1
|
Sekaran R, Munnangi AK, Ramachandran M, Khishe M. Cayley-Purser secured communication and jackknife correlative classification for COVID patient data analysis. Sci Rep 2025; 15:4666. [PMID: 39920299 PMCID: PMC11806013 DOI: 10.1038/s41598-025-88105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Internet of Medical Things (IoMT) is a group of medical devices that connect the healthcare information technology to minimize the redundant hospital visit and healthcare system troubles. IoMT connect the patients to the doctor and transmit the medical data over the network. The spread of corona virus has put the people at high risk. Due to increasing number of cases and its stress on health professionals, IoMT technology is used in many healthcare centers. But, the security level and data classification accuracy was not improved by existing methods during the data communication. In order to solve these issues, Cayley-Purser Cryptographic Secured Communication based Jackknife Correlative Data Classification (CPCSC-JCDC) method is designed. The key objective of CPCSC-JCDC method is to collect the patient information through IoMT devices and send to the doctor in more secured manner. Initially in CPCSC-JCDC method, the patient data is collected. After the data collection process, the data gets encrypted with help of public key of the patient by using cayley-purser cryptosystem. After the encryption process, the data is sent to the doctor. The doctor receives and decrypts the patient data by using their private key. After decryption process, the doctor analyses the patient data and classifies the data as emergency case or normal case by using jackknife correlation function. This helps to minimize the patient readmission rate and increase the patient satisfaction level. Experimental evaluation is carried out by Novel Corona Virus 2019 dataset using different metrics like data classification accuracy, data classification time and security level. The evaluation result shows that CPCSC-JCDC method improves the security level as well as accuracy and minimizes the time consumption during data communication than existing works.
Collapse
Affiliation(s)
- Ramesh Sekaran
- Department of Computer Science and Engineering, JAIN (Deemed-to-be University), Bangalore, Karnataka, 562112, India
| | - Ashok Kumar Munnangi
- Department of Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), Vijayawada, Andhra Pradesh, India
| | | | - Mohammad Khishe
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
- Jadara University Research Center, Jadara University, Irbid, Jordan.
- Department of Electrical Engineering, Imam Khomeini Naval Science University, Nowshahr, Iran.
| |
Collapse
|
2
|
Ye Y, Pandey A, Bawden C, Sumsuzzman DM, Rajput R, Shoukat A, Singer BH, Moghadas SM, Galvani AP. Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges. Nat Commun 2025; 16:581. [PMID: 39794317 PMCID: PMC11724045 DOI: 10.1038/s41467-024-55461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
Integrating prior epidemiological knowledge embedded within mechanistic models with the data-mining capabilities of artificial intelligence (AI) offers transformative potential for epidemiological modeling. While the fusion of AI and traditional mechanistic approaches is rapidly advancing, efforts remain fragmented. This scoping review provides a comprehensive overview of emerging integrated models applied across the spectrum of infectious diseases. Through systematic search strategies, we identified 245 eligible studies from 15,460 records. Our review highlights the practical value of integrated models, including advances in disease forecasting, model parameterization, and calibration. However, key research gaps remain. These include the need for better incorporation of realistic decision-making considerations, expanded exploration of diverse datasets, and further investigation into biological and socio-behavioral mechanisms. Addressing these gaps will unlock the synergistic potential of AI and mechanistic modeling to enhance understanding of disease dynamics and support more effective public health planning and response.
Collapse
Affiliation(s)
- Yang Ye
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Carolyn Bawden
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | | | - Rimpi Rajput
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Affan Shoukat
- Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada
| | - Burton H Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
3
|
Tang C, Todo Y, Kodera S, Sun R, Shimada A, Hirata A. A novel multivariate time series forecasting dendritic neuron model for COVID-19 pandemic transmission tendency. Neural Netw 2024; 179:106527. [PMID: 39029298 DOI: 10.1016/j.neunet.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
A novel coronavirus discovered in late 2019 (COVID-19) quickly spread into a global epidemic and, thankfully, was brought under control by 2022. Because of the virus's unknown mutations and the vaccine's waning potency, forecasting is still essential for resurgence prevention and medical resource management. Computational efficiency and long-term accuracy are two bottlenecks for national-level forecasting. This study develops a novel multivariate time series forecasting model, the densely connected highly flexible dendritic neuron model (DFDNM) to predict daily and weekly positive COVID-19 cases. DFDNM's high flexibility mechanism improves its capacity to deal with nonlinear challenges. The dense introduction of shortcut connections alleviates the vanishing and exploding gradient problems, encourages feature reuse, and improves feature extraction. To deal with the rapidly growing parameters, an improved variation of the adaptive moment estimation (AdamW) algorithm is employed as the learning algorithm for the DFDNM because of its strong optimization ability. The experimental results and statistical analysis conducted across three Japanese prefectures confirm the efficacy and feasibility of the DFDNM while outperforming various state-of-the-art machine learning models. To the best of our knowledge, the proposed DFDNM is the first to restructure the dendritic neuron model's neural architecture, demonstrating promising use in multivariate time series prediction. Because of its optimal performance, the DFDNM may serve as an important reference for national and regional government decision-makers aiming to optimize pandemic prevention and medical resource management. We also verify that DFDMN is efficiently applicable not only to COVID-19 transmission prediction, but also to more general multivariate prediction tasks. It leads us to believe that it might be applied as a promising prediction model in other fields.
Collapse
Affiliation(s)
- Cheng Tang
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya-shi, 466-8555, Japan.
| | - Yuki Todo
- Faculty of Electrical and Computer Engineering, Kanazawa University, Kanazawa-shi, 920-1192, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya-shi, 466-8555, Japan
| | - Rong Sun
- Faculty of Electrical and Computer Engineering, Kanazawa University, Kanazawa-shi, 920-1192, Japan; Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Atsushi Shimada
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya-shi, 466-8555, Japan.
| |
Collapse
|
4
|
Kwok WH, Zhang Y, Wang G. Artificial intelligence in perinatal mental health research: A scoping review. Comput Biol Med 2024; 177:108685. [PMID: 38838557 DOI: 10.1016/j.compbiomed.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/28/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The intersection of Artificial Intelligence (AI) and perinatal mental health research presents promising avenues, yet uncovers significant challenges for innovation. This review explicitly focuses on this multidisciplinary field and undertakes a comprehensive exploration of existing research therein. Through a scoping review guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, we searched relevant literature spanning a decade (2013-2023) and selected fourteen studies for our analysis. We first provide an overview of the main AI techniques and their development, including traditional methods across different categories, as well as recent emerging methods in the field. Then, through our analysis of the literature, we summarize the predominant AI and ML techniques adopted and their applications in perinatal mental health studies, such as identifying risk factors, predicting perinatal mental health disorders, voice assistants, and Q&A chatbots. We also discuss existing limitations and potential challenges that hinder AI technologies from improving perinatal mental health outcomes, and suggest several promising directions for future research to meet real needs in the field and facilitate the translation of research into clinical settings.
Collapse
Affiliation(s)
- Wai Hang Kwok
- School of Nursing and Midwifery, Edith Cowan University, WA, Australia
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, China
| | - Guanjin Wang
- School of Information Technology, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
5
|
Lv C, Guo W, Yin X, Liu L, Huang X, Li S, Zhang L. Innovative applications of artificial intelligence during the COVID-19 pandemic. INFECTIOUS MEDICINE 2024; 3:100095. [PMID: 38586543 PMCID: PMC10998276 DOI: 10.1016/j.imj.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 02/18/2024] [Indexed: 04/09/2024]
Abstract
The COVID-19 pandemic has created unprecedented challenges worldwide. Artificial intelligence (AI) technologies hold tremendous potential for tackling key aspects of pandemic management and response. In the present review, we discuss the tremendous possibilities of AI technology in addressing the global challenges posed by the COVID-19 pandemic. First, we outline the multiple impacts of the current pandemic on public health, the economy, and society. Next, we focus on the innovative applications of advanced AI technologies in key areas such as COVID-19 prediction, detection, control, and drug discovery for treatment. Specifically, AI-based predictive analytics models can use clinical, epidemiological, and omics data to forecast disease spread and patient outcomes. Additionally, deep neural networks enable rapid diagnosis through medical imaging. Intelligent systems can support risk assessment, decision-making, and social sensing, thereby improving epidemic control and public health policies. Furthermore, high-throughput virtual screening enables AI to accelerate the identification of therapeutic drug candidates and opportunities for drug repurposing. Finally, we discuss future research directions for AI technology in combating COVID-19, emphasizing the importance of interdisciplinary collaboration. Though promising, barriers related to model generalization, data quality, infrastructure readiness, and ethical risks must be addressed to fully translate these innovations into real-world impacts. Multidisciplinary collaboration engaging diverse expertise and stakeholders is imperative for developing robust, responsible, and human-centered AI solutions against COVID-19 and future public health emergencies.
Collapse
Affiliation(s)
- Chenrui Lv
- Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Guo
- Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Yin
- Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research, Shanghai 200001, China
| | - Xinlei Huang
- Huazhong Agricultural University, Wuhan 430070, China
| | - Shimin Li
- Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Xue J, Guo Y, Zhang M. Assessing the impact of isolation policies on epidemic dynamics through swarm entropy. Front Public Health 2024; 12:1338052. [PMID: 38389948 PMCID: PMC10881796 DOI: 10.3389/fpubh.2024.1338052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Isolation policies are an effective measure in epidemiological models for the prediction and prevention of infectious diseases. In this paper, we use a multi-agent modeling approach to construct an infectious disease model that considers the influence of isolation policies. The model analyzes the impact of isolation policies on various stages of epidemic from two perspectives: the external environment and agents behavior. It utilizes multiple variables to simulate the extent to which isolation policies influence the spread of the pandemic. Empirical evidence indicates that the progression of the epidemic is primarily driven by factors such as public willingness and regulatory intensity. The improved model, in comparison to traditional infectious disease models, offers greater flexibility and accuracy, addressing the need for frequent modifications in fundamental models within complex environments. Meanwhile, we introduce "swarm entropy" to evaluate infection intensity under various policies. By linking isolation policies with swarm entropy, considering population structure, we quantify the effectiveness of these isolation measures. It provides a novel approach for complex population simulations. These findings have facilitated the enhancement of control strategies and provided decision-makers with guidance in combating the transmission of infectious diseases.
Collapse
Affiliation(s)
- Junxiao Xue
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China
- Zhejiang Lab, Research Institute of Artificial Intelligence, Hangzhou, China
- College of Computer Science and Technology (CCST), Zhejiang University (ZJU), Hangzhou, China
- School of Intelligent Science and Technology, Hangzhou Institute for Advanced Study of University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yihang Guo
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mingchuang Zhang
- National Digital Switching System Engineering and Technological R&D Center, People's Liberation Army Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
7
|
Abstract
Smart healthcare has achieved significant progress in recent years. Emerging artificial intelligence (AI) technologies enable various smart applications across various healthcare scenarios. As an essential technology powered by AI, natural language processing (NLP) plays a key role in smart healthcare due to its capability of analysing and understanding human language. In this work, we review existing studies that concern NLP for smart healthcare from the perspectives of technique and application. We first elaborate on different NLP approaches and the NLP pipeline for smart healthcare from the technical point of view. Then, in the context of smart healthcare applications employing NLP techniques, we introduce representative smart healthcare scenarios, including clinical practice, hospital management, personal care, public health, and drug development. We further discuss two specific medical issues, i.e., the coronavirus disease 2019 (COVID-19) pandemic and mental health, in which NLP-driven smart healthcare plays an important role. Finally, we discuss the limitations of current works and identify the directions for future works.
Collapse
|
8
|
Chen J, Chen S, Duan G, Zhang T, Zhao H, Wu Z, Yang H, Ding S. Epidemiological characteristics and dynamic transmissions of COVID-19 pandemics in Chinese mainland: A trajectory clustering perspective analysis. Epidemics 2023; 45:100719. [PMID: 37783112 DOI: 10.1016/j.epidem.2023.100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The corona virus disease 2019 (COVID-19) pandemic has spread to more than 210 countries and regions around the world, with different characteristics recorded depending on the location. A systematic summarization of COVID-19 outbreaks that occurred during the "dynamic zero-COVID" policy period in Chinese mainland had not been previously conducted. In-depth mining of the big data from the past two years of the COVID-19 pandemics must be performed to clarify their epidemiological characteristics and dynamic transmissions. METHODS Trajectory clustering was used to group epidemic and time-varying reproduction number (Rt) curves of mass outbreaks into different models and reveal the epidemiological characteristics and dynamic transmissions of COVID-19. For the selected single-peak epidemic curves, we constructed a peak-point judgment model based on the dynamic slope and adopted a single-peak fitting model to identify the key time points and peak parameters. Finally, we developed an extreme gradient boosting-based prediction model for peak infection cases based on the total number of infections on the first 3, 5, and 7 days of the initial average incubation period. RESULTS (1) A total of 7 52298 cases, including 587 outbreaks in 251 cities in Chinese mainland between June 11, 2020, and June 29, 2022, were collected, and the first wave of COVID-19 outbreaks was excluded. Excluding the Shanghai outbreak in 2022, the 586 remaining outbreaks resulted in 1 25425 infections, with an infection rate of 4.21 per 1 00000 individuals. The number of outbreaks varied based on location, season, and temperature. (2) Trajectory clustering analysis showed that 77 epidemic curves were divided into four patterns, which were dominated by two single-peak clustering patterns (63.3%). A total of 77 Rt curves were grouped into seven patterns, with the leading patterns including four downward dynamic transmission patterns (74.03%). These curves revealed that the interval from peak to the point where the Rt value dropped below 1 was approximately 5 days. (3) The peak-point judgment model achieved a better result in the area under the curve (0.96, 95% confidence interval = 0.90-1.00). The single-peak fitting results on the epidemic curves indicated that the interval from the slow-growth point to the sharp-decline point was approximately 4-6 days in more than 50% of mass outbreaks. (4) The peak-infection-case prediction model exhibited the superior clustering results of epidemic and Rt curves compared with the findings without grouping. CONCLUSION Overall, our findings suggest the variation in the infection rates during the "dynamic zero-COVID" policy period based on the geographic division, level of economic development, seasonal division, and temperature. Trajectory clustering can be a useful tool for discovering epidemiological characteristics and dynamic transmissions, judging peak points, and predicting peak infection cases using different patterns.
Collapse
Affiliation(s)
- Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Teng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haitao Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhuoqing Wu
- Institute of Systems Engineering, Dalian University of Technology, Dalian, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Gao S, Dai X, Wang L, Perra N, Wang Z. Epidemic Spreading in Metapopulation Networks Coupled With Awareness Propagation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7686-7698. [PMID: 36054390 DOI: 10.1109/tcyb.2022.3198732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the feedback loop that links the spatiotemporal spread of infectious diseases and human behavior is an open problem. To study this problem, we develop a multiplex framework that couples epidemic spreading across subpopulations in a metapopulation network (i.e., physical layer) with the spreading of awareness about the epidemic in a communication network (i.e., virtual layer). We explicitly study the interactions between the mobility patterns across subpopulations and the awareness propagation among individuals. We analyze the coupled dynamics using microscopic Markov chains (MMCs) equations and validate the theoretical results via Monte Carlo (MC) simulations. We find that with the spreading of awareness, reducing human mobility becomes more effective in mitigating the large-scale epidemic. We also investigate the influence of varying topological features of the physical and virtual layers and the correlation between the connectivity and local population size per subpopulation. Overall the proposed modeling framework and findings contribute to the growing literature investigating the interplay between the spatiotemporal spread of epidemics and human behavior.
Collapse
|
10
|
Liu T, Chen S, Li K, Gan S, Harris CJ. Adaptive Multioutput Gradient RBF Tracker for Nonlinear and Nonstationary Regression. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7906-7919. [PMID: 37022387 DOI: 10.1109/tcyb.2023.3235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Multioutput regression of nonlinear and nonstationary data is largely understudied in both machine learning and control communities. This article develops an adaptive multioutput gradient radial basis function (MGRBF) tracker for online modeling of multioutput nonlinear and nonstationary processes. Specifically, a compact MGRBF network is first constructed with a new two-step training procedure to produce excellent predictive capacity. To improve its tracking ability in fast time-varying scenarios, an adaptive MGRBF (AMGRBF) tracker is proposed, which updates the MGRBF network structure online by replacing the worst performing node with a new node that automatically encodes the newly emerging system state and acts as a perfect local multioutput predictor for the current system state. Extensive experimental results confirm that the proposed AMGRBF tracker significantly outperforms existing state-of-the-art online multioutput regression methods as well as deep-learning-based models, in terms of adaptive modeling accuracy and online computational complexity.
Collapse
|
11
|
Gupta A, Katarya R. A deep-SIQRV epidemic model for COVID-19 to access the impact of prevention and control measures. Comput Biol Chem 2023; 107:107941. [PMID: 37625364 DOI: 10.1016/j.compbiolchem.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The coronavirus (COVID-19) has mutated into several variants, and evidence says that new variants are more transmissible than existing variants. Even with full-scale vaccination efforts, the theoretical threshold for eradicating COVID-19 appears out of reach. This article proposes an artificial intelligence(AI) based intelligent prediction model called Deep-SIQRV(Susceptible-Infected-Quarantined-Recovered-Vaccinated) to simulate the spreading of COVID-19. While many models assume that vaccination provides lifetime protection, we focus on the impact of waning immunity caused by the conversion of vaccinated individuals back to susceptible ones. Unlike existing models, which assume that all coronavirus-infected individuals have the same infection rate, the proposed model considers the various infection rates to analyze transmission laws and trends. Next, we consider the influence of prevention and control strategies, such as media marketing and law enforcement, on the spread of the epidemic. We employed the PAN-LDA model to extract features from COVID-19-related discussions on social media and online news articles. Moreover, the Long Short Term Memory(LSTM) model and Evolution Strategies(ES) are used to optimize transmission rates of infection and other model parameters, respectively. The experimental results on epidemic data from various Indian states demonstrate that persons infected with coronavirus had a more significant infection rate within four to nine days after infection, which corresponds to the actual transmission laws of the epidemic. The experimental results show that the proposed model has good prediction ability and obtains the Mean Absolute Percentage Error(MAPE) of 0.875%, 0.965%, 0.298%, and 0.215% for the next eight days in Maharashtra, Kerala, Karnataka, and Delhi, respectively. Our findings highlight the significance of using vaccination data, COVID-19-related posts, and information generated by the government's tremendous efforts in the prediction calculation process.
Collapse
Affiliation(s)
- Aakansha Gupta
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India
| | - Rahul Katarya
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India.
| |
Collapse
|
12
|
Benjamin R. Reproduction number projection for the COVID-19 pandemic. ADVANCES IN CONTINUOUS AND DISCRETE MODELS 2023; 2023:46. [DOI: 10.1186/s13662-023-03792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/10/2023] [Indexed: 01/02/2025]
Abstract
AbstractThe recently derived Hybrid-Incidence Susceptible-Transmissible-Removed (HI-STR) prototype is a deterministic compartment model for epidemics and an alternative to the Susceptible-Infected-Removed (SIR) model. The HI-STR predicts that pathogen transmission depends on host population characteristics including population size, population density and social behaviour common within that population.The HI-STR prototype is applied to the ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of the Coronavirus Disease 2019 (COVID-19) basic reproduction number $\mathcal{R}_{0}$
R
0
for the United Kingdom (UK) could have been projected onto the individual states of the United States of America (USA) prior to being detected in the USA.The Imperial College London (ICL) group’s estimate of $\mathcal{R}_{0}$
R
0
for the UK is projected onto each USA state. The difference between these projections and the ICL’s estimates for USA states is either not statistically significant on the paired Student t-test or not epidemiologically significant.The SARS-CoV2 Delta variant’s $\mathcal{R}_{0}$
R
0
is also projected from the UK to the USA to prove that projection can be applied to a Variant of Concern (VOC). Projection provides both a localised baseline for evaluating the implementation of an intervention policy and a mechanism for anticipating the impact of a VOC before local manifestation.
Collapse
|
13
|
Sheikhi F, Kowsari Z. Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks. PLoS One 2023; 18:e0282624. [PMID: 37862318 PMCID: PMC10588884 DOI: 10.1371/journal.pone.0282624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 10/22/2023] Open
Abstract
Since the beginning of the rapidly spreading COVID-19 pandemic, several mutations have occurred in the genetic sequence of the virus, resulting in emerging different variants of concern. These variants vary in transmissibility, severity of infections, and mortality rate. Designing models that are capable of predicting the future behavior of these variants in the societies can help decision makers and the healthcare system to design efficient health policies, and to be prepared with the sufficient medical devices and an adequate number of personnel to fight against this virus and the similar ones. Among variants of COVID-19, Alpha and Delta variants differ noticeably in the virus structures. In this paper, we study these variants in the geographical regions with different size, population densities, and social life styles. These regions include the country of Iran, the continent of Asia, and the whole world. We propose four deep learning models based on Long Short-Term Memory (LSTM), and examine their predictive power in forecasting the number of infections and deaths for the next three, next five, and next seven days in each variant. These models include Encoder Decoder LSTM (ED-LSTM), Bidirectional LSTM (Bi-LSTM), Convolutional LSTM (Conv-LSTM), and Gated Recurrent Unit (GRU). Performance of these models in predictions are evaluated using the root mean square error, mean absolute error, and mean absolute percentage error. Then, the Friedman test is applied to find the leading model for predictions in all conditions. The results show that ED-LSTM is generally the leading model for predicting the number of infections and deaths for both variants of Alpha and Delta, with the ability to forecast long time intervals ahead.
Collapse
Affiliation(s)
- Farnaz Sheikhi
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Zahra Kowsari
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Wang L, Wang J, Zhu L, Fu H, Li P, Cheng G, Feng Z, Li S, Heng PA. Dual Multiscale Mean Teacher Network for Semi-Supervised Infection Segmentation in Chest CT Volume for COVID-19. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:6363-6375. [PMID: 37015538 DOI: 10.1109/tcyb.2022.3223528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating coronavirus 2019 (COVID-19). However, there are still some challenges for developing AI system: 1) most current COVID-19 infection segmentation methods mainly relied on 2-D CT images, which lack 3-D sequential constraint; 2) existing 3-D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3-D volume; and 3) the emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multiscale information along different dimension of input feature maps and impose supervision on multiple predictions from different convolutional neural networks (CNNs) layers. Second, we assign this MDA-CNN as a basic network into a novel dual multiscale mean teacher network (DM [Formula: see text]-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multiscale information. Our DM [Formula: see text]-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multiscale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
Collapse
|
15
|
He M, Tang B, Xiao Y, Tang S. Transmission dynamics informed neural network with application to COVID-19 infections. Comput Biol Med 2023; 165:107431. [PMID: 37696183 DOI: 10.1016/j.compbiomed.2023.107431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Since the end of 2019 the COVID-19 repeatedly surges with most countries/territories experiencing multiple waves, and mechanism-based epidemic models played important roles in understanding the transmission mechanism of multiple epidemic waves. However, capturing temporal changes of the transmissibility of COVID-19 during the multiple waves keeps ill-posed problem for traditional mechanism-based epidemic compartment models, because that the transmission rate is usually assumed to be specific piecewise functions and more parameters are added to the model once multiple epidemic waves involved, which poses a huge challenge to parameter estimation. Meanwhile, data-driven deep neural networks fail to discover the driving factors of repeated outbreaks and lack interpretability. In this study, aiming at developing a data-driven method to project time-dependent parameters but also merging the advantage of mechanism-based models, we propose a transmission dynamics informed neural network (TDINN) by encoding the SEIRD compartment model into deep neural networks. We show that the proposed TDINN algorithm performs very well when fitting the COVID-19 epidemic data with multiple waves, where the epidemics in the United States, Italy, South Africa, and Kenya, and several outbreaks the Omicron variant in China are taken as examples. In addition, the numerical simulation shows that the trained TDINN can also perform as a predictive model to capture the future development of COVID-19 epidemic. We find that the transmission rate inferred by the TDINN frequently fluctuates, and a feedback loop between the epidemic shifting and the changes of transmissibility drives the occurrence of multiple waves. We observe a long response delay to the implementation of control interventions in the four countries, while the decline of the transmission rate in the outbreaks in China usually happens once the implementation of control interventions. The further simulation show that 17 days' delay of the response to the implementation of control interventions lead to a roughly four-fold increase in daily reported cases in one epidemic wave in Italy, which suggest that a rapid response to policies that strengthen control interventions can be effective in flattening the epidemic curve or avoiding subsequent epidemic waves. We observe that the transmission rate in the outbreaks in China is already decreasing before enhancing control interventions, providing the evidence that the increasing of the epidemics can drive self-conscious behavioural changes to protect against infections.
Collapse
Affiliation(s)
- Mengqi He
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Biao Tang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
16
|
Lu M, Zheng XY, Jia WN, Tian CZ. Analysis and prediction of improved SEIR transmission dynamics model: taking the second outbreak of COVID-19 in Italy as an example. Front Public Health 2023; 11:1223039. [PMID: 37693704 PMCID: PMC10484606 DOI: 10.3389/fpubh.2023.1223039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
This study aimed to predict the transmission trajectory of the 2019 Corona Virus Disease (COVID-19) and analyze the impact of preventive measures on the spread of the epidemic. Considering that tracking a long-term epidemic trajectory requires explanatory modeling with more complexities than short-term predictions, an improved Susceptible-Exposed-Infected-Removed (SEIR) transmission dynamic model is established. The model depends on defining various parameters that describe both the virus and the population under study. However, it is likely that several of these parameters will exhibit significant variations among different states. Therefore, regression algorithms and heuristic algorithms were developed to effectively adapt the population-dependent parameters and ensure accurate fitting of the SEIR model to data for any specific state. In this study, we consider the second outbreak of COVID-19 in Italy as a case study, which occurred in August 2020. We divide the epidemic data from February to September of the same year into two distinct stages for analysis. The numerical results demonstrate that the improved SEIR model effectively simulates and predicts the transmission trajectories of the Italian epidemic during both periods before and after the second outbreak. By analyzing the impact of anti-epidemic measures on the spread of the disease, our findings emphasize the significance of implementing anti-epidemic preventive measures in COVID-19 modeling.
Collapse
|
17
|
Wu Z, Loo CK, Obaidellah U, Pasupa K. A novel online multi-task learning for COVID-19 multi-output spatio-temporal prediction. Heliyon 2023; 9:e18771. [PMID: 37636411 PMCID: PMC10450863 DOI: 10.1016/j.heliyon.2023.e18771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
In light of the ongoing COVID-19 pandemic, predicting its trend would significantly impact decision-making. However, this is not a straightforward task due to three main difficulties: temporal autocorrelation, spatial dependency, and concept drift caused by virus mutations and lockdown policies. Although machine learning has been extensively used in related work, no previous research has successfully addressed all three challenges simultaneously. To overcome this challenge, we developed a novel online multi-task regression algorithm that incorporates a chain structure to capture spatial dependency, the ADWIN drift detector to adapt to concept drift, and the lag time series feature to capture temporal autocorrelation. We conducted several comparative experiments based on the number of daily confirmed cases in 20 areas in California and affiliated cities. The results from our experiments demonstrate that our proposed model is superior in adapting to concept drift in COVID-19 data and capturing spatial dependencies across various regions. This leads to a significant improvement in prediction accuracy when compared to existing state-of-the-art batch machine learning methods, such as N-Beats, DeepAR, TCN, and LSTM.
Collapse
Affiliation(s)
- Zipeng Wu
- Faculty of Computer Science & Information Technology, University of Malaya,Kuala Lumpur, 50603, Malaysia
| | - Chu Kiong Loo
- Faculty of Computer Science & Information Technology, University of Malaya,Kuala Lumpur, 50603, Malaysia
| | - Unaizah Obaidellah
- Faculty of Computer Science & Information Technology, University of Malaya,Kuala Lumpur, 50603, Malaysia
| | - Kitsuchart Pasupa
- School of Information Technology, King Mongkut's Institute of Technology Ladkrabang,Bangkok, 10520, Thailand
| |
Collapse
|
18
|
Butt MJ, Malik AK, Qamar N, Yar S, Malik AJ, Rauf U. A Survey on COVID-19 Data Analysis Using AI, IoT, and Social Media. SENSORS (BASEL, SWITZERLAND) 2023; 23:5543. [PMID: 37420714 DOI: 10.3390/s23125543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Coronaviruses are a well-established and deadly group of viruses that cause illness in both humans and animals. The novel type of this virus group, named COVID-19, was firstly reported in December 2019, and, with the passage of time, coronavirus has spread to almost all parts of the world. Coronavirus has been the cause of millions of deaths around the world. Furthermore, many countries are struggling with COVID-19 and have experimented with various kinds of vaccines to eliminate the deadly virus and its variants. This survey deals with COVID-19 data analysis and its impact on human social life. Data analysis and information related to coronavirus can greatly help scientists and governments in controlling the spread and symptoms of the deadly coronavirus. In this survey, we cover many areas of discussion related to COVID-19 data analysis, such as how artificial intelligence, along with machine learning, deep learning, and IoT, have worked together to fight against COVID-19. We also discuss artificial intelligence and IoT techniques used to forecast, detect, and diagnose patients of the novel coronavirus. Moreover, this survey also describes how fake news, doctored results, and conspiracy theories were spread over social media sites, such as Twitter, by applying various social network analysis and sentimental analysis techniques. A comprehensive comparative analysis of existing techniques has also been conducted. In the end, the Discussion section presents different data analysis techniques, provides future directions for research, and suggests general guidelines for handling coronavirus, as well as changing work and life conditions.
Collapse
Affiliation(s)
- Muhammad Junaid Butt
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Ahmad Kamran Malik
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Nafees Qamar
- School of Health and Behavioral Sciences, Bryant University, Smithfield, RI 02917, USA
| | - Samad Yar
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Arif Jamal Malik
- Department of Software Engineering, Foundation University, Islamabad 44000, Pakistan
| | - Usman Rauf
- Department of Mathematics and Computer Science, Mercy College, Dobbs Ferry, NY 10522, USA
| |
Collapse
|
19
|
Haleem S, Albar NH, Al Fahad MS, AlWasem HO. Knowledge, Awareness, and Perception of COVID-19 and Artificial Intelligence: A Cross-Sectional Study Among the Population in Saudi Arabia. Cureus 2023; 15:e40921. [PMID: 37496534 PMCID: PMC10368304 DOI: 10.7759/cureus.40921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) has made significant contributions to the development of medicines and vaccines. In addition, AI can analyze large amounts of COVID-19 test data, including the number of positive cases, to forecast the trajectory of the pandemic. AIM This study aimed to assess the knowledge, perception, and awareness of the general population in Saudi Arabia regarding AI and its application in combating COVID-19. METHODS A cross-sectional research design was employed, and online surveys were distributed via email and social media platforms. Purposeful sampling was used to select participants who met the inclusion criteria. The reliability and validity of the survey instrument were also assessed. RESULTS The majority of respondents (34.6%) fell within the age range of 30 to 39 years. The sample predominantly consisted of female participants. Approximately 59% of respondents reported using at least one AI tool or application on a daily basis. Furthermore, the majority of respondents agreed that digital medical services, mentioned in a previous question, could be beneficial in reducing unnecessary interactions between patients and healthcare providers. CONCLUSION The COVID-19 pandemic has demonstrated the transformative potential of AI in pandemic response. AI has played a crucial role in various aspects of combating COVID-19, including patient diagnosis, treatment development, and vaccine creation. However, challenges and limitations exist in terms of data accessibility, bias, and privacy when utilizing AI. These issues need to be addressed to ensure the ethical and responsible use of AI in the fight against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Shaista Haleem
- Aesthetic and Restorative Dentistry, Riyadh Elm University, Riyadh, SAU
| | | | | | | |
Collapse
|
20
|
Liu CC, Zhao S, Deng H. A Multi-SCALE Community Network-Based SEIQR Model to Evaluate the Dynamic NPIs of COVID-19. Healthcare (Basel) 2023; 11:healthcare11101467. [PMID: 37239752 DOI: 10.3390/healthcare11101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Regarding the problem of epidemic outbreak prevention and control, infectious disease dynamics models cannot support urban managers in reducing urban-scale healthcare costs through community-scale control measures, as they usually have difficulty meeting the requirements for simulation at different scales. In this paper, we propose combining contact networks at different spatial scales to study the COVID-19 outbreak in Shanghai from March to July 2022, calculate the initial Rt through the number of cases at the beginning of the outbreak, and evaluate the effectiveness of dynamic non-pharmaceutical interventions (NPIs) adopted at different time periods in Shanghai using our proposed approach. In particular, our proposed contact network is a three-layer multi-scale network that is used to distinguish social interactions occurring in areas of different sizes, as well as to distinguish between intensive and non-intensive population contacts. This susceptible-exposure-infection-quarantine-recovery (SEIQR) epidemic model constructed based on a multi-scale network can more effectively assess the feasibility of small-scale control measures, such as assessing community quarantine measures and mobility restrictions at different moments and phases of an epidemic. Our experimental results show that this model can meet the simulation needs at different scales, and our further discussion and analysis show that the spread of the epidemic in Shanghai from March to July 2022 can be successfully controlled by implementing a strict long-term dynamic NPI strategy.
Collapse
Affiliation(s)
- Cheng-Chieh Liu
- School of Software Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Shengjie Zhao
- School of Software Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Hao Deng
- School of Software Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Zhang J, Zheng N, Liu M, Yao D, Wang Y, Wang J, Xin J. Multi-weight susceptible-infected model for predicting COVID-19 in China. Neurocomputing 2023; 534:161-170. [PMID: 36923265 PMCID: PMC9993734 DOI: 10.1016/j.neucom.2023.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.
Collapse
Affiliation(s)
- Jun Zhang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Nanning Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Mingyu Liu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dingyi Yao
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jianji Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jingmin Xin
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
22
|
Karbasi Z, Gohari SH, Sabahi A. Bibliometric analysis of the use of artificial intelligence in COVID-19 based on scientific studies. Health Sci Rep 2023; 6:e1244. [PMID: 37152228 PMCID: PMC10158785 DOI: 10.1002/hsr2.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background and Aims One such strategy is citation analysis used by researchers for research planning an article referred to by another article receives a "citation." By using bibliometric analysis, the development of research areas and authors' influence can be investigated. The current study aimed to identify and analyze the characteristics of 100 highly cited articles on the use of artificial intelligence concerning COVID-19. Methods On July 27, 2022, this database was searched using the keywords "artificial intelligence" and "COVID-19" in the topic. After extensive searching, all retrieved articles were sorted by the number of citations, and 100 highly cited articles were included based on the number of citations. The following data were extracted: year of publication, type of study, name of journal, country, number of citations, language, and keywords. Results The average number of citations for 100 highly cited articles was 138.54. The top three cited articles with 745, 596, and 549 citations. The top 100 articles were all in English and were published in 2020 and 2021. China was the most prolific country with 19 articles, followed by the United States with 15 articles and India with 10 articles. Conclusion The current bibliometric analysis demonstrated the significant growth of the use of artificial intelligence for COVID-19. Using these results, research priorities are more clearly defined, and researchers can focus on hot topics.
Collapse
Affiliation(s)
- Zahra Karbasi
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
- Department of Health Information Sciences, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
| | - Sadrieh H. Gohari
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Azam Sabahi
- Department of Health Information Technology, Ferdows School of Health and Allied Medical SciencesBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
23
|
Zhang Y, Tang S, Yu G. An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM. Sci Rep 2023; 13:6708. [PMID: 37185289 PMCID: PMC10126574 DOI: 10.1038/s41598-023-33685-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically changing transmission characteristics pose a great challenge for effectively predicting COVID-19 cases. To address this challenge, we propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with an architecture that connects two composing model blocks, of which the relative contribution is decided data-adaptively in the training procedure. We demonstrate the favorable performance of the hybrid model over its two single composing models as well as other popular predictive models through comprehensive numerical studies on two data sources under multiple evaluation metrics. Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE, outperforming the composing AR (5.629%) and LSTM (4.934%) alone on average. In country-level datasets, our hybrid model outperforms the widely-used predictive models such as AR, LSTM, Support Vector Machines, Gradient Boosting, and Random Forest, in predicting the COVID-19 cases in Japan, Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom. In addition to the predictive performance, we illustrate the interpretability of our proposed hybrid model using the estimated AR component, which is a key feature that is not shared by most black-box predictive models for COVID-19 cases. Our study provides a new and promising direction for building effective and interpretable data-driven models for COVID-19 cases, which could have significant implications for public health policy making and control of the current COVID-19 and potential future pandemics.
Collapse
Affiliation(s)
- Yangyi Zhang
- Department of Mathematics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sui Tang
- Department of Mathematics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Guo Yu
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
24
|
Ding Z, Sha F, Zhang Y, Yang Z. Biology-Informed Recurrent Neural Network for Pandemic Prediction Using Multimodal Data. Biomimetics (Basel) 2023; 8:158. [PMID: 37092410 PMCID: PMC10123720 DOI: 10.3390/biomimetics8020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
In the biomedical field, the time interval from infection to medical diagnosis is a random variable that obeys the log-normal distribution in general. Inspired by this biological law, we propose a novel back-projection infected-susceptible-infected-based long short-term memory (BPISI-LSTM) neural network for pandemic prediction. The multimodal data, including disease-related data and migration information, are used to model the impact of social contact on disease transmission. The proposed model not only predicts the number of confirmed cases, but also estimates the number of infected cases. We evaluate the proposed model on the COVID-19 datasets from India, Austria, and Indonesia. In terms of predicting the number of confirmed cases, our model outperforms the latest epidemiological modeling methods, such as vSIR, and intelligent algorithms, such as LSTM, for both short-term and long-term predictions, which shows the superiority of bio-inspired intelligent algorithms. In general, the use of mobility information improves the prediction accuracy of the model. Moreover, the number of infected cases in these three countries is also estimated, which is an unobservable but crucial indicator for the control of the pandemic.
Collapse
Affiliation(s)
- Zhiwei Ding
- University of Science and Technology of China, Hefei 230022, China;
| | - Feng Sha
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China;
| | - Yi Zhang
- National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing 100091, China;
| | - Zhouwang Yang
- University of Science and Technology of China, Hefei 230022, China;
| |
Collapse
|
25
|
Lu C, Reddy CK, Ning Y. Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2124-2136. [PMID: 34546938 DOI: 10.1109/tcyb.2021.3109881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.
Collapse
|
26
|
Külah E, Çetinkaya YM, Özer AG, Alemdar H. COVID-19 forecasting using shifted Gaussian Mixture Model with similarity-based estimation. EXPERT SYSTEMS WITH APPLICATIONS 2023; 214:119034. [PMID: 36277990 PMCID: PMC9576929 DOI: 10.1016/j.eswa.2022.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has caused a pronounced disturbance in the social environments and economies of many countries worldwide. Credible forecasting methods to predict the pandemic's progress can allow countries to control the disease's spread and decrease the number of severe cases. This study presents a novel approach, called the Shifted Gaussian Mixture Model with Similarity-based Estimation (SGSE), that forecasts the future of a specific country's daily new case values by examining similar behavior in other countries. The model uses daily new case values collected since the pandemic began and finds countries with similar trends using a specific time offset. The daily new case values data between the first day and ( t o d a y - N ) th day are transformed by employing the Gaussian Mixture Model (GMM) and, subsequently, a new vector of features is obtained for each country. Using these feature vectors, countries that show similar statistics in the past are found for any forecasted country. The future of the corresponding country is forecasted by taking the mean of the time-series plots after the offset points of similar countries are calculated. A brand new metric called a trend similarity score, which calculates the similarity between forecasted and actual values is also presented in this study. While the SGSE trend similarity score median varies between 0.903-0.947, based on the selection of the distance metric, the ARIMA model yields only 0.642. The performance of the SGSE was compared in seven European countries using four different public projects submitted to The European COVID-19 Forecast Hub. The SGSE gives the most accurate forecasts compared to all other models. The test sets' results show that trends and plateaus are predicted accurately for many countries.
Collapse
Affiliation(s)
- Emre Külah
- Department of Computer Engineering, Middle East Technical University, Cankaya 06800, Ankara, Turkey
| | - Yusuf Mücahit Çetinkaya
- Department of Computer Engineering, Middle East Technical University, Cankaya 06800, Ankara, Turkey
| | - Arif Görkem Özer
- Department of Computer Engineering, Middle East Technical University, Cankaya 06800, Ankara, Turkey
| | - Hande Alemdar
- Department of Computer Engineering, Middle East Technical University, Cankaya 06800, Ankara, Turkey
| |
Collapse
|
27
|
Ding W, Abdel-Basset M, Hawash H, ELkomy OM. MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1285-1298. [PMID: 34748510 DOI: 10.1109/tcyb.2021.3123173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The localization and segmentation of the novel coronavirus disease of 2019 (COVID-19) lesions from computerized tomography (CT) scans are of great significance for developing an efficient computer-aided diagnosis system. Deep learning (DL) has emerged as one of the best choices for developing such a system. However, several challenges limit the efficiency of DL approaches, including data heterogeneity, considerable variety in the shape and size of the lesions, lesion imbalance, and scarce annotation. In this article, a novel multitask regression network for segmenting COVID-19 lesions is proposed to address these challenges. We name the framework MT-nCov-Net. We formulate lesion segmentation as a multitask shape regression problem that enables partaking the poor-, intermediate-, and high-quality features between various tasks. A multiscale feature learning (MFL) module is presented to capture the multiscale semantic information, which helps to efficiently learn small and large lesion features while reducing the semantic gap between different scale representations. In addition, a fine-grained lesion localization (FLL) module is introduced to detect infection lesions using an adaptive dual-attention mechanism. The generated location map and the fused multiscale representations are subsequently passed to the lesion regression (LR) module to segment the infection lesions. MT-nCov-Net enables learning complete lesion properties to accurately segment the COVID-19 lesion by regressing its shape. MT-nCov-Net is experimentally evaluated on two public multisource datasets, and the overall performance validates its superiority over the current cutting-edge approaches and demonstrates its effectiveness in tackling the problems facing the diagnosis of COVID-19.
Collapse
|
28
|
Avila-Ponce de León U, Vazquez-Jimenez A, Cervera A, Resendis-González G, Neri-Rosario D, Resendis-Antonio O. Machine Learning and COVID-19: Lessons from SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:311-335. [PMID: 37378775 DOI: 10.1007/978-3-031-28012-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Currently, methods in machine learning have opened a significant number of applications to construct classifiers with capacities to recognize, identify, and interpret patterns hidden in massive amounts of data. This technology has been used to solve a variety of social and health issues against coronavirus disease 2019 (COVID-19). In this chapter, we present some supervised and unsupervised machine learning techniques that have contributed in three aspects to supplying information to health authorities and diminishing the deadly effects of the current worldwide outbreak on the population. First is the identification and construction of powerful classifiers capable of predicting severe, moderate, or asymptomatic responses in COVID-19 patients starting from clinical or high-throughput technologies. Second is the identification of groups of patients with similar physiological responses to improve the triage classification and inform treatments. The final aspect is the combination of machine learning methods and schemes from systems biology to link associative studies with mechanistic frameworks. This chapter aims to discuss some practical applications in the use of machine learning techniques to handle data coming from social behavior and high-throughput technologies, associated with COVID-19 evolution.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Aarón Vazquez-Jimenez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Alejandra Cervera
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Galilea Resendis-González
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico.
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| |
Collapse
|
29
|
Zhang X, Zhong C, Zhang J, Wang T, Ng WW. Robust Recurrent Neural Networks for Time Series Forecasting. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Xiao B, Yang Z, Qiu X, Xiao J, Wang G, Zeng W, Li W, Nian Y, Chen W. PAM-DenseNet: A Deep Convolutional Neural Network for Computer-Aided COVID-19 Diagnosis. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12163-12174. [PMID: 34428169 PMCID: PMC9647723 DOI: 10.1109/tcyb.2020.3042837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/14/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Currently, several convolutional neural network (CNN)-based methods have been proposed for computer-aided COVID-19 diagnosis based on lung computed tomography (CT) scans. However, the lesions of pneumonia in CT scans have wide variations in appearances, sizes, and locations in the lung regions, and the manifestations of COVID-19 in CT scans are also similar to other types of viral pneumonia, which hinders the further improvement of CNN-based methods. Delineating infection regions manually is a solution to this issue, while excessive workload of physicians during the epidemic makes it difficult for manual delineation. In this article, we propose a CNN called dense connectivity network with parallel attention module (PAM-DenseNet), which can perform well on coarse labels without manually delineated infection regions. The parallel attention module automatically learns to strengthen informative features from both channelwise and spatialwise simultaneously, which can make the network pay more attention to the infection regions without any manual delineation. The dense connectivity structure performs feature maps reuse by introducing direct connections from previous layers to all subsequent layers, which can extract representative features from fewer CT slices. The proposed network is first trained on 3530 lung CT slices selected from 382 COVID-19 lung CT scans, 372 lung CT scans infected by other pneumonia, and 200 normal lung CT scans to obtain a pretrained model for slicewise prediction. We then apply this pretrained model to a CT scans dataset containing 94 COVID-19 CT scans, 93 other pneumonia CT scans, and 93 normal lung scans, and achieve patientwise prediction through a voting mechanism. The experimental results show that the proposed network achieves promising results with an accuracy of 94.29%, a precision of 93.75%, a sensitivity of 95.74%, and a specificity of 96.77%, which is comparable to the methods that are based on manually delineated infection regions.
Collapse
Affiliation(s)
- Bin Xiao
- School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - Zeyu Yang
- School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - Xiaoming Qiu
- Department of RadiologyHuangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University) Edong Healthcare GroupHuangshi435002China
| | - Jingjing Xiao
- Xinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Guoyin Wang
- School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - Wenbing Zeng
- Department of RadiologyChongqing Three Gorges Center HospitalChongqing404000China
| | - Weisheng Li
- School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - Yongjian Nian
- School of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqing400038China
| | - Wei Chen
- Department of RadiologySouthwest HospitalArmy Medical UniversityChongqing400038China
| |
Collapse
|
31
|
Zandavi SM, Rashidi TH, Vafaee F. Dynamic Hybrid Model to Forecast the Spread of COVID-19 Using LSTM and Behavioral Models Under Uncertainty. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:11977-11989. [PMID: 34735351 DOI: 10.1109/tcyb.2021.3120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To accurately predict the regional spread of coronavirus disease 2019 (COVID-19) infection, this study proposes a novel hybrid model, which combines a long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models. Several factors and control strategies affect the virus spread, and the uncertainty arising from confounding variables underlying the spread of the COVID-19 infection is substantial. The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries at the time of the study. The results show that the proposed model closely replicates the test data, such that not only it provides accurate predictions but it also replicates the daily behavior of the system under uncertainty. The hybrid model outperforms the LSTM model while accounting for data limitation. The parameters of the hybrid models are optimized using a genetic algorithm for each country to improve the prediction power while considering regional properties. Since the proposed model can accurately predict the short-term to medium-term daily spreading of the COVID-19 infection, it is capable of being used for policy assessment, planning, and decision making.
Collapse
|
32
|
Addo D, Zhou S, Jackson JK, Nneji GU, Monday HN, Sarpong K, Patamia RA, Ekong F, Owusu-Agyei CA. EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images. Diagnostics (Basel) 2022; 12:2569. [PMID: 36359413 PMCID: PMC9689048 DOI: 10.3390/diagnostics12112569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.
Collapse
Affiliation(s)
- Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shijie Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Jehoiada Kofi Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Grace Ugochi Nneji
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Happy Nkanta Monday
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Kwabena Sarpong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Rutherford Agbeshi Patamia
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Favour Ekong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | |
Collapse
|
33
|
Wang P, Zheng X, Liu H. Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review. Front Public Health 2022; 10:1033432. [PMID: 36330112 PMCID: PMC9623320 DOI: 10.3389/fpubh.2022.1033432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2023] Open
Abstract
The COVID-19 epidemic has caused more than 6.4 million deaths to date and has become a hot topic of interest in different disciplines. According to bibliometric analysis, more than 340,000 articles have been published on the COVID-19 epidemic from the beginning of the epidemic until recently. Modeling infectious diseases can provide critical planning and analytical tools for outbreak control and public health research, especially from a spatio-temporal perspective. However, there has not been a comprehensive review of the developing process of spatio-temporal dynamic models. Therefore, the aim of this study is to provide a comprehensive review of these spatio-temporal dynamic models for dealing with COVID-19, focusing on the different model scales. We first summarized several data used in the spatio-temporal modeling of the COVID-19, and then, through literature review and summary, we found that the existing COVID-19 spatio-temporal models can be divided into two categories: macro-dynamic models and micro-dynamic models. Typical representatives of these two types of models are compartmental and metapopulation models, cellular automata (CA), and agent-based models (ABM). Our results show that the modeling results are not accurate enough due to the unavailability of the fine-grained dataset of COVID-19. Furthermore, although many models have been developed, many of them focus on short-term prediction of disease outbreaks and lack medium- and long-term predictions. Therefore, future research needs to integrate macroscopic and microscopic models to build adaptive spatio-temporal dynamic simulation models for the medium and long term (from months to years) and to make sound inferences and recommendations about epidemic development in the context of medical discoveries, which will be the next phase of new challenges and trends to be addressed. In addition, there is still a gap in research on collecting fine-grained spatial-temporal big data based on cloud platforms and crowdsourcing technologies to establishing world model to battle the epidemic.
Collapse
Affiliation(s)
- Peipei Wang
- School of Information Engineering, China University of Geosciences, Beijing, China
| | - Xinqi Zheng
- School of Information Engineering, China University of Geosciences, Beijing, China
- Technology Innovation Center for Territory Spatial Big-Data, MNR of China, Beijing, China
| | - Haiyan Liu
- School of Economic and Management, China University of Geosciences, Beijing, China
| |
Collapse
|
34
|
Lu G, Businger M, Dollfus C, Wozniak T, Fleck M, Heroth T, Lock I, Lipenkova J. Agenda-Setting for COVID-19: A Study of Large-Scale Economic News Coverage Using Natural Language Processing. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022; 15:291-312. [PMID: 36217352 PMCID: PMC9535225 DOI: 10.1007/s41060-022-00364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Over the past two years, organizations and businesses have been forced to constantly adapt and develop effective responses to the challenges of the COVID-19 pandemic. The acuteness, global scale and intense dynamism of the situation make online news and information even more important for making informed management and policy decisions. This paper focuses on the economic impact of the COVID-19 pandemic, using natural language processing (NLP) techniques to examine the news media as the main source of information and agenda-setters of public discourse over an eight-month period. The aim of this study is to understand which economic topics news media focused on alongside the dominant health coverage, which topics did not surface, and how these topics influenced each other and evolved over time and space. To this end, we used an extensive open-source dataset of over 350,000 media articles on non-medical aspects of COVID-19 retrieved from over 60 top-tier business blogs and news sites. We referred to the World Economic Forum's Strategic Intelligence taxonomy to categorize the articles into a variety of topics. In doing so, we found that in the early days of COVID-19, the news media focused predominantly on reporting new cases, which tended to overshadow other topics, such as the economic impact of the virus. Different independent news sources reported on the same topics, showing a herd behavior of the news media during this global health crisis. However, a temporal analysis of news distribution in relation to its geographic focus showed that the rise in COVID-19 cases was associated with an increase in media coverage of relevant socio-economic topics. This research helps prepare for the prevention of social and economic crises when decision-makers closely monitor news coverage of viruses and related topics in other parts of the world. Thus, monitoring the news landscape on a global scale can support decision-making in social and economic crises. Our analyses point to ways in which this monitoring and issues management can be improved to remain alert to social dynamics and market changes.
Collapse
Affiliation(s)
- Guang Lu
- Institute of Communication and Marketing, Lucerne University of Applied Sciences and Arts, Zentralstrasse 9, Lucerne, 6002 Switzerland
| | - Martin Businger
- Institute of Language Competence, ZHAW Zurich University of Applied Sciences, Theaterstrasse 17, Winterthur, 8401 Switzerland
| | - Christian Dollfus
- Institute of Communication and Marketing, Lucerne University of Applied Sciences and Arts, Zentralstrasse 9, Lucerne, 6002 Switzerland
| | - Thomas Wozniak
- Institute of Communication and Marketing, Lucerne University of Applied Sciences and Arts, Zentralstrasse 9, Lucerne, 6002 Switzerland
| | - Matthes Fleck
- Institute of Communication and Marketing, Lucerne University of Applied Sciences and Arts, Zentralstrasse 9, Lucerne, 6002 Switzerland
| | - Timo Heroth
- Institute of Financial Services Zug, Lucerne University of Applied Sciences and Arts, Zentralstrasse 9, Lucerne, 6002 Switzerland
| | - Irina Lock
- Institute of Communication Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 8, Jena, 07743 Germany
| | | |
Collapse
|
35
|
Tanwar S, Kumari A, Vekaria D, Kumar N, Sharma R. An AI-based disease detection and prevention scheme for COVID-19. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2022; 103:108352. [PMID: 36068837 PMCID: PMC9436917 DOI: 10.1016/j.compeleceng.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The proliferating outbreak of COVID-19 raises global health concerns and has brought many countries to a standstill. Several restrain strategies are imposed to suppress and flatten the mortality curve, such as lockdowns, quarantines, etc. Artificial Intelligence (AI) techniques could be a promising solution to leverage these restraint strategies. However, real-time decision-making necessitates a cloud-oriented AI solution to control the pandemic. Though many cloud-oriented solutions exist, they have not been fully exploited for real-time data accessibility and high prediction accuracy. Motivated by these facts, this paper proposes a cloud-oriented AI-based scheme referred to as D-espy (i.e., Disease-espy) for disease detection and prevention. The proposed D-espy scheme performs a comparative analysis between Autoregressive Integrated Moving Average (ARIMA), Vanilla Long Short Term Memory (LSTM), and Stacked LSTM techniques, which signify the dominance of Stacked LSTM in terms of prediction accuracy. Then, a Medical Resource Distribution (MRD) mechanism is proposed for the optimal distribution of medical resources. Next, a three-phase analysis of the COVID-19 spread is presented, which can benefit the governing bodies in deciding lockdown relaxation. Results show the efficacy of the D-espy scheme concerning 96.2% of prediction accuracy compared to the existing approaches.
Collapse
Affiliation(s)
- Sudeep Tanwar
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Aparna Kumari
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Darshan Vekaria
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Neeraj Kumar
- Thapar Institute of Engineering and Technology, (Deemed to be University), Patiala, Punjab, India
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Ravi Sharma
- Centre for Inter-Disciplinary Research and Innovation, University of Petroleum and Energy Studies, P.O. Bidholi Via-Prem Nagar, Dehradun, India
| |
Collapse
|
36
|
Shi B, Ye H, Heidari AA, Zheng L, Hu Z, Chen H, Turabieh H, Mafarja M, Wu P. Analysis of COVID-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2022; 34:4874-4887. [PMID: 38620699 PMCID: PMC8483978 DOI: 10.1016/j.jksuci.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 01/11/2023]
Abstract
Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs an effective intelligence framework to early recognition and discrimination of COVID-19 severity from the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks. Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification performance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics. The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all metrics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19 severity from the perspective of coagulation.
Collapse
Affiliation(s)
- Beibei Shi
- Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
- Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing 325600, China
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Long Zheng
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing 325600, China
| | - Zhongyi Hu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325035, China
| | - Hamza Turabieh
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Majdi Mafarja
- Department of Computer Science, Birzeit University, P.O. Box 14, West Bank, Palestine
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
37
|
Abu-Abdoun DI, Al-Shihabi S. Weather Conditions and COVID-19 Cases: Insights from the GCC Countries. INTELLIGENT SYSTEMS WITH APPLICATIONS 2022. [PMCID: PMC9213049 DOI: 10.1016/j.iswa.2022.200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prediction of new COVID-19 cases is crucial for decision makers in many countries. Researchers are continually proposing new models to forecast the future tendencies of this pandemic, among which long short-term memory (LSTM) artificial neural networks have exhibited relative superiority compared to other forecasting techniques. Moreover, the correlation between the spread of COVID-19 and exogenous factors, specifically weather features, has been explored to improve forecasting models. However, contradictory results have been reported regarding the incorporation of weather features into COVID-19 forecasting models. Therefore, this study compares uni-variate with bi- and multi-variate LSTM forecasting models for predicting COVID-19 cases, among which the latter models consider weather features. LSTM models were used to forecast COVID-19 cases in the six Gulf Cooperation Council countries. The root mean square error (RMSE) and coefficient of determination (R2) were employed to measure the accuracy of the LSTM forecasting models. Despite similar weather conditions, the weather features that exhibited the strongest correlation with COVID-19 cases differed among the six countries. Moreover, according to the statistical comparisons that were conducted, the improvements gained by including weather features were insignificant in terms of the RMSE values and marginally significant in terms of the R2 values. Consequently, it is concluded that the uni-variate LSTM models were as good as the best bi- and multi-variate LSTM models; therefore, weather features need not be included. Furthermore, we could not identify a single weather feature that can consistently improve the forecasting accuracy.
Collapse
|
38
|
Zhang W, Liu S, Osgood N, Zhu H, Qian Y, Jia P. Using simulation modelling and systems science to help contain COVID-19: A systematic review. SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE 2022; 40:SRES2897. [PMID: 36245570 PMCID: PMC9538520 DOI: 10.1002/sres.2897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
This study systematically reviews applications of three simulation approaches, that is, system dynamics model (SDM), agent-based model (ABM) and discrete event simulation (DES), and their hybrids in COVID-19 research and identifies theoretical and application innovations in public health. Among the 372 eligible papers, 72 focused on COVID-19 transmission dynamics, 204 evaluated both pharmaceutical and non-pharmaceutical interventions, 29 focused on the prediction of the pandemic and 67 investigated the impacts of COVID-19. ABM was used in 275 papers, followed by 54 SDM papers, 32 DES papers and 11 hybrid model papers. Evaluation and design of intervention scenarios are the most widely addressed area accounting for 55% of the four main categories, that is, the transmission of COVID-19, prediction of the pandemic, evaluation and design of intervention scenarios and societal impact assessment. The complexities in impact evaluation and intervention design demand hybrid simulation models that can simultaneously capture micro and macro aspects of the socio-economic systems involved.
Collapse
Affiliation(s)
- Weiwei Zhang
- Research Institute of Economics and ManagementSouthwestern University of Finance and EconomicsChengduChina
| | - Shiyong Liu
- Institute of Advanced Studies in Humanities and Social SciencesBeijing Normal University at ZhuhaiZhuhaiChina
| | - Nathaniel Osgood
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada
- Department of Community Health and EpidemiologyUniversity of SaskatchewanSaskatoonCanada
| | - Hongli Zhu
- Research Institute of Economics and ManagementSouthwestern University of Finance and EconomicsChengduChina
| | - Ying Qian
- Business SchoolUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Peng Jia
- School of Resource and Environmental SciencesWuhan UniversityWuhanHubeiChina
- International Institute of Spatial Lifecourse HealthWuhan UniversityWuhanHubeiChina
| |
Collapse
|
39
|
Gao G, Mei Y, Jia YH, Browne WN, Xin B. Adaptive Coordination Ant Colony Optimization for Multipoint Dynamic Aggregation. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7362-7376. [PMID: 33400672 DOI: 10.1109/tcyb.2020.3042511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multipoint dynamic aggregation is a meaningful optimization problem due to its important real-world applications, such as post-disaster relief, medical resource scheduling, and bushfire elimination. The problem aims to design the optimal plan for a set of robots to execute geographically distributed tasks. Unlike the majority of scheduling and routing problems, the tasks in this problem can be executed by multiple robots collaboratively. Meanwhile, the demand of each task changes over time at an incremental rate and is affected by the abilities of the robots executing it. This poses extra challenges to the problem, as it has to consider complex coupled relationships among robots and tasks. To effectively solve the problem, this article develops a new metaheuristic algorithm, called adaptive coordination ant colony optimization (ACO). We develop a novel coordinated solution construction process using multiple ants and pheromone matrices (each robot/ant forages a path according to its own pheromone matrix) to effectively handle the collaborations between robots. We also propose adaptive heuristic information based on domain knowledge to promote efficiency, a pheromone-based repair mechanism to tackle the tight constraints of the problem, and an elaborate local search to enhance the exploitation ability of the algorithm. The experimental results show that the proposed adaptive coordination ACO significantly outperforms the state-of-the-art methods in terms of both effectiveness and efficiency.
Collapse
|
40
|
Jin W, Dong S, Yu C, Luo Q. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning. Comput Biol Med 2022; 146:105560. [PMID: 35551008 PMCID: PMC9042415 DOI: 10.1016/j.compbiomed.2022.105560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 outbreak poses a huge challenge to international public health. Reliable forecast of the number of cases is of great significance to the planning of health resources and the investigation and evaluation of the epidemic situation. The data-driven machine learning models can adapt to complex changes in the epidemic situation without relying on correct physical dynamics modeling, which are sensitive and accurate in predicting the development of the epidemic. In this paper, an ensemble hybrid model based on Temporal Convolutional Networks (TCN), Gated Recurrent Unit (GRU), Deep Belief Networks (DBN), Q-learning, and Support Vector Machine (SVM) models, namely TCN-GRU-DBN-Q-SVM model, is proposed to achieve the forecasting of COVID-19 infections. Three widely-used predictors, TCN, GRU, and DBN are used as elements of the hybrid model ensembled by the weights provided by reinforcement learning method. Furthermore, an error predictor built by SVM, is trained with validation set, and the final prediction result could be obtained by combining the TCN-GRU-DBN-Q model with the SVM error predictor. In order to investigate the forecasting performance of the proposed hybrid model, several comparison models (TCN-GRU-DBN-Q, LSTM, N-BEATS, ANFIS, VMD-BP, WT-RVFL, and ARIMA models) are selected. The experimental results show that: (1) the prediction effect of the TCN-GRU-DBN-Q-SVM model on COVID-19 infection is satisfactory, which has been verified in three national infection data from the UK, India, and the US, and the proposed model has good generalization ability; (2) in the proposed hybrid model, SVM can efficiently predict the possible error of the predicted series given by TCN-GRU-DBN-Q components; (3) the integrated weights based on Q-learning can be adaptively adjusted according to the characteristics of the data in the forecasting tasks in different countries and multiple situations, which ensures the accuracy, robustness and generalization of the proposed model.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Shuqing Dong
- School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China
| | - Chengqing Yu
- School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China,Corresponding author. Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| |
Collapse
|
41
|
Shi X, Jia M, Li J, Chen Q, Liu G, Liu Q. Users' Feedback on COVID-19 Lockdown Documentary: An Emotion Analysis and Topic Modeling Analysis. Front Psychol 2022; 13:944049. [PMID: 35837649 PMCID: PMC9275668 DOI: 10.3389/fpsyg.2022.944049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Conducting emotion analysis and generating users' feedback from social media platforms may help understand their emotional responses to video products, such as a documentary on the lockdown of Wuhan during COVID-19. The results of emotion analysis could be used to make further user recommendations for marketing purposes. In our study, we try to understand how users respond to a documentary through YouTube comments. We chose “The lockdown: One month in Wuhan” YouTube documentary, and applied emotion analysis as well as a machine learning approach to the comments. We first cleaned the data and then introduced an emotion analysis based on the statistical characteristics and lexicon combination. After that, we applied the Latent Dirichlet Allocation (LDA) topic modeling approach to further generate main topics with keywords from the comments and visualized the distribution by visualizing the topics. The result shows trust (22.8%), joy (15.4%), and anticipation (17.6%) are the most prominent emotions dominating the comments. The major three themes, which account for 70% of all comments, are discussing stories about fighting against the virus, medical workers being heroes, and medical workers being respected. Further discussion has been conducted on the changing of different sentiments over time for the ongoing health crisis. This study proves that emotion analysis and LDA topic modeling could be used to generate explanations of users' opinions and feelings about video products, which could support user recommendations in marketing.
Collapse
Affiliation(s)
- Xiaochuan Shi
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Miaoyutian Jia
- School of Journalism and Communication, Jinan University, Guangzhou, China
| | - Jia Li
- International School, Jinan University, Guangzhou, China
| | - Quiyi Chen
- School of Journalism and Communication, Jinan University, Guangzhou, China
| | - Guan Liu
- Research Center of Computational Journalism and Communication, Jinan University, Guangzhou, China
| | - Qian Liu
- School of Journalism and Communication, Jinan University, Guangzhou, China
- *Correspondence: Qian Liu
| |
Collapse
|
42
|
Band SS, Ardabili S, Yarahmadi A, Pahlevanzadeh B, Kiani AK, Beheshti A, Alinejad-Rokny H, Dehzangi I, Chang A, Mosavi A, Moslehpour M. A Survey on Machine Learning and Internet of Medical Things-Based Approaches for Handling COVID-19: Meta-Analysis. Front Public Health 2022; 10:869238. [PMID: 35812486 PMCID: PMC9260273 DOI: 10.3389/fpubh.2022.869238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis, prioritization, screening, clustering, and tracking of patients with COVID-19, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, manage, and deal with this epidemic. Strategies backed by artificial intelligence (A.I.) and the Internet of Things (IoT) have been undeniably effective to understand how the virus works and prevent it from spreading. Accordingly, the main aim of this survey is to critically review the ML, IoT, and the integration of IoT and ML-based techniques in the applications related to COVID-19, from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach to tracking the disease spread. On the other hand, most of the studies developed by ML-based techniques aimed at the detection and handling of challenges associated with the COVID-19 pandemic. Among different approaches, Convolutional Neural Network (CNN), Support Vector Machine, Genetic CNN, and pre-trained CNN, followed by ResNet have demonstrated the best performances compared to other methods.
Collapse
Affiliation(s)
- Shahab S. Band
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Sina Ardabili
- Department of Informatics, J. Selye University, Komárom, Slovakia
| | - Atefeh Yarahmadi
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Bahareh Pahlevanzadeh
- Department of Design and System Operations, Regional Information Center for Science and Technology (R.I.C.E.S.T.), Shiraz, Iran
| | - Adiqa Kausar Kiani
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Amin Beheshti
- Department of Computing, Macquarie University, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, U.N.S.W. Sydney, Sydney, NSW, Australia
- U.N.S.W. Data Science Hub, The University of New South Wales (U.N.S.W. Sydney), Sydney, NSW, Australia
- Health Data Analytics Program, AI-enabled Processes (A.I.P.) Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, United States
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Arthur Chang
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Taiwan
| | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary
- Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Massoud Moslehpour
- Department of Business Administration, College of Management, Asia University, Taichung, Taiwan
- Department of Management, California State University, San Bernardino, CA, United States
| |
Collapse
|
43
|
Hasan I, Dhawan P, Rizvi SAM, Dhir S. Data analytics and knowledge management approach for COVID-19 prediction and control. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY : AN OFFICIAL JOURNAL OF BHARATI VIDYAPEETH'S INSTITUTE OF COMPUTER APPLICATIONS AND MANAGEMENT 2022; 15:937-954. [PMID: 35729979 PMCID: PMC9188422 DOI: 10.1007/s41870-022-00967-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease (COVID-19) caused by SARS-CoV-2, continues to be a global threat. The major global concern among scientists and researchers is to develop innovative digital solutions for prediction and control of infection and to discover drugs for its cure. In this paper we developed a strategic technical solution for surveillance and control of COVID-19 in Delhi-National Capital Region (NCR). This work aims to elucidate the Delhi COVID-19 Data Management Framework, the backend mechanism of integrated Command and Control Center (iCCC) with plugged-in modules for various administrative, medical and field operations. Based on the time-series data extracted from iCCC repository, the forecasting of COVID-19 spread has been carried out for Delhi using the Auto-Regressive Integrated Moving Average (ARIMA) model as it can effectively predict the logistics requirements, active cases, positive patients, and death rate. The intelligence generated through this research has paved the way for the Government of National Capital Territory Delhi to strategize COVID-19 related policies formulation and implementation on real time basis. The outcome of this innovative work has led to the drastic reduction in COVID-19 positive cases and deaths in Delhi-NCR.
Collapse
Affiliation(s)
- Iqbal Hasan
- National Informatics Centre, Delhi Secretariat, IP Estate, New Delhi, 110003 India
- Department of Computer Science, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025 Delhi India
| | - Prince Dhawan
- Department of Trade and Taxes, Government of NCT of Delhi, IP Estate, New Delhi, 110002 India
| | - S. A. M. Rizvi
- Department of Computer Science, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025 Delhi India
| | - Sanjay Dhir
- Department of Management Studies, Indian Institute of Technology-Delhi, New Delhi, 110016 India
| |
Collapse
|
44
|
Fatimah B, Aggarwal P, Singh P, Gupta A. A comparative study for predictive monitoring of COVID-19 pandemic. Appl Soft Comput 2022; 122:108806. [PMID: 35431707 PMCID: PMC8988600 DOI: 10.1016/j.asoc.2022.108806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/02/2022] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 pandemic caused by novel coronavirus (SARS-CoV-2) crippled the world economy and engendered irreparable damages to the lives and health of millions. To control the spread of the disease, it is important to make appropriate policy decisions at the right time. This can be facilitated by a robust mathematical model that can forecast the prevalence and incidence of COVID-19 with greater accuracy. This study presents an optimized ARIMA model to forecast COVID-19 cases. The proposed method first obtains a trend of the COVID-19 data using a low-pass Gaussian filter and then predicts/forecasts data using the ARIMA model. We benchmarked the optimized ARIMA model for 7-days and 14-days forecasting against five forecasting strategies used recently on the COVID-19 data. These include the auto-regressive integrated moving average (ARIMA) model, susceptible-infected-removed (SIR) model, composite Gaussian growth model, composite Logistic growth model, and dictionary learning-based model. We have considered the daily infected cases, cumulative death cases, and cumulative recovered cases of the COVID-19 data of the ten most affected countries in the world, including India, USA, UK, Russia, Brazil, Germany, France, Italy, Turkey, and Colombia. The proposed algorithm outperforms the existing models on the data of most of the countries considered in this study.
Collapse
Affiliation(s)
- Binish Fatimah
- Department of ECE, CMR Institute of Technology, Bengaluru, India
| | | | - Pushpendra Singh
- Department of ECE, National Institute of Technology Hamirpur, HP, India
| | - Anubha Gupta
- SBILab, Department of ECE, IIIT-Delhi, Delhi, India
| |
Collapse
|
45
|
A Review of the Potential of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading. AI 2022. [DOI: 10.3390/ai3020028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The spread of SARS-CoV-2 can be considered one of the most complicated patterns with a large number of uncertainties and nonlinearities. Therefore, analysis and prediction of the distribution of this virus are one of the most challenging problems, affecting the planning and managing of its impacts. Although different vaccines and drugs have been proved, produced, and distributed one after another, several new fast-spreading SARS-CoV-2 variants have been detected. This is why numerous techniques based on artificial intelligence (AI) have been recently designed or redeveloped to forecast these variants more effectively. The focus of such methods is on deep learning (DL) and machine learning (ML), and they can forecast nonlinear trends in epidemiological issues appropriately. This short review aims to summarize and evaluate the trustworthiness and performance of some important AI-empowered approaches used for the prediction of the spread of COVID-19. Sixty-five preprints, peer-reviewed papers, conference proceedings, and book chapters published in 2020 were reviewed. Our criteria to include or exclude references were the performance of these methods reported in the documents. The results revealed that although methods under discussion in this review have suitable potential to predict the spread of COVID-19, there are still weaknesses and drawbacks that fall in the domain of future research and scientific endeavors.
Collapse
|
46
|
Mydukuri RV, Kallam S, Patan R, Al‐Turjman F, Ramachandran M. Deming least square regressed feature selection and Gaussian neuro-fuzzy multi-layered data classifier for early COVID prediction. EXPERT SYSTEMS 2022; 39:e12694. [PMID: 34230740 PMCID: PMC8250320 DOI: 10.1111/exsy.12694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 05/31/2023]
Abstract
Coronavirus disease (COVID-19) is a harmful disease caused by the new SARS-CoV-2 virus. COVID-19 disease comprises symptoms such as cold, cough, fever, and difficulty in breathing. COVID-19 has affected many countries and their spread in the world has put humanity at risk. Due to the increasing number of cases and their stress on administration as well as health professionals, different prediction techniques were introduced to predict the coronavirus disease existence in patients. However, the accuracy was not improved, and time consumption was not minimized during the disease prediction. To address these problems, least square regressive Gaussian neuro-fuzzy multi-layered data classification (LSRGNFM-LDC) technique is introduced in this article. LSRGNFM-LDC technique performs efficient COVID prediction with better accuracy and lesser time consumption through feature selection and classification. The preprocessing is used to eliminate the unwanted data in input features. Preprocessing is applied to reduce the time complexity. Next, Deming Least Square Regressive Feature Selection process is carried out for selecting the most relevant features through identifying the line of best fit. After the feature selection process, Gaussian neuro-fuzzy classifier in LSRGNFM-LDC technique performs the data classification process with help of fuzzy if-then rules for performing prediction process. Finally, the fuzzy if-then rule classifies the patient data as lower risk level, medium risk level and higher risk level with higher accuracy and lesser time consumption. Experimental evaluation is performed by Novel Corona Virus 2019 Dataset using different metrics like prediction accuracy, prediction time, and error rate. The result shows that LSRGNFM-LDC technique improves the accuracy and minimizes the time consumption as well as error rate than existing works during COVID prediction.
Collapse
Affiliation(s)
- Rathnamma V Mydukuri
- Department of Computer Science and EngineeringKSRM College Of Engineering (A)KadapaAndhra PradeshIndia
| | - Suresh Kallam
- Department of Computer Science & EngineeringSree Vidyanikethan Engineering CollegeTirupatiAndhra PradeshIndia
| | - Rizwan Patan
- Department of Computer Science & EngineeringVelagapudi Ramakrishna Siddhartha Engineering CollegeVijayawadaAndhra PradeshIndia
| | - Fadi Al‐Turjman
- Research Center for AI and IoT, Artificial Intelligence Engineering DepartmentNear East UniversityMersinTurkey
| | | |
Collapse
|
47
|
Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries. ECONOMETRICS 2022. [DOI: 10.3390/econometrics10020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic is a serious threat to all of us. It has caused an unprecedented shock to the world’s economy, and it has interrupted the lives and livelihood of millions of people. In the last two years, a large body of literature has attempted to forecast the main dimensions of the COVID-19 outbreak using a wide set of models. In this paper, I forecast the short- to mid-term cumulative deaths from COVID-19 in 12 hard-hit big countries around the world as of 20 August 2021. The data used in the analysis were extracted from the Our World in Data COVID-19 dataset. Both non-seasonal and seasonal autoregressive integrated moving averages (ARIMA and SARIMA) were estimated. The analysis showed that: (i) ARIMA/SARIMA forecasts were sufficiently accurate in both the training and test set by always outperforming the simple alternative forecasting techniques chosen as benchmarks (Mean, Naïve, and Seasonal Naïve); (ii) SARIMA models outperformed ARIMA models in 47 out 48 metrics (in forecasting future values), i.e., on 97.9% of all the considered forecast accuracy measures (mean absolute error [MAE], mean absolute percentage error [MAPE], mean absolute scaled error [MASE], and the root mean squared error [RMSE]), suggesting a clear seasonal pattern in the data; and (iii) the forecasted values from SARIMA models fitted very well the observed (real-time) data for the period 21 August 2021–19 September 2021 for almost all the countries analyzed. This article shows that SARIMA can be safely used for both the short- and medium-term predictions of COVID-19 deaths. Thus, this approach can help government authorities to monitor and manage the huge pressure that COVID-19 is exerting on national healthcare systems.
Collapse
|
48
|
Subash Chandra Bose S, Vinoth Kumar A, Premkumar A, Deepika M, Gokilavani M. Biserial targeted feature projection based radial kernel regressive deep belief neural learning for covid-19 prediction. Soft comput 2022; 27:1651-1662. [PMID: 35378723 PMCID: PMC8968782 DOI: 10.1007/s00500-022-06943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 01/31/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by the novel SARS-CoV-2 virus. Different prediction techniques have been developed to predict the coronavirus disease's existence in patients. However, the accurate prediction was not improved and time consumption was not minimized. In order to address these existing problems, a novel technique called Biserial Targeted Feature Projection-based Radial Kernel Regressive Deep Belief Neural Learning (BTFP-RKRDBNL) is introduced to perform accurate disease prediction with lesser time consumption. The BTFP-RKRDBNL techniques perform disease prediction with the help of different layers such as two visible layers namely input and layer and two hidden layers. Initially, the features and data are collected from the dataset and transmitted to the input layer. The Point Biserial Correlative Target feature projection is used to select relevant features and other irrelevant features are removed with minimizing the disease prediction time. Then the relevant features are sent to the hidden layer 2. Next, Radial Kernel Regression is applied to analyze the training features and testing disease features to identify the disease with higher accuracy and a lesser false positive rate. Experimental analysis is planned to measure the prediction accuracy, sensitivity, and specificity, and prediction time for different numbers of patients. The result illustrates that the method increases the prediction accuracy, sensitivity, and specificity by 10, 6, and 21% and reduces the prediction time by 10% as compared to state-of-the-art works.
Collapse
Affiliation(s)
- S. Subash Chandra Bose
- Department of Information Technology, Guru Nanak College, Velachery, Chennai, Tamil Nadu India
| | - A. Vinoth Kumar
- Department of Electronics and Communication Engineering, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
| | - Anitha Premkumar
- Department of Computer Science, Presidency University, Bangalore, 560064 India
| | - M. Deepika
- Computer Science and Engineering, ASIET, Kalady, Kerala India
| | - M. Gokilavani
- Computer Science and Engineering, KL University, Guntur, Andra Pradesh India
| |
Collapse
|
49
|
Clinical Characteristics of COVID-19 Patients and Application to an Artificial Intelligence System for Disease Surveillance. J Clin Med 2022; 11:jcm11051437. [PMID: 35268531 PMCID: PMC8911292 DOI: 10.3390/jcm11051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
During the coronavirus disease (COVID-19) pandemic, we admitted suspected or confirmed COVID-19 patients to our isolation wards between 2 March 2020 and 4 May 2020, following a well-designed and efficient assessment protocol. We included 217 patients suspected of COVID-19, of which 27 had confirmed COVID-19. The clinical characteristics of these patients were used to train artificial intelligence (AI) models such as support vector machine (SVM), decision tree, random forest, and artificial neural network for diagnosing COVID-19. When analyzing the performance of the models, SVM showed the highest sensitivity (SVM vs. decision tree vs. random forest vs. artificial neural network: 100% vs. 42.86% vs. 28.57% vs. 71.43%), while decision tree and random forest had the highest specificity (SVM vs. decision tree vs. random forest vs. artificial neural network: 88.37% vs. 100% vs. 100% vs. 94.74%) in the diagnosis of COVID-19. With the aid of AI models, physicians may identify COVID-19 patients earlier, even with few baseline data available, and segregate infected patients earlier to avoid hospital cluster infections and to ensure the safety of medical professionals and ordinary patients in the hospital.
Collapse
|
50
|
Cau R, Faa G, Nardi V, Balestrieri A, Puig J, Suri JS, SanFilippo R, Saba L. Long-COVID diagnosis: From diagnostic to advanced AI-driven models. Eur J Radiol 2022; 148:110164. [PMID: 35114535 PMCID: PMC8791239 DOI: 10.1016/j.ejrad.2022.110164] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
SARS-COV 2 is recognized to be responsible for a multi-organ syndrome. In most patients, symptoms are mild. However, in certain subjects, COVID-19 tends to progress more severely. Most of the patients infected with SARS-COV2 fully recovered within some weeks. In a considerable number of patients, like many other viral infections, various long-lasting symptoms have been described, now defined as "long COVID-19 syndrome". Given the high number of contagious over the world, it is necessary to understand and comprehend this emerging pathology to enable early diagnosis and improve patents outcomes. In this scenario, AI-based models can be applied in long-COVID-19 patients to assist clinicians and at the same time, to reduce the considerable impact on the care and rehabilitation unit. The purpose of this manuscript is to review different aspects of long-COVID-19 syndrome from clinical presentation to diagnosis, highlighting the considerable impact that AI can have.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Italy
| | - Valentina Nardi
- Department of Cardiovascular Medicine Mayo Clinic, Rochester, MN, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona, Girona, Spain
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, Atheropoint LLC, Roseville, CA, USA
| | - Roberto SanFilippo
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy.
| |
Collapse
|