data scarcity problem by exploiting information from multiple data sources. The key idea is to enrich the existing miRNA/disease-protein-coding gene (PCG) associations via a message passing framework, followed by the use of disease ontology information for further feature filtering. The enriched and filtered PCG associations are then used to construct the inter-connected miRNA-PCG-disease network to train a structural deep network embedding (SDNE) model. Finally, the pre-trained embeddings and the biologically relevant features from the miRNA family and disease semantic similarity are concatenated to form the pair input representations to a Random Forest classifier whose task is to predict the miRNA-disease association probabilities. We present large-scale comparative experiments, ablation, and case studies to showcase our approach's superiority. Besides, we make the model prediction results for 1618 miRNAs and 3679 diseases, along with all related information, publicly available at http://software.mpm.leibniz-ai-lab.de/ to foster assessments and future adoption.
Collapse
Affiliation(s)
- Thi Ngan Dong
- L3S Research Center, Leibniz University of Hannover, Hannover, Germany.
| | - Johanna Schrader
- L3S Research Center, Leibniz University of Hannover, Hannover, Germany
| | - Stefanie Mücke
- Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Megha Khosla
- Delft University of Technology (TU Delft), Delft, Netherlands
| |
Collapse
|
22
|
Lan W, Lai D, Chen Q, Wu X, Chen B, Liu J, Wang J, Chen YPP. LDICDL: LncRNA-Disease Association Identification Based on Collaborative Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1715-1723. [PMID: 33125333 DOI: 10.1109/tcbb.2020.3034910] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been proved that long noncoding RNA (lncRNA) plays critical roles in many human diseases. Therefore, inferring associations between lncRNAs and diseases can contribute to disease diagnosis, prognosis and treatment. To overcome the limitation of traditional experimental methods such as expensive and time-consuming, several computational methods have been proposed to predict lncRNA-disease associations by fusing different biological data. However, the prediction performance of lncRNA-disease associations identification needs to be improved. In this study, we propose a computational model (named LDICDL) to identify lncRNA-disease associations based on collaborative deep learning. It uses an automatic encoder to denoise multiple lncRNA feature information and multiple disease feature information, respectively. Then, the matrix decomposition algorithm is employed to predict the potential lncRNA-disease associations. In addition, to overcome the limitation of matrix decomposition, the hybrid model is developed to predict associations between new lncRNA (or disease) and diseases (or lncRNA). The ten-fold cross validation and de novo test are applied to evaluate the performance of method. The experimental results show LDICDL outperforms than other state-of-the-art methods in prediction performance.
Collapse
|
23
|
Lei X, Tie J, Pan Y. Inferring Metabolite-Disease Association Using Graph Convolutional Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:688-698. [PMID: 33705323 DOI: 10.1109/tcbb.2021.3065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As is well known, biological experiments are time-consuming and laborious, so there is absolutely no doubt that developing an effective computational model will help solve these problems. Most of computational models rely on the biological similarity and network-based methods that cannot consider the topological structures of metabolite-disease association graphs. We proposed a novel method based on graph convolutional networks to infer potential metabolite-disease association, named MDAGCN. We first calculated three kinds of metabolite similarities and three kinds of disease similarities. The final similarity of disease and metabolite will be obtained by integrating three kinds' similarities of each and filtering out the noise similarity values. Then metabolite similarity network, disease similarity network and known metabolite-disease association network were used to construct a heterogenous network. Finally, heterogeneous network with rich information is fed into the graph convolutional networks to obtain new features of a node through aggregation of node information so as to infer the potential associations between metabolites and diseases. Experimental results show that MDAGCN achieves more reliable results in cross validation and case studies when compared with other existing methods.
Collapse
|
24
|
Gao Z, Wang YT, Wu QW, Li L, Ni JC, Zheng CH. A New Method Based on Matrix Completion and Non-Negative Matrix Factorization for Predicting Disease-Associated miRNAs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:763-772. [PMID: 32991287 DOI: 10.1109/tcbb.2020.3027444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies have shown that microRNAs are associated with the occurrence and development of human diseases. Thus, studying disease-associated miRNAs is significantly valuable to the prevention, diagnosis and treatment of diseases. In this paper, we proposed a novel method based on matrix completion and non-negative matrix factorization (MCNMF)for predicting disease-associated miRNAs. Due to the information inadequacy on miRNA similarities and disease similarities, we calculated the latter via two models, and introduced the Gaussian interaction profile kernel similarity. In addition, the matrix completion (MC)was employed to further replenish the miRNA and disease similarities to improve the prediction performance. And to reduce the sparsity of miRNA-disease association matrix, the method of weighted K nearest neighbor (WKNKN)was used, which is a pre-processing step. We also utilized non-negative matrix factorization (NMF)using dual L2,1-norm, graph Laplacian regularization, and Tikhonov regularization to effectively avoid the overfitting during the prediction. Finally, several experiments and a case study were implemented to evaluate the effectiveness and performance of the proposed MCNMF model. The results indicated that our method could reliably and effectively predict disease-associated miRNAs.
Collapse
|
25
|
Feng H, Zheng R, Wang J, Wu FX, Li M. NIMCE: A Gene Regulatory Network Inference Approach Based on Multi Time Delays Causal Entropy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1042-1049. [PMID: 33035155 DOI: 10.1109/tcbb.2020.3029846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gene regulatory networks (GRNs)are involved in various biological processes, such as cell cycle, differentiation and apoptosis. The existing large amount of expression data, especially the time-series expression data, provide a chance to infer GRNs by computational methods. These data can reveal the dynamics of gene expression and imply the regulatory relationships among genes. However, identify the indirect regulatory links is still a big challenge as most studies treat time points as independent observations, while ignoring the influences of time delays. In this study, we propose a GRN inference method based on information-theory measure, called NIMCE. NIMCE incorporates the transfer entropy to measure the regulatory links between each pair of genes, then applies the causation entropy to filter indirect relationships. In addition, NIMCE applies multi time delays to identify indirect regulatory relationships from candidate genes. Experiments on simulated and colorectal cancer data show NIMCE outperforms than other competing methods. All data and codes used in this study are publicly available at https://github.com/CSUBioGroup/NIMCE.
Collapse
|
26
|
MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2020.06.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Yan C, Duan G, Zhang Y, Wu FX, Pan Y, Wang J. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:168-179. [PMID: 32310779 DOI: 10.1109/tcbb.2020.2988018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A drug-drug interaction (DDI) is defined as an association between two drugs where the pharmacological effects of a drug are influenced by another drug. Positive DDIs can usually improve the therapeutic effects of patients, but negative DDIs cause the major cause of adverse drug reactions and even result in the drug withdrawal from the market and the patient death. Therefore, identifying DDIs has become a key component of the drug development and disease treatment. In this study, we propose a novel method to predict DDIs based on the integrated similarity and semi-supervised learning (DDI-IS-SL). DDI-IS-SL integrates the drug chemical, biological and phenotype data to calculate the feature similarity of drugs with the cosine similarity method. The Gaussian Interaction Profile kernel similarity of drugs is also calculated based on known DDIs. A semi-supervised learning method (the Regularized Least Squares classifier) is used to calculate the interaction possibility scores of drug-drug pairs. In terms of the 5-fold cross validation, 10-fold cross validation and de novo drug validation, DDI-IS-SL can achieve the better prediction performance than other comparative methods. In addition, the average computation time of DDI-IS-SL is shorter than that of other comparative methods. Finally, case studies further demonstrate the performance of DDI-IS-SL in practical applications.
Collapse
|
28
|
|
29
|
Lan W, Dong Y, Chen Q, Zheng R, Liu J, Pan Y, Chen YPP. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network. Brief Bioinform 2021; 23:6447436. [PMID: 34864877 DOI: 10.1093/bib/bbab494] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidences have proved that circRNA plays a significant role in the development of many diseases. In addition, many researches have shown that circRNA can be considered as the potential biomarker for clinical diagnosis and treatment of disease. Some computational methods have been proposed to predict circRNA-disease associations. However, the performance of these methods is limited as the sparsity of low-order interaction information. In this paper, we propose a new computational method (KGANCDA) to predict circRNA-disease associations based on knowledge graph attention network. The circRNA-disease knowledge graphs are constructed by collecting multiple relationship data among circRNA, disease, miRNA and lncRNA. Then, the knowledge graph attention network is designed to obtain embeddings of each entity by distinguishing the importance of information from neighbors. Besides the low-order neighbor information, it can also capture high-order neighbor information from multisource associations, which alleviates the problem of data sparsity. Finally, the multilayer perceptron is applied to predict the affinity score of circRNA-disease associations based on the embeddings of circRNA and disease. The experiment results show that KGANCDA outperforms than other state-of-the-art methods in 5-fold cross validation. Furthermore, the case study demonstrates that KGANCDA is an effective tool to predict potential circRNA-disease associations.
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi Dong
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Ruiqing Zheng
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Jin Liu
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi Pan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Bamunu Mudiyanselage T, Lei X, Senanayake N, Zhang Y, Pan Y. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Methods 2021; 198:32-44. [PMID: 34748953 DOI: 10.1016/j.ymeth.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulated studies have discovered that circular RNAs (CircRNAs) are closely related to many complex human diseases. Due to this close relationship, CircRNAs can be used as good biomarkers for disease diagnosis and therapeutic targets for treatments. However, the number of experimentally verified circRNA-disease associations are still fewer and also conducting wet-lab experiments are constrained by the small scale and cost of time and labour. Therefore, effective computational methods are required to predict associations between circRNAs and diseases which will be promising candidates for small scale biological and clinical experiments. In this paper, we propose novel computational models based on Graph Convolution Networks (GCN) for the potential circRNA-disease association prediction. Currently most of the existing prediction methods use shallow learning algorithms. Instead, the proposed models combine the strengths of deep learning and graphs for the computation. First, they integrate multi-source similarity information into the association network. Next, models predict potential associations using graph convolution which explore this important relational knowledge of that network structure. Two circRNA-disease association prediction models, GCN based Node Classification (GCN-NC) and GCN based Link Prediction (GCN-LP) are introduced in this work and they demonstrate promising results in various experiments and outperforms other existing methods. Further, a case study proves that some of the predicted results of the novel computational models were confirmed by published literature and all top results could be verified using gene-gene interaction networks.
Collapse
Affiliation(s)
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Nipuna Senanayake
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yanqing Zhang
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
31
|
Toprak A, Eryilmaz Dogan E. Prediction of Potential MicroRNA-Disease Association Using Kernelized Bayesian Matrix Factorization. Interdiscip Sci 2021; 13:595-602. [PMID: 34370220 DOI: 10.1007/s12539-021-00469-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
MicroRNA (miRNA) molecules, which are effective in the formation and progression of many different diseases, are 18-22 nucleotides in length and make up a type of non-coding RNA. Predicting disease-related microRNAs is crucial for understanding the pathogenesis of disease and for diagnosis, treatment, and prevention of diseases. Many computational techniques have been studied and developed, as the experimental techniques used to find novel miRNA-disease associations in biology are costly. In this paper, a Kernelized Bayesian Matrix Factorization (KBMF) technique was suggested to predict new relations among miRNAs and diseases with several information such as miRNA functional similarity, disease semantic similarity, and known relations among miRNAs and diseases. AUC value of 0.9450 was obtained by implementing fivefold cross-validation for KBMF technique. We also carried out three kinds of case studies (breast, lung, and colon neoplasms) to prove the performance of KBMF technique, and the predictive reliability of this method was confirmed by the results. Thus, KBMF technique can be used as a reliable computational model to infer possible miRNA-disease associations.
Collapse
Affiliation(s)
- Ahmet Toprak
- Department of Electricity and Energy, Bozkır Vocational School, Selcuk University, Bozkır, Konya, Turkey
| | - Esma Eryilmaz Dogan
- Department of Biomedical Engineering, Faculty of Technology, Selcuk University, Selçuklu, Konya, Turkey.
| |
Collapse
|
32
|
Peng W, Du J, Dai W, Lan W. Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Front Cell Dev Biol 2021; 9:603758. [PMID: 34178973 PMCID: PMC8223753 DOI: 10.3389/fcell.2021.603758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly impact various biological processes related to human disease. Inferring the potential miRNA-disease associations benefits the study of human diseases, such as disease prevention, disease diagnosis, and drug development. In this work, we propose a novel heterogeneous network embedding-based method called MDN-NMTF (Module-based Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-disease associations. MDN-NMTF constructs a heterogeneous network of disease similarity network, miRNA similarity network and a known miRNA-disease association network. After that, it learns the latent vector representation for miRNAs and diseases in the heterogeneous network. Finally, the association probability is computed by the product of the latent miRNA and disease vectors. MDN-NMTF not only successfully integrates diverse biological information of miRNAs and diseases to predict miRNA-disease associations, but also considers the module properties of miRNAs and diseases in the course of learning vector representation, which can maximally preserve the heterogeneous network structural information and the network properties. At the same time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using modular information to improve the miRNA-disease association prediction ability. Our methods and the other four existing methods are applied to predict miRNA-disease associations in four databases. The prediction results show that our methods can improve the miRNA-disease association prediction to a high level compared with the four existing methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Jielin Du
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Wei Lan
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Li Y, Wang K, Wang G. Evaluating Disease Similarity Based on Gene Network Reconstruction and Representation. Bioinformatics 2021; 37:3579-3587. [PMID: 33978702 DOI: 10.1093/bioinformatics/btab252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Quantifying the associations between diseases is of great significance in increasing our understanding of disease biology, improving disease diagnosis, re-positioning, and developing drugs. Therefore, in recent years, the research of disease similarity has received a lot of attention in the field of bioinformatics. Previous work has shown that the combination of the ontology (such as disease ontology and gene ontology) and disease-gene interactions are worthy to be regarded to elucidate diseases and disease associations. However, most of them are either based on the overlap between disease-related gene sets or distance within the ontology's hierarchy. The diseases in these methods are represented by discrete or sparse feature vectors, which cannot grasp the deep semantic information of diseases. Recently, deep representation learning has been widely studied and gradually applied to various fields of bioinformatics. Based on the hypothesis that disease representation depends on its related gene representations, we propose a disease representation model using two most representative gene resources HumanNet and Gene Ontology to construct a new gene network and learn gene (disease) representations. The similarity between two diseases is computed by the cosine similarity of their corresponding representations. RESULTS We propose a novel approach to compute disease similarity, which integrates two important factors disease-related genes and gene ontology hierarchy to learn disease representation based on deep representation learning. Under the same experimental settings, the AUC value of our method is 0.8074, which improves the most competitive baseline method by 10.1%. The quantitative and qualitative experimental results show that our model can learn effective disease representations and improve the accuracy of disease similarity computation significantly. AVAILABILITY The research shows that this method has certain applicability in the prediction of gene-related diseases, the migration of disease treatment methods, drug development, and so on. SUPPLEMENTARY INFORMATION Supplementary data are available at https://github.com/catly/disease_similarity.
Collapse
Affiliation(s)
- Yang Li
- College of information and Computer Engineering, Northeast Forestry University, Harbin, 150004, China
| | - Keqi Wang
- College of information and Computer Engineering, Northeast Forestry University, Harbin, 150004, China
| | - Guohua Wang
- College of information and Computer Engineering, Northeast Forestry University, Harbin, 150004, China
| |
Collapse
|
34
|
Roth M, Jain P, Koo J, Chaterji S. Simultaneous learning of individual microRNA-gene interactions and regulatory comodules. BMC Bioinformatics 2021; 22:237. [PMID: 33971820 PMCID: PMC8111732 DOI: 10.1186/s12859-021-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) function in post-transcriptional regulation of gene expression by binding to target messenger RNAs (mRNAs). Because of the key part that miRNAs play, understanding the correct regulatory role of miRNAs in diverse patho-physiological conditions is of great interest. Although it is known that miRNAs act combinatorially to regulate genes, precise identification of miRNA-gene interactions and their specific functional roles in regulatory comodules remains a challenge. We developed THEIA, an effective method for simultaneously predicting miRNA-gene interactions and regulatory comodules, which group functionally related miRNAs and genes via non-negative matrix factorization (NMF). RESULTS We apply THEIA to RNA sequencing data from breast invasive carcinoma samples and demonstrate its effectiveness in discovering biologically significant regulatory comodules that are significantly enriched in spatial miRNA clusters, biological pathways, and various cancers. CONCLUSIONS THEIA is a theoretically rigorous optimization algorithm that simultaneously predicts the strength and direction (i.e., up-regulation or down-regulation) of the effect of modules of miRNAs on a gene. We posit that if THEIA is capable of recovering known clusters of genes and miRNA, then the clusters found by our method not previously identified by literature are also likely to have biological significance. We believe that these novel regulatory comodules found by our method will be a springboard for further research into the specific functional roles of these new functional ensembles of miRNAs and genes,especially those related to diseases like breast cancer.
Collapse
Affiliation(s)
| | - Pranjal Jain
- Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Somali Chaterji
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
35
|
Yan C, Duan G, Wu FX, Pan Y, Wang J. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:611-620. [PMID: 31295117 DOI: 10.1109/tcbb.2019.2926716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the development of high-through sequencing technology and microbiology, many studies have evidenced that microbes are associated with human diseases, such as obesity, liver cancer, and so on. Therefore, identifying the association between microbes and diseases has become an important study topic in current bioinformatics. The emergence of microbe-disease association database has provided an unprecedented opportunity to develop computational method for predicting microbe-disease associations. In the study, we propose a low-rank matrix completion method (called MCHMDA) to predict microbe-disease associations by integrating similarities of microbes and diseases and known microbe-disease associations into a heterogeneous network. The microbe similarity is computed from Gaussian Interaction Profile (GIP) kernel similarity based on the known microbe-disease associations. Then, we further improve the microbe similarity by taking into account the inhabiting organs of these microbes in human body. The disease similarity is computed by the average of disease GIP similarity, disease symptom-based similarity, and disease functional similarity. Then, we construct a heterogeneous microbe-disease association network by integrating the microbe similarity network, disease similarity network, and known microbe-disease association network. Finally, a matrix completion method is used to calculate the association scores of unknown microbe-disease pairs by the fast Singular Value Thresholding (SVT) algorithm. Via 5-fold Cross Validation (5CV) and Leave-One-Out Cross Validation (LOOCV), we evaluate the prediction performances of MCHMDA and other state-of-the-art methods which include BRWMDA, NGRHMDA, LRLSHMDA, and KATZHMDA. On benchmark dataset HMDAD, the experimental results show that MCHMDA outperforms other methods in terms of area under the receiver operating characteristic curve (AUC). MCHMDA achieves the AUC values of 0.9251 and 0.9495 in 5CV and LOOCV, respectively, which are the highest values among the competing methods. In addition, we also further indicate the prediction generality of MCHMDA on an expanded microbe-disease associations dataset (HMDAD-SUP). Finally, case studies prove the prediction ability in practical applications.
Collapse
|
36
|
Zheng R, Li M, Chen X, Zhao S, Wu FX, Pan Y, Wang J. An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive Regression Splines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:347-354. [PMID: 30794516 DOI: 10.1109/tcbb.2019.2900614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene regulatory networks (GRNs) play a key role in biological processes. However, GRNs are diverse under different biological conditions. Reconstructing gene regulatory networks (GRNs) from gene expression has become an important opportunity and challenge in the past decades. Although there are a lot of existing methods to infer the topology of GRNs, such as mutual information, random forest, and partial least squares, the accuracy is still low due to the noise and high dimension of the expression data. In this paper, we introduce an ensemble Multivariate Adaptive Regression Splines (MARS) based method to reconstruct the directed GRNs from multifactorial gene expression data, called PBMarsNet. PBMarsNet incorporates part mutual information (PMI) to pre-weight the candidate regulatory genes and then uses MARS to detect the nonlinear regulatory links. Moreover, we apply bootstrap to run the MARS multiple times and average the outputs of each MARS as the final score of regulatory links. The results on DREAM4 challenge and DREAM5 challenge datasets show PBMarsNet has a superior performance and generalization over other state-of-the-art methods.
Collapse
|
37
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|
38
|
Liu J, Tan G, Lan W, Wang J. Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics 2020; 21:123. [PMID: 33203351 PMCID: PMC7672960 DOI: 10.1186/s12859-020-3437-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The identification of early mild cognitive impairment (EMCI), which is an early stage of Alzheimer's disease (AD) and is associated with brain structural and functional changes, is still a challenging task. Recent studies show great promises for improving the performance of EMCI identification by combining multiple structural and functional features, such as grey matter volume and shortest path length. However, extracting which features and how to combine multiple features to improve the performance of EMCI identification have always been a challenging problem. To address this problem, in this study we propose a new EMCI identification framework using multi-modal data and graph convolutional networks (GCNs). Firstly, we extract grey matter volume and shortest path length of each brain region based on automated anatomical labeling (AAL) atlas as feature representation from T1w MRI and rs-fMRI data of each subject, respectively. Then, in order to obtain features that are more helpful in identifying EMCI, a common multi-task feature selection method is applied. Afterwards, we construct a non-fully labelled subject graph using imaging and non-imaging phenotypic measures of each subject. Finally, a GCN model is adopted to perform the EMCI identification task. RESULTS Our proposed EMCI identification method is evaluated on 210 subjects, including 105 subjects with EMCI and 105 normal controls (NCs), with both T1w MRI and rs-fMRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that our proposed framework achieves an accuracy of 84.1% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.856 for EMCI/NC classification. In addition, by comparison, the accuracy and AUC values of our proposed framework are better than those of some existing methods in EMCI identification. CONCLUSION Our proposed EMCI identification framework is effective and promising for automatic diagnosis of EMCI in clinical practice.
Collapse
Affiliation(s)
- Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, 932 Lushan South Road, Changsha, 410083 China
| | - Guanxin Tan
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, 932 Lushan South Road, Changsha, 410083 China
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, 100 Daxue East Road, Nanning, 530004 China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, 932 Lushan South Road, Changsha, 410083 China
| |
Collapse
|
39
|
Wang C, Sun K, Wang J, Guo M. Data fusion-based algorithm for predicting miRNA–Disease associations. Comput Biol Chem 2020; 88:107357. [DOI: 10.1016/j.compbiolchem.2020.107357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
|
40
|
Peng L, Tian X, Shen L, Kuang M, Li T, Tian G, Yang J, Zhou L. Identifying Effective Antiviral Drugs Against SARS-CoV-2 by Drug Repositioning Through Virus-Drug Association Prediction. Front Genet 2020; 11:577387. [PMID: 33193695 PMCID: PMC7525008 DOI: 10.3389/fgene.2020.577387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
A new coronavirus called SARS-CoV-2 is rapidly spreading around the world. Over 16,558,289 infected cases with 656,093 deaths have been reported by July 29th, 2020, and it is urgent to identify effective antiviral treatment. In this study, potential antiviral drugs against SARS-CoV-2 were identified by drug repositioning through Virus-Drug Association (VDA) prediction. 96 VDAs between 11 types of viruses similar to SARS-CoV-2 and 78 small molecular drugs were extracted and a novel VDA identification model (VDA-RLSBN) was developed to find potential VDAs related to SARS-CoV-2. The model integrated the complete genome sequences of the viruses, the chemical structures of drugs, a regularized least squared classifier (RLS), a bipartite local model, and the neighbor association information. Compared with five state-of-the-art association prediction methods, VDA-RLSBN obtained the best AUC of 0.9085 and AUPR of 0.6630. Ribavirin was predicted to be the best small molecular drug, with a higher molecular binding energy of -6.39 kcal/mol with human angiotensin-converting enzyme 2 (ACE2), followed by remdesivir (-7.4 kcal/mol), mycophenolic acid (-5.35 kcal/mol), and chloroquine (-6.29 kcal/mol). Ribavirin, remdesivir, and chloroquine have been under clinical trials or supported by recent works. In addition, for the first time, our results suggested several antiviral drugs, such as FK506, with molecular binding energies of -11.06 and -10.1 kcal/mol with ACE2 and the spike protein, respectively, could be potentially used to prevent SARS-CoV-2 and remains to further validation. Drug repositioning through virus-drug association prediction can effectively find potential antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xiongfei Tian
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Ming Kuang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Tianbao Li
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing, China
| | | | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
41
|
Zheng K, You ZH, Wang L, Guo ZH. iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm. Comput Struct Biotechnol J 2020; 18:2391-2400. [PMID: 33005302 PMCID: PMC7508695 DOI: 10.1016/j.csbj.2020.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Benefiting from advances in high-throughput experimental techniques, important regulatory roles of miRNAs, lncRNAs, and proteins, as well as biological property information, are gradually being complemented. As the key data support to promote biomedical research, domain knowledge such as intermolecular relationships that are increasingly revealed by molecular genome-wide analysis is often used to guide the discovery of potential associations. However, the method of performing network representation learning from the perspective of the global biological network is scarce. These methods cover a very limited type of molecular associations and are therefore not suitable for more comprehensive analysis of molecular network representation information. In this study, we propose a computational model based on the Biological network for predicting potential associations between miRNAs and diseases called iMDA-BN. The iMDA-BN has three significant advantages: I) It uses a new method to describe disease and miRNA characteristics which analyzes node representation information for disease and miRNA from the perspective of biological networks. II) It can predict unproven associations even if miRNAs and diseases do not appear in the biological network. III) Accurate description of miRNA characteristics from biological properties based on high-throughput sequence information. The iMDA-BN predictor achieves an AUC of 0.9145 and an accuracy of 84.49% on the miRNA-disease association baseline dataset, and it can also achieve an AUC of 0.8765 and an accuracy of 80.96% when predicting unknown diseases and miRNAs in the biological network. Compared to existing miRNA-disease association prediction methods, iMDA-BN has higher accuracy and the advantage of predicting unknown associations. In addition, 45, 49, and 49 of the top 50 miRNA-disease associations with the highest predicted scores were confirmed in the case studies, respectively.
Collapse
Affiliation(s)
- Kai Zheng
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| | - Lei Wang
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277100, China
| | - Zhen-Hao Guo
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
42
|
Yan C, Duan G, Wu FX, Pan Y, Wang J. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1595-1604. [PMID: 30932846 DOI: 10.1109/tcbb.2019.2907626] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many current studies have evidenced that microbes play important roles in human diseases. Therefore, discovering the associations between microbes and diseases is beneficial to systematically understanding the mechanisms of diseases, diagnosing, and treating complex diseases. It is well known that finding new potential microbe-disease associations via biological experiments is a time-consuming and expensive process. However, the computation methods can provide an opportunity to effectively predict microbe-disease associations. In recent years, efforts toward predicting microbe-disease associations are not in proportional to the importance of microbes to human diseases. In this study, we develop a method (called BRWMDA) to predict new microbe-disease associations based on similarity and improving bi-random walk on the disease and microbe networks. BRWMDA integrates microbe network, disease network, and known microbe-disease associations into a single network. After calculating the Gaussian Interaction Profile (GIP) kernel similarity of microbes based on known microbe-disease associations, the microbe network is obtained by adjusting the similarity with the logistics function. In addition, the disease network is computed by the similarity network fusion (SNF) method with the symptom-based similarity and the GIP kernel similarity based on known microbe-disease associations. Then, these two networks of microbe and disease are connected by known microbe-disease associations. Based on the assumption that similar microbes are normally associated with similar diseases and vice versa, BRWMDA is employed to predict new potential microbe-disease associations via random walk with different steps on microbe and disease networks, which reasonably uses the similarity of microbe network and disease network. The 5-fold cross validation and Leave One Out Cross Validation (LOOCV) are adopted to assess the prediction performance of our BRWMDA algorithm, as well as other competing methods for comparison. 5-fold cross validation experiments show that BRWMDA obtained the maximum AUC value of 0.9087, which is again superior to other methods of 0.9025(NGRHMDA), 0.8797 (LRLSHMDA), 0.8571 (KATZHMDA), 0.7782 (HGBI), and 0.5629 (NBI). In addition, BRWMDA also outperforms other methods in terms of LOOCV, whose AUC value is 0.9397, which is superior to other methods of 0.9111(NGRHMDA), 0.8909 (LRLSHMDA), 0.8644 (KATZHMDA), 0.7866 (HGBI), and 0.5553 (NBI). Case studies also illustrate that BRWMDA is an effective method to predict microbe-disease associations.
Collapse
|
43
|
Lei X, Tie J, Fujita H. Relational completion based non-negative matrix factorization for predicting metabolite-disease associations. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Wang Y, Jie L, Gong H, Li Y, Xie A, Li Y, Guo H. miR-30 inhibits proliferation of trophoblasts in preeclampsia rats partially related to MAPK/ERK pathway. Exp Ther Med 2020; 20:1379-1384. [PMID: 32742372 PMCID: PMC7388335 DOI: 10.3892/etm.2020.8866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Effect of micro ribonucleic acid (miR)-30 on the proliferation of trophoblasts in preeclampsia (PE) rats through the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was studied. The miR-30 mimic was transfected into the trophoblast HTR8/SVNEO cell lines. The effects of expression level of miR-30 on the proliferation and hypoxia-induced apoptosis of HTR8/SVNEO cells were detected via methyl thiazolyl tetrazolium (MTT) assay and Annexin V/propidium iodide staining, respectively, using the flow cytometer. A total of 30 pregnant Sprague-Dawley rats were randomly divided into control group (CTL group, n=10), PE rat group (PE group, n=10) and PE + miR-30 Mimic group (PE+agomiR-30 group, n=10) using a random number table. The protein expression levels of phosphorylated ERK (p-ERK)1/2, ERK1/2, proliferating cell nuclear antigen (PCNA) and tubulin were determined using western blot analysis, and the mRNA expression level of ERK1/2 was detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression level of PCNA in tissues was detected via immunohistochemistry. The results of MTT assay showed that the proliferation of HTR8/SVNEO cells significantly declined in hypoxic environment, while miR-30 promoted the proliferation of HTR8/SVNEO cells and alleviated the hypoxia-induced inhibition on cell proliferation. It was found that the trophoblast apoptosis rate was increased in hypoxia group compared with that in CTL group, while it was significantly decreased in miR-30 Mimic group compared with that in hypoxia group. PE group had obviously decreased p-ERK and PCNA expression levels as well as p-ERK/ERK ratio in placental tissues compared with CTL group, while PE+agomiR-30 group had an obviously increased expression level of PCNA as well as p-ERK/ERK ratio in placental tissues compared with PE group. MiR-30 activates the MAPK/ERK signaling pathway and increases the expression level of PCNA through raising the p-ERK level and p-ERK/ERK ratio, thereby inhibiting cell apoptosis and promoting cell proliferation.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Luo Jie
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Haifeng Gong
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuqin Li
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Anxia Xie
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yanjun Li
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Hong Guo
- Department of Gynaecology and Obstetrics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
45
|
Liu Z, Chen Q, Lan W, Liang J, Chen YPP, Chen B. A Survey of Network Embedding for Drug Analysis and Prediction. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-107859. [PMID: 32614745 DOI: 10.2174/1389203721666200702145701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/05/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.
Collapse
Affiliation(s)
- Zhixian Liu
- School of Medical, Guangxi University, Nanning. China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning. China
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning. China
| | - Jiahai Liang
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou. China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne. Australia
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning. China
| |
Collapse
|
46
|
Gao J, Tian L, Wang J, Chen Y, Song B, Hu X. Similar Disease Prediction With Heterogeneous Disease Information Networks. IEEE Trans Nanobioscience 2020; 19:571-578. [PMID: 32603299 DOI: 10.1109/tnb.2020.2994983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studying the similarity of diseases can help us to explore the pathological characteristics of complex diseases, and help provide reliable reference information for inferring the relationship between new diseases and known diseases, so as to develop effective treatment plans. To obtain the similarity of the disease, most previous methods either use a single similarity metric such as semantic score, functional score from single data source, or utilize weighting coefficients to simply combine multiple metrics with different dimensions. In this paper, we proposes a method to predict the similarity of diseases by node representation learning. We first integrate the semantic score and topological score between diseases by combining multiple data sources. Then for each disease, its integrated scores with all other diseases are utilized to map it into a vector of the same spatial dimension, and the vectors are used to measure and comprehensively analyze the similarity between diseases. Lastly, we conduct comparative experiment based on benchmark set and other disease nodes outside the benchmark set. Using the statistics such as average, variance, and coefficient of variation in the benchmark set to evaluate multiple methods demonstrates the effectiveness of our approach in the prediction of similar diseases.
Collapse
|
47
|
Emon MA, Domingo-Fernández D, Hoyt CT, Hofmann-Apitius M. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. BMC Bioinformatics 2020; 21:231. [PMID: 32503412 PMCID: PMC7275349 DOI: 10.1186/s12859-020-03568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, there has been a surge towards computational drug repositioning owing to constantly increasing -omics data in the biomedical research field. While numerous existing methods focus on the integration of heterogeneous data to propose candidate drugs, it is still challenging to substantiate their results with mechanistic insights of these candidate drugs. Therefore, there is a need for more innovative and efficient methods which can enable better integration of data and knowledge for drug repositioning. Results Here, we present a customizable workflow (PS4DR) which not only integrates high-throughput data such as genome-wide association study (GWAS) data and gene expression signatures from disease and drug perturbations but also takes pathway knowledge into consideration to predict drug candidates for repositioning. We have collected and integrated publicly available GWAS data and gene expression signatures for several diseases and hundreds of FDA-approved drugs or those under clinical trial in this study. Additionally, different pathway databases were used for mechanistic knowledge integration in the workflow. Using this systematic consolidation of data and knowledge, the workflow computes pathway signatures that assist in the prediction of new indications for approved and investigational drugs. Conclusion We showcase PS4DR with applications demonstrating how this tool can be used for repositioning and identifying new drugs as well as proposing drugs that can simulate disease dysregulations. We were able to validate our workflow by demonstrating its capability to predict FDA-approved drugs for their known indications for several diseases. Further, PS4DR returned many potential drug candidates for repositioning that were backed up by epidemiological evidence extracted from scientific literature. Source code is freely available at https://github.com/ps4dr/ps4dr.
Collapse
Affiliation(s)
- Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| |
Collapse
|
48
|
Lu C, Hong M, Chen B, Liu K, Lv Y, Zhou X, Su G. MicroRNA-215 Regulates the Apoptosis of HCT116 Colon Cancer Cells by Inhibiting X-Linked Inhibitor of Apoptosis Protein. Cancer Biother Radiopharm 2020; 36:728-736. [PMID: 32460520 DOI: 10.1089/cbr.2019.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: X-linked inhibitor of apoptosis protein (XIAP) is the strongest member of the family of inhibitor of apoptosis protein. Studies found that the expression of XIAP in colon cancer tissue was significantly higher than that in adjacent tissues. Studies have shown that the expression of microRNA-215 (miR-215) was significantly lower than that of the adjacent tissues. This study investigated whether dysregulated miR-215 and XIAP play important roles in colon cancer cell apoptosis and the incidence of colon cancer. Materials and Methods: Forty-two patients with colorectal cancer (CRC) diagnosed and treated in the authors' hospital were selected. Human CRC cell line HCT116 and normal colonic mucosal epithelial cells (CMECs) were used. Luciferase reporter gene vector was constructed and dual-luciferase reporter gene assay was performed. HCT116 cells were cultured in vitro and divided into five groups: mimic normal control (NC) group, miR-215 mimic group, si-NC group, si-XIAP group, and miR-215 mimic + si-XIAP group. Western blot and polymerase chain reaction were conducted to examine XIAP and caspase-3. Apoptosis was detected by flow cytometry and cell proliferation was detected by cell counting kit-8 assay. Results: Compared with the adjacent tissues, the expression of miR-215 in colon cancer tissue was significantly lower, whereas the expression of XIAP in colon cancer tissue was significantly higher. The apoptosis rate and miR-215 expression level of HCT116 cells were lower than that of normal CMECs, whereas XIAP expression was significantly higher than that in normal colon mucosa epithelial cells. MiR-215 targeted the 3'-untranslated regions of XIAP and inhibited its expression. Overexpressing miR-215 and (or) silencing XIAP expression could significantly enhance the activity of caspase-9 and caspase-3, and promote the apoptosis of HCT116 cells. Conclusion: MiR-215 inhibited the expression of XIAP and promoted the apoptosis of HCT116 cells.
Collapse
Affiliation(s)
- Chuanhui Lu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Ming Hong
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Bo Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Kaihua Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - You Lv
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Xin Zhou
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Guoqiang Su
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| |
Collapse
|
49
|
Wu X, Lan W, Chen Q, Dong Y, Liu J, Peng W. Inferring LncRNA-disease associations based on graph autoencoder matrix completion. Comput Biol Chem 2020; 87:107282. [PMID: 32502934 DOI: 10.1016/j.compbiolchem.2020.107282] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 02/09/2023]
Abstract
Accumulating studies have indicated that long non-coding RNAs (lncRNAs) play crucial roles in large amount of biological processes. Predicting lncRNA-disease associations can help biologist to understand the molecular mechanism of human disease and benefit for disease diagnosis, treatment and prevention. In this paper, we introduce a computational framework based on graph autoencoder matrix completion (GAMCLDA) to identify lncRNA-disease associations. In our method, the graph convolutional network is utilized to encode local graph structure and features of nodes for learning latent factor vectors of lncRNA and disease. Further, the inner product of lncRNA factor vector and disease factor vector is used as decoder to reconstruct the lncRNA-disease association matrix. In addition, the cost-sensitive neural network is utilized to deal with the imbalance between positive and negative samples. The experimental results show GAMLDA outperforms other state-of-the-art methods in prediction performance which is evaluated by AUC value, AUPR value, PPV and F1-score. Moreover, the case study shows our method is the effectively tool for potential lncRNA-disease prediction.
Collapse
Affiliation(s)
- Ximin Wu
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Yi Dong
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Wei Peng
- The Network Center, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
50
|
Chen H, Guo R, Li G, Zhang W, Zhang Z. Comparative analysis of similarity measurements in miRNAs with applications to miRNA-disease association predictions. BMC Bioinformatics 2020; 21:176. [PMID: 32366225 PMCID: PMC7199309 DOI: 10.1186/s12859-020-3515-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As regulators of gene expression, microRNAs (miRNAs) are increasingly recognized as critical biomarkers of human diseases. Till now, a series of computational methods have been proposed to predict new miRNA-disease associations based on similarity measurements. Different categories of features in miRNAs are applied in these methods for miRNA-miRNA similarity calculation. Benchmarking tests on these miRNA similarity measures are warranted to assess their effectiveness and robustness. RESULTS In this study, 5 categories of features, i.e. miRNA sequences, miRNA expression profiles in cell-lines, miRNA expression profiles in tissues, gene ontology (GO) annotations of miRNA target genes and Medical Subject Heading (MeSH) terms of miRNA-associated diseases, are collected and similarity values between miRNAs are quantified based on these feature spaces, respectively. We systematically compare the 5 similarities from multi-statistical views. Furthermore, we adopt a rule-based inference method to test their performance on miRNA-disease association predictions with the similarity measurements. Comprehensive comparison is made based on leave-one-out cross-validations and a case study. Experimental results demonstrate that the similarity measurement using MeSH terms performs best among the 5 measurements. It should be noted that the other 4 measurements can also achieve reliable prediction performance. The best-performed similarity measurement is used for new miRNA-disease association predictions and the inferred results are released for further biomedical screening. CONCLUSIONS Our study suggests that all the 5 features, even though some are restricted by data availability, are useful information for inferring novel miRNA-disease associations. However, biased prediction results might be produced in GO- and MeSH-based similarity measurements due to incomplete feature spaces. Similarity fusion may help produce more reliable prediction results. We expect that future studies will provide more detailed information into the 5 feature spaces and widen our understanding about disease pathogenesis.
Collapse
Affiliation(s)
- Hailin Chen
- School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Ruiyu Guo
- School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, 330013 China
| | - Wei Zhang
- School of Science, East China Jiaotong University, Nanchang, 330013 China
| | - Zuping Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083 China
| |
Collapse
|