1
|
Pells S, Zeraatkar N, Kalluri KS, Moore SC, May M, Furenlid LR, Kupinski MA, Kuo PH, King MA. Correction of multiplexing artefacts in multi-pinhole SPECT through temporal shuttering, de-multiplexing of projections, and alternating reconstruction. Phys Med Biol 2024; 69:10.1088/1361-6560/ad4f47. [PMID: 38776948 PMCID: PMC11212123 DOI: 10.1088/1361-6560/ad4f47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Single-photon emission computed tomography (SPECT) with pinhole collimators can provide high-resolution imaging, but is often limited by low sensitivity. Acquiring projections simultaneously through multiple pinholes affords both high resolution and high sensitivity. However, the overlap of projections from different pinholes on detectors, known as multiplexing, has been shown to cause artefacts which degrade reconstructed images.Approach.Multiplexed projection sets were considered here using an analytic simulation model of AdaptiSPECT-C-a brain-dedicated multi-pinhole SPECT system. AdaptiSPECT-C has fully adaptable aperture shutters, so can acquire projections with a combination of multiplexed and non-multiplexed frames using temporal shuttering. Two strategies for reducing multiplex artefacts were considered: an algorithm to de-multiplex projections, and an alternating reconstruction strategy for projections acquired with a combination of multiplexed and non-multiplexed frames. Geometric and anthropomorphic digital phantoms were used to assess a number of metrics.Main results.Both de-multiplexing strategies showed a significant reduction in image artefacts and improved fidelity, image uniformity, contrast recovery and activity recovery (AR). In all cases, the two de-multiplexing strategies resulted in superior metrics to those from images acquired with only mux-free frames. The de-multiplexing algorithm provided reduced image noise and superior uniformity, whereas the alternating strategy improved contrast and AR.Significance.The use of these de-multiplexing algorithms means that multi-pinhole SPECT systems can acquire projections with more multiplexing without degradation of images.
Collapse
Affiliation(s)
- Sophia Pells
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Navid Zeraatkar
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Kesava S Kalluri
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Stephen C Moore
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Micaehla May
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, United States of America
| | - Lars R Furenlid
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, United States of America
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
| | - Matthew A Kupinski
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, United States of America
| | - Phillip H Kuo
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
- Department of Medicine, The University of Arizona, Tucson, AZ, United States of America
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States of America
| | - Michael A King
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| |
Collapse
|
2
|
Zannoni EM, Yang C, Meng LJ. Design Study of an Ultrahigh Resolution Brain SPECT System Using a Synthetic Compound-Eye Camera Design With Micro-Slit and Micro-Ring Apertures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3711-3727. [PMID: 34255626 PMCID: PMC8711775 DOI: 10.1109/tmi.2021.3096920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we discuss the design study for a brain SPECT imaging system, referred to as the HelmetSPECT system, based on a spherical synthetic compound-eye (SCE) gamma camera design. The design utilizes a large number ( ∼ 500 ) of semiconductor detector modules, each coupled to an aperture with a very narrow opening for high-resolution SPECT imaging applications. In this study, we demonstrate that this novel system design could provide an excellent spatial resolution, a very high sensitivity, and a rich angular sampling without scanning motion over a clinically relevant field-of-view (FOV). These properties make the proposed HelmetSPECT system attractive for dynamic imaging of epileptic patients during seizures. In ictal SPECT, there is typically no prior information on where the seizures would happen, and both the imaging resolution and quantitative accuracy of the dynamic SPECT images would provide critical information for staging the seizures outbreak and refining the plans for subsequent surgical intervention.We report the performance evaluation and comparison among similar system geometries using non-conventional apertures, such as micro-ring and micro-slit, and traditional lofthole apertures. We demonstrate that the combination of ultrahigh-resolution imaging detectors, the SCE gamma camera design, and the micro-ring and micro-slit apertures would offer an interesting approach for the future ultrahigh-resolution clinical SPECT imaging systems without sacrificing system sensitivity and FOV.
Collapse
|
3
|
Könik A, Zeraatkar N, Kalluri KS, Auer B, Fromme TJ, He Y, May M, Furenlid LR, Kuo PH, King MA. Improved Performance of a Multipinhole SPECT for DAT Imaging by Increasing Number of Pinholes at the Expense of Increased Multiplexing. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:817-825. [PMID: 34746540 DOI: 10.1109/trpms.2020.3035626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SPECT imaging of dopamine transporters (DAT) in the brain is a widely utilized study to improve the diagnosis of Parkinsonian syndromes, where conventional (parallel-hole and fan-beam) collimators on dual-head scanners are commonly employed. We have designed a multi-pinhole (MPH) collimator to improve the performance of DAT imaging. The MPH collimator focuses on the striatum and hence offers a better trade-off for sensitivity and spatial resolution than the conventional collimators within this clinically most relevant region for DAT imaging. Our original MPH design consisted of 9 pinholes with a background-to-striatal (Bkg/Str) projection multiplexing of 1% only. In this simulation study, we investigated whether further improvements in the performance of MPH imaging could be obtained by increasing the number of pinholes, hence by enhancing the sensitivity and sampling, despite the ambiguity in reconstructing images due to increased multiplexing. We performed analytic simulations of the MPH configurations with 9, 13, and 16 pinholes (aperture diameters: 4-6mm) using a digital phantom modeling DAT imaging. Our quantitative analyses indicated that using 13 (Bkg/Str: 12%) and 16 (Bkg/Str: 22%) pinholes provided better performance than the original 9-pinhole configuration for the acquisition with 2 or 4 angular views, but a similar performance with 8 and 16 views.
Collapse
Affiliation(s)
- Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Navid Zeraatkar
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | - Kesava S Kalluri
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | - Benjamin Auer
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | | | - Yulun He
- MD Anderson Cancer Center, Houston, TX
| | - Micaehla May
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Lars R Furenlid
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Phillip H Kuo
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Michael A King
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
4
|
Zeraatkar N, Kalluri KS, Auer B, May M, Richards RG, Furenlid LR, Kuo PH, King MA. Cerebral SPECT imaging with different acquisition schemes using varying levels of multiplexing versus sensitivity in an adaptive multi-pinhole brain-dedicated scanner. Biomed Phys Eng Express 2021; 7. [PMID: 34507309 DOI: 10.1088/2057-1976/ac25c3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
Application of multi-pinhole collimator in pinhole-based SPECT increases detection sensitivity. The presence of multiplexing in projection images due to the usage of multiple pinholes can further improve the sensitivity at the cost of adding data ambiguity. We are developing a next-generation adaptive brain-dedicated SPECT system -AdaptiSPECT-C. The AdaptiSPECT-C can adapt the multiplexing level and system sensitivity using adaptable pinhole modules. In this study, we investigated the performance of 4 data acquisition schemes with different multiplexing levels and sensitivities on cerebral SPECT imaging. Schemes #1, #2, and #3 have <1%, 67%, and 31% overall multiplexing, respectively, while the 4th scheme without multiplexing is considered as ground truth. The ground-truth and schemes #1-3 have 1.0, 1.7, 5.1, and 4.0 times higher sensitivity, respectively, compared to a dual-headed parallel-hole SPECT system at matched spatial resolution. A customized XCAT brain perfusion digital phantom emulating the distribution of I-123 N-isopropyl iodoamphetamine (IMP) in a 99th percentile size male was used for simulations. Data acquisition for each scheme was performed at two count levels (low-count and high-count relative to the recommended clinical count level). The normalized root-mean-square error (NRMSE) for schemes #1, #2, and #3 with the low-count (high-count) scenario showed 11%, 4%, and 5% (10%, 5%, and 6%) deviation, respectively, from that of the multiplex-free ground truth. For both the low-count and high-count scenarios, scheme #1 resulted in the least accurate activity ratio (AR) for almost all the analyzed gray-matter brain regions. Further schemes #2 or #3 led to the most accurate AR values with both low-count and high-count scenarios for all the analyzed gray-matter regions. It was thus observed that even with this large head size which leads to significant multiplexing levels, the higher sensitivity from multiplexing could to some extent mitigate the data ambiguity and be translated into reconstructed images of higher quality.
Collapse
Affiliation(s)
- Navid Zeraatkar
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America.,Siemens Medical Solutions USA, Inc., Knoxville, TN, United States of America
| | - Kesava S Kalluri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Benjamin Auer
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Micaehla May
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - R Garrett Richards
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Lars R Furenlid
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America.,Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Phillip H Kuo
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
5
|
Gamma Camera Imaging with Rotating Multi-Pinhole Collimator. A Monte Carlo Feasibility Study. SENSORS 2021; 21:s21103367. [PMID: 34066113 PMCID: PMC8151746 DOI: 10.3390/s21103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022]
Abstract
In this work, we propose and analyze a new concept of gamma ray imaging that corresponds to a gamma camera with a mobile collimator, which can be used in vivo, during surgical interventions for oncological patients for localizing regions of interest such as tumors or ganglia. The benefits are a much higher sensitivity, better image quality and, consequently, a dose reduction for the patient and medical staff. This novel approach is a practical solution to the overlapping problem which is inherent to multi-pinhole gamma camera imaging and single photon emission computed tomography and which translates into artifacts and/or image truncation in the final reconstructed image. The key concept consists in introducing a relative motion between the collimator and the detector. Moreover, this design could also be incorporated into most commercially available gamma camera devices, without any excessive additional requirements. We use Monte Carlo simulations to assess the feasibility of such a device, analyze three possible designs and compare their sensitivity, resolution and uniformity. We propose a final design of a gamma camera with a high sensitivity ranging from 0.001 to 0.006 cps/Bq, and a high resolution of 0.5–1.0 cm (FWHM), for source-to-detector distances of 4–10 cm. Additionally, this planar gamma camera provides information about the depth of source (with approximate resolution of 1.5 cm) and excellent image uniformity.
Collapse
|
6
|
Zeraatkar N, Auer B, Kalluri KS, May M, Momsen NC, Richards RG, Furenlid LR, Kuo PH, King MA. Improvement in sampling and modulation of multiplexing with temporal shuttering of adaptable apertures in a brain-dedicated multi-pinhole SPECT system. Phys Med Biol 2021; 66:065004. [PMID: 33352545 PMCID: PMC9893699 DOI: 10.1088/1361-6560/abd5cd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We are developing a multi-detector pinhole-based stationary brain-dedicated SPECT system: AdaptiSPECT-C. In this work, we introduced a new design prototype with multiple adaptable pinhole apertures for each detector to modulate the multiplexing by employing temporal shuttering of apertures. Temporal shuttering of apertures over the scan time provides the AdaptiSPECT-C with the capability of multiple-frame acquisition. We investigated, through analytic simulation, the impact of projection multiplexing on image quality using several digital phantoms and a customized anthropomorphic phantom emulating brain perfusion clinical distribution. The 105 pinholes in the collimator of the system were categorized into central, axial, and lateral apertures. We generated, through simulation, collimators of different multiplexing levels. Several data acquisition schemes were also created by changing the imaging time share of the acquisition frames. Sensitivity increased by 35% compared to the single-pinhole-per-detector base configuration of the AdaptiSPECT-C when using the central, axial, and lateral apertures with equal acquisition time shares within a triple-frame scheme with a high multiplexing scenario. Axial and angular sampling of the base configuration was enhanced by adding the axial and lateral apertures. We showed that the temporal shuttering of apertures can be exploited, trading the sensitivity, to modulate the multiplexing and to acquire a set of non-multiplexed non-truncated projections. Our results suggested that reconstruction benefited from utilizing both non-multiplexed projections and projections with modulated multiplexing resulting in a noticeably reduction in the multiplexing-induced image artefacts. Contrast recovery factor improved by 20% (9%) compared to the base configuration for a Defrise (hot-rod) phantom study when the central and axial (lateral) apertures with equal time shares were combined. The results revealed that, as an overall trend at each simulated multiplexing level, lowest normalized root-mean-square errors for the brain gray-matter regions were achieved with the combined usage of the central apertures and axial/lateral apertures.
Collapse
Affiliation(s)
- Navid Zeraatkar
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA, 95616.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Benjamin Auer
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Kesava S. Kalluri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Micaehla May
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 85721
| | - Neil C. Momsen
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 85721
| | - R. Garrett Richards
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 85721
| | - Lars R. Furenlid
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 85721.,Department of Medical Imaging, University of Arizona, Tucson, AZ, USA, 85724
| | - Phillip H. Kuo
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA, 85724
| | - Michael A. King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| |
Collapse
|
7
|
Ozsahin I, Chen L, Könik A, King MA, Beekman FJ, Mok GSP. The clinical utilities of multi-pinhole single photon emission computed tomography. Quant Imaging Med Surg 2020; 10:2006-2029. [PMID: 33014732 PMCID: PMC7495312 DOI: 10.21037/qims-19-1036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/06/2022]
Abstract
Single photon emission computed tomography (SPECT) is an important imaging modality for various applications in nuclear medicine. The use of multi-pinhole (MPH) collimators can provide superior resolution-sensitivity trade-off when imaging small field-of-view compared to conventional parallel-hole and fan-beam collimators. Besides the very successful application in small animal imaging, there has been a resurgence of the use of MPH collimators for clinical cardiac and brain studies, as well as other small field-of-view applications. This article reviews the basic principles of MPH collimators and introduces currently available and proposed clinical MPH SPECT systems.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia/TRNC, Mersin-10, Turkey
- DESAM Institute, Near East University, Nicosia/TRNC, Mersin-10, Turkey
| | - Ling Chen
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA, USA
| | - Michael A. King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Freek J. Beekman
- Section of Biomedical Imaging, Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
- MILabs B.V, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
8
|
Ilisie V, Moliner L, Oliver S, Sánchez F, González AJ, Seimetz M, Rodríguez-Álvarez MJ, Benlloch JM. High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study. Sci Rep 2019; 9:18431. [PMID: 31804601 PMCID: PMC6895102 DOI: 10.1038/s41598-019-54934-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022] Open
Abstract
Gamma cameras are of great interest due to their high potential in the field of Nuclear Medicine Imaging. They allow for an early diagnosis of reduced size tumors, and also for a wide variety of preclinical studies with the aim of designing more effective treatments against cancer. In this work we propose a significantly improved multi-pinhole collimator gamma camera and perform a first Monte Carlo analysis of its characteristics. Maintaining the configuration of a multi-pinhole collimator with a high degree of overlapping (thus with a high sensitivity), we add a new element, an active septa, that besides acting as a collimator, is able to measure the impact coordinates of the incident photon. This way one is able to unambiguously identify through which pinhole any gamma ray passes before being detected. The result is a high sensitivity and resolution multi-pinhole gamma camera with an arbitrarily large field of view. As a consequence, the final reconstructed image does not suffer from the undesired artifacts or truncation associated to the multiplexing phenomenon. In this study we focus on the development of a system able to visualize in 3D tumors, nodes and metastasis in real time in the operating room with very low dose. We also briefly analyse and propose a novel design for a Single Photon Emission Computed Tomography system.
Collapse
Affiliation(s)
- Victor Ilisie
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain.
| | - Laura Moliner
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Sandra Oliver
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Filomeno Sánchez
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Antonio J González
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Michael Seimetz
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Maria J Rodríguez-Álvarez
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| | - Jose Maria Benlloch
- Instituto de Instrumentación para Imagen Molecular, Camino de Vera s/n 46022, Universitat Politècnica de València - CSIC, 46022, Valencia, Spain
| |
Collapse
|
9
|
van Roosmalen J, Beekman FJ, Goorden MC. System geometry optimization for molecular breast tomosynthesis with focusing multi-pinhole collimators. Phys Med Biol 2017; 63:015018. [PMID: 28994663 DOI: 10.1088/1361-6560/aa9265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.
Collapse
Affiliation(s)
- Jarno van Roosmalen
- Section Biomedical Imaging, Delft University of Technology, Delft, Netherlands
| | | | | |
Collapse
|
10
|
DiFilippo FP. Design of a Tri-PET collimator for high-resolution whole-body mouse imaging. Med Phys 2017; 44:4230-4238. [PMID: 28556264 DOI: 10.1002/mp.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/30/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Tri-PET refers to high-resolution 511-keV emission tomography using a multipinhole collimator in conjunction with lower resolution PET detectors operating in coincidence mode. Tri-PET is unique in that three spatial locations are associated with each event (two detector coordinates and one pinhole location). Spatial resolution and sensitivity are similar to that of 511-keV SPECT and are governed mainly by the collimator design. However because of a third spatial location in Tri-PET, the line-of-response is overdetermined. This feature permits new opportunities in data processing which impact collimator design. In particular, multiplexing can be avoided since the coincidence data identify the pinhole through which the photon passed. In this paper, the principles of Tri-PET collimator design are reviewed and then applied to the case of high-resolution imaging of a small animal in a clinical PET scanner. METHODS The design of a 148-pinhole collimator for whole-body imaging of a mouse is presented. Two pinhole designs were investigated: knife-edge pinholes with 1.1 mm aperture and novel hyperboloidal pinholes with 1.2 mm aperture, both having 18° cone angle. The pinhole configuration is unfocused, covering a whole-body mouse field of view with nearly uniform sensitivity. Computer simulations were performed of a micro hot rods phantom imaged with this collimator in a clinical PET scanner. Sensitivity was estimated by simulating a point source centered on-axis at locations spanning a 70-mm axial range, similar to the NEMA NU-4 standard for whole-body mouse imaging. RESULTS Reconstructed images of the hot rods phantom demonstrated the ability to resolve 1.1 mm structures with the knife-edge pinholes and 1.0 mm structures with the hyperboloidal pinholes. Sensitivity was found to be 0.093% and 0.054% for the knife-edge and hyperboloidal pinholes, respectively. CONCLUSIONS With a properly designed multipinhole collimator, high-resolution and acceptable sensitivity are achievable with Tri-PET using ordinary clinical PET detectors.
Collapse
Affiliation(s)
- Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| |
Collapse
|
11
|
van Roosmalen J, Goorden MC, Beekman FJ. Molecular breast tomosynthesis with scanning focus multi-pinhole cameras. Phys Med Biol 2016; 61:5508-28. [PMID: 27384301 DOI: 10.1088/0031-9155/61/15/5508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Planar molecular breast imaging (MBI) is rapidly gaining in popularity in diagnostic oncology. To add 3D capabilities, we introduce a novel molecular breast tomosynthesis (MBT) scanner concept based on multi-pinhole collimation. In our design, the patient lies prone with the pendant breast lightly compressed between transparent plates. Integrated webcams view the breast through these plates and allow the operator to designate the scan volume (e.g. a whole breast or a suspected region). The breast is then scanned by translating focusing multi-pinhole plates and NaI(Tl) gamma detectors together in a sequence that optimizes count yield from the volume-of-interest. With simulations, we compared MBT with existing planar MBI. In a breast phantom containing different lesions, MBT improved tumour-to-background contrast-to-noise ratio (CNR) over planar MBI by 12% and 111% for 4.0 and 6.0 mm lesions respectively in case of whole breast scanning. For the same lesions, much larger CNR improvements of 92% and 241% over planar MBI were found in a scan that focused on a breast region containing several lesions. MBT resolved 3.0 mm rods in a Derenzo resolution phantom in the transverse plane compared to 2.5 mm rods distinguished by planar MBI. While planar MBI cannot provide depth information, MBT offered 4.0 mm depth resolution. Our simulations indicate that besides offering 3D localization of increased tracer uptake, multi-pinhole MBT can significantly increase tumour-to-background CNR compared to planar MBI. These properties could be promising for better estimating the position, extend and shape of lesions and distinguishing between single and multiple lesions.
Collapse
Affiliation(s)
- Jarno van Roosmalen
- Section Radiation, Detection & Medical Imaging, Delft University of Technology, Delft, The Netherlands
| | | | | |
Collapse
|
12
|
Abstract
PURPOSE In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extension is to design a baffle window multipinhole system with artifact-free projection overlaps. METHODS First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. RESULTS Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the extended type-II artifact-free overlaps numerically validated the developed theory. CONCLUSIONS First, the extension itself is of theoretical importance because it broadens the selection range for optimizing multiplexing multipinhole designs. Second, the extension has an immediate application: using a baffle window to design a special spiral orbit multipinhole imaging system with projection overlaps in the orbit axial direction. Such an artifact-free baffle window design makes it possible for us to image any axial portion of interest of a long object with projection overlaps to increase sensitivity.
Collapse
Affiliation(s)
- Jianyu Lin
- Department of Electrical and Computer Engineering, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
13
|
Si C, Mok GSP, Chen L, Tsui BMW. Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging. Nucl Med Commun 2015; 37:313-21. [PMID: 26528787 DOI: 10.1097/mnm.0000000000000429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pinhole single-photon emission computed tomography provides superior trade-off between resolution and detection efficiency as compared with conventional parallel-hole collimators for imaging small objects. This study aims to design and evaluate an optimized adaptive multipinhole (MPH) collimator for improved clinical myocardial perfusion single-photon emission computed tomography imaging (MPI) and preclinical small-animal imaging (SAI) of rats based on a clinical scanner. METHODS The target resolution and field of view was set to be 1/20 cm for MPI and 0.15/5 cm for SAI, respectively. We determined the design parameters by maximizing the detection efficiency based on system constraints. Point source simulations using Geant4 Application for Emission Tomography were performed for different collimator-to-center of field of view distances to assess the detection efficiency and resolution trade-off. The XCAT phantom with Tc-99m sestamibi distribution and the four-dimensional mouse whole-body phantom with Tc-99m methylene diphosphonate distribution were used to generate noise-free and noisy projections using a three-dimensional analytical MPH projector. Projections were reconstructed using a three-dimensional MPH ordered-subset expectation maximization algorithm. Noise and bias were assessed on the reconstructed images for different collimators. RESULTS The design parameters are (i) 14 pinholes with 3.42 mm aperture size, 14.5 cm collimator-to-detector distance for MPI; (ii) six pinholes with an aperture size of 0.94 mm, 21.2 cm collimator-to-detector distance for SAI. For MPI, the projected full width at half maximum values were 10.68 and 8.19 mm for low energy high resolution (LEHR) and MPH, respectively, whereas MPH had double detection efficiency. For SAI, the projected full width at half maximum values for LEHR and MPH were 4.93 and 1.20 mm, respectively, whereas the detection efficiency of MPH showed 17.5% improvement as compared with LEHR. The noise-bias trade-off improved for MPH as compared with LEHR for both MPI and SAI. The proposed collimator will have adjustable collimator-to-detector distances - that is, 14.5 cm for MPI and 21.2 cm for SAI. CONCLUSION The new collimator yields substantial improvement in image quality as compared with current MPI using LEHR with extra capability for SAI, bridging the clinical and preclinical imaging based on the same platform.
Collapse
Affiliation(s)
- Chinhong Si
- aBiomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China bThe Russell H. Morgan Department of Radiology and Radiological Science, Division of Medical Imaging Physics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
14
|
Yao R, Deng X, Wei Q, Dai T, Ma T, Lecomte R. Multipinhole SPECT helical scan parameters and imaging volume. Med Phys 2015; 42:6599-609. [PMID: 26520751 DOI: 10.1118/1.4933421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. METHODS The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. RESULTS The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. CONCLUSIONS The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.
Collapse
Affiliation(s)
- Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York 14214
| | - Xiao Deng
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York 14214
| | - Qingyang Wei
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Tiantian Dai
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Tianyu Ma
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
15
|
DiFilippo FP. Enhanced PET resolution by combining pinhole collimation and coincidence detection. Phys Med Biol 2015; 60:7969-84. [PMID: 26418305 DOI: 10.1088/0031-9155/60/20/7969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a (18)F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT algorithm. Hot rods of 1.4 mm diameter were resolved easily in a simulated phantom. System sensitivity was 0.09% for a simulated 70-mm line source corresponding to the NEMA NU-4 mouse phantom. Higher resolution is expected with further optimization of pinhole design, and higher sensitivity is expected with a focused and denser pinhole configuration. The simulations demonstrate high spatial resolution and feasibility of small animal imaging with an add-on multi-pinhole collimator for a clinical PET scanner. Further work is needed to develop geometric calibration and quantitative data corrections and, eventually, to construct a prototype device and produce images with physical phantoms.
Collapse
Affiliation(s)
- Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Pato LRV, Vandenberghe S, Vandeghinste B, Van Holen R. Evaluation of Fisher Information Matrix-Based Methods for Fast Assessment of Image Quality in Pinhole SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1830-1842. [PMID: 25769150 DOI: 10.1109/tmi.2015.2410342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The accurate determination of the local impulse response and the covariance in voxels from penalized maximum likelihood reconstructed images requires performing reconstructions from many noise realizations of the projection data. As this is usually a very time-consuming process, efficient analytical approximations based on the Fisher information matrix (FIM) have been extensively used in PET and SPECT to estimate these quantities. For 3D imaging, however, additional approximations need to be made to the FIM in order to speed up the calculations. The most common approach is to use the local shift-invariant (LSI) approximation of the FIM, but this assumes specific conditions which are not always necessarily valid. In this paper we take a single-pinhole SPECT system and compare the accuracy of the LSI approximation against two other methods that have been more recently put forward: the non-uniform object-space pixelation (NUOP) and the subsampled FIM. These methods do not assume such restrictive conditions while still increasing the speed of the calculations considerably. Our results indicate that in pinhole SPECT the NUOP and subsampled FIM approaches could be more reliable than the LSI approximation, especially when a high accuracy is required.
Collapse
|
17
|
Van Audenhaege K, Van Holen R, Vandenberghe S, Vanhove C, Metzler SD, Moore SC. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med Phys 2015; 42:4796-813. [PMID: 26233207 PMCID: PMC5148182 DOI: 10.1118/1.4927061] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/23/2023] Open
Abstract
In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.
Collapse
Affiliation(s)
- Karen Van Audenhaege
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Roel Van Holen
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Scott D Metzler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen C Moore
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Beijst C, Elschot M, Viergever MA, de Jong HWAM. A parallel-cone collimator for high-energy SPECT. J Nucl Med 2015; 56:476-82. [PMID: 25655627 DOI: 10.2967/jnumed.114.149658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In SPECT using high-energy photon-emitting isotopes, such as (131)I, parallel-hole collimators with thick septa are required to limit septal penetration, at the cost of sensitivity and resolution. This study investigated a parallel-hole collimator with cone-shaped holes, which was designed to limit collimator penetration while preserving resolution and sensitivity. The objective was to demonstrate that a single-slice prototype of the parallel-cone (PC) collimator was capable of improving the image quality of high-energy SPECT. METHODS The image quality of the PC collimator was quantitatively compared with that of clinically used low-energy high-resolution (LEHR; for (99m)Tc) and high-energy general-purpose (HEGP; for (131)I and (18)F) parallel-hole collimators. First, Monte Carlo simulations of single and double point sources were performed to assess sensitivity and resolution by comparing point-spread functions (PSFs). Second, a prototype PC collimator was used in an experimental phantom study to assess and compare contrast recovery coefficients and image noise. RESULTS Monte Carlo simulations showed reduced broadening of the PSF due to collimator penetration for the PC collimator as compared with the HEGP collimator (e.g., 0.9 vs. 1.4 cm in full width at half maximum for (131)I). Simulated double point sources placed 2 cm apart were separately detectable for the PC collimator, whereas this was not the case for (131)I and (18)F at distances from the collimator face of 10 cm or more for the HEGP collimator. The sensitivity, measured over the simulated profiles as the total amount of counts per decay, was found to be higher for the LEHR and HEGP collimators than for the PC collimator (e.g., 3.1 × 10(-5) vs. 2.9 × 10(-5) counts per decay for (131)I). However, at equal noise level, phantom measurements showed that contrast recovery coefficients were similar for the PC and LEHR collimators for (99m)Tc but that the PC collimator significantly improved the contrast recovery coefficients as compared with the HEGP collimator for (131)I and (18)F. CONCLUSION High-energy SPECT imaging with a single-slice prototype of the proposed PC collimator has shown the potential for significantly improved image quality in comparison with standard parallel-hole collimators.
Collapse
Affiliation(s)
- Casper Beijst
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Mattijs Elschot
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Max A Viergever
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
19
|
Van Audenhaege K, Vanhove C, Vandenberghe S, Van Holen R. The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:474-486. [PMID: 25291791 DOI: 10.1109/tmi.2014.2361051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multi-pinhole collimators are often used in pre-clinical SPECT systems because they have a better resolution-sensitivity tradeoff than parallel hole collimators when imaging small objects. Most multi-pinhole collimators are designed to allow no or only a limited amount of overlap between the different pinhole projections because the ambiguity introduced by multiplexing pinholes can result in artifacts. The origin of these artifacts is still not fully understood, but previous research has already shown that data incompleteness could be part of the explanation. Therefore, we developed a method to investigate data completeness in multiplexing multi-pinhole systems and showed that a certain activity distribution can be successfully reconstructed when the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed. We validated this method using computer simulated phantom data of different multiplexing systems. We also studied contrast-to-noise and nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) to compare the image quality in a single pinhole system with multiplexing systems. We found that our method can indeed be used to evaluate data completeness in multiplexing systems and found no artifacts in the systems that had complete data. Sensitivity increased significantly with multiplexing but we found only small, nonsignificant differences in contrast-to-noise ratio. However, the NPW-SNR did slightly improve in the multiplexing setups. We conclude that more multiplexing does not necessarily result in more artifacts and that even a high amount of multiplexing can still result in artifact-free images if the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed.
Collapse
|
20
|
Islamian JP, Azazrm A, Mahmoudian B, Gharapapagh E. Advances in pinhole and multi-pinhole collimators for single photon emission computed tomography imaging. World J Nucl Med 2015; 14:3-9. [PMID: 25709537 PMCID: PMC4337004 DOI: 10.4103/1450-1147.150505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The collimator in single photon emission computed tomography (SPECT), is an important part of the imaging chain. One of the most important collimators that used in research, preclinical study, small animal, and organ imaging is the pinhole collimator. Pinhole collimator can improve the tradeoff between sensitivity and resolution in comparison with conventional parallel-hole collimator and facilities diagnosis. However, a major problem with pinhole collimator is a small field of view (FOV). Multi-pinhole collimator has been investigated in order to increase the sensitivity and FOV with a preserved spatial resolution. The geometry of pinhole and multi-pinhole collimators is a critical factor in the image quality and plays a key role in SPECT imaging. The issue of the material and geometry for pinhole and multi-pinhole collimators have been a controversial and much disputed subject within the field of SPECT imaging. On the other hand, recent developments in collimator optimization have heightened the need for appropriate reconstruction algorithms for pinhole SPECT imaging. Therefore, iterative reconstruction algorithms were introduced to minimize the undesirable effect on image quality. Current researches have focused on geometry and configuration of pinhole and multi-pinhole collimation rather than reconstruction algorithm. The lofthole and multi-lofthole collimator are samples of novel designs. The purpose of this paper is to provide a review on recent researches in the pinhole and multi-pinhole collimators for SPECT imaging.
Collapse
Affiliation(s)
- Jalil Pirayesh Islamian
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AhmadReza Azazrm
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Faculty of Medicine, Unit of Nuclear Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmail Gharapapagh
- Department of Radiology, Faculty of Medicine, Unit of Nuclear Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Johnson LC, Shokouhi S, Peterson TE. Reducing multiplexing artifacts in multi-pinhole SPECT with a stacked silicon-germanium system: a simulation study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:2342-2351. [PMID: 25055382 PMCID: PMC4565520 DOI: 10.1109/tmi.2014.2340251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In pinhole single photon emission computed tomography (SPECT), multi-pinhole collimators can increase sensitivity but may lead to projection overlap, or multiplexing, which can cause image artifacts. In this work, we explore whether a stacked-detector configuration with a germanium and a silicon detector, used with 123I (27-32, 159 keV), where little multiplexing occurs in the Si projections, can reduce image artifacts caused by highly-multiplexed Ge projections. Simulations are first used to determine a reconstruction method that combines the Si and Ge projections to maximize image quality. Next, simulations of different pinhole configurations (varying projection multiplexing) in conjunction with digital phantoms are used to examine whether additional Si projections mitigate artifacts from the multiplexing in the Ge projections. Reconstructed images using both Si and Ge data are compared to those using Ge data alone. Normalized mean-square error and normalized standard deviation provide a quantitative evaluation of reconstructed images' error and noise, respectively, and are used to evaluate the impact of the additional nonmultiplexed data on image quality. For a qualitative comparison, the differential point response function is used to examine multiplexing artifacts. Results show that in cases of highly-multiplexed Ge projections, the addition of low-multiplexed Si projections helps to reduce image artifacts both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Lindsay C. Johnson
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA
| | - Sepideh Shokouhi
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, the Department of Physics and Astronomy, and the Department of Radiology and Radiological Sciences Nashville, TN 37232 USA
| |
Collapse
|
22
|
Lee TC, Ellin JR, Huang Q, Shrestha U, Gullberg GT, Seo Y. Multipinhole collimator with 20 apertures for a brain SPECT application. Med Phys 2014; 41:112501. [PMID: 25370660 PMCID: PMC4218691 DOI: 10.1118/1.4897567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10(-5) to 1.6 × 10(-3)) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. METHODS Quantifying specific binding ratio (SBR) of (123)I-ioflupane or (123)I-iometopane's signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson's disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. RESULTS With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. CONCLUSIONS Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.
Collapse
Affiliation(s)
- Tzu-Cheng Lee
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107
| | - Justin R Ellin
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107
| | - Qiu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Uttam Shrestha
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107
| | - Grant T Gullberg
- Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
| | - Youngho Seo
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107
| |
Collapse
|
23
|
Vandeghinste B, Van Holen R, Vanhove C, De Vos F, Vandenberghe S, Staelens S. Use of a Ray-Based Reconstruction Algorithm to Accurately Quantify Preclinical MicroSPECT Images. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bert Vandeghinste
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Roel Van Holen
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Christian Vanhove
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filip De Vos
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Stefaan Vandenberghe
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Steven Staelens
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
24
|
Fuin N, Pedemonte S, Arridge S, Ourselin S, Hutton BF. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:618-635. [PMID: 24595338 DOI: 10.1109/tmi.2013.2292805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant approximation, in the context of design optimization of a parallel-hole collimator SPECT system and of an adaptive imaging system (similar to the commercially available D-SPECT).
Collapse
|
25
|
Lin J. On Artifact-Free Projection Overlaps in Multi-Pinhole Tomographic Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2215-2229. [PMID: 23934665 DOI: 10.1109/tmi.2013.2277588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In multi-pinhole SPECT, overlapping the projections from different pinholes has been used to increase sensitivity. However, the prevailing view is that the overall quality of the reconstructed image is not improved by the overlaps in the projections. It is often stated in literatures that overlaps introduce ambiguous information, which can lead to nonuniqueness of solution for the inverse problem, and thus artifacts are introduced in the reconstructed image. On the other hand, contrary to the prevailing view, a recent study on slit-slat collimators shows that artifacts can be removed with the "help" of an extra complete nonoverlapped projection data set. In this paper, two types of artifact-free projection overlaps are defined in general, and the criteria for designing artifact-free multi-pinhole systems with overlaps are proposed. It is shown that once the criteria are satisfied, the solution of the inverse problem is unique, and thus no artifact is expected in the reconstructed image. Via extensive simulation study, various artifact-free overlapping multi-pinhole systems are designed and validated. It is shown that overlaps in the artifact-free systems can improve contrast-to-noise ratio (CNR). With a proper design, the CNR for an artifact-free overlapping system can be significantly higher than that for the corresponding nonoverlapping system. The improved image quality is also confirmed with noisy reconstructions.
Collapse
|
26
|
Bowen JD, Huang Q, Ellin JR, Lee TC, Shrestha U, Gullberg GT, Seo Y. Design and performance evaluation of a 20-aperture multipinhole collimator for myocardial perfusion imaging applications. Phys Med Biol 2013; 58:7209-26. [PMID: 24061162 PMCID: PMC3855225 DOI: 10.1088/0031-9155/58/20/7209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1.94-2.34 for the five patient anatomies and two orbital positions studied. For the ROC analysis the PH20 AUC is larger than the LEHR AUC with a p-value of 0.0067. Bias performance, however, decreases with the use of PH20 collimators. Systematic analyses showed PH20 collimators present improved diagnostic imaging performance over LEHR collimators, requiring only collimator exchange on existing SPECT cameras for their use.
Collapse
Affiliation(s)
- Jason D. Bowen
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Qiu Huang
- Shanghai Jiaotong University, Shanghai, China
| | - Justin R. Ellin
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Tzu-Cheng Lee
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Uttam Shrestha
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Grant T. Gullberg
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Radiotracer Development and Imaging Technology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Youngho Seo
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
27
|
Havelin RJ, Miller BW, Barrett HH, Furenlid LR, Murphy JM, Foley MJ. A SPECT imager with synthetic collimation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8853. [PMID: 26346410 DOI: 10.1117/12.2029745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This work outlines the development of a multi-pinhole SPECT system designed to produce a synthetic-collimator image of a small field of view. The focused multi-pinhole collimator was constructed using rapid-prototyping and casting techniques. The collimator projects the field of view through forty-six pinholes when the detector is adjacent to the collimator. The detector is then moved further from the collimator to increase the magnification of the system. The amount of pinhole-projection overlap increases with the system magnification. There is no rotation in the system; a single tomographic angle is used in each system configuration. The maximum-likelihood expectation-maximization (MLEM) algorithm is implemented on graphics processing units to reconstruct the object in the field of view. Iterative reconstruction algorithms, such as MLEM, require an accurate model of the system response. For each system magnification, a sparsely-sampled system response is measured by translating a point source through a grid encompassing the field of view. The pinhole projections are individually identified and associated with their respective apertures. A 2D elliptical Gaussian model is applied to the pinhole projections on the detector. These coefficients are associated with the object-space location of the point source, and a finely-sampled system matrix is interpolated. Simulations with a hot-rod phantom demonstrate the efficacy of combining low-resolution non-multiplexed data with high-resolution multiplexed data to produce high-resolution reconstructions.
Collapse
Affiliation(s)
- Ronan J Havelin
- School of Physics, National University of Ireland Galway, Ireland
| | - Brian W Miller
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Harrison H Barrett
- Center for Gamma-ray Imaging, University of Arizona, Tucson, AZ 85719, USA
| | - Lars R Furenlid
- Center for Gamma-ray Imaging, University of Arizona, Tucson, AZ 85719, USA
| | - J M Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Ireland
| | - Mark J Foley
- School of Physics, National University of Ireland Galway, Ireland
| |
Collapse
|
28
|
Boisson F, Zahra D, Parmar A, Gregoire MC, Meikle SR, Hamse H, Reilhac A. Imaging capabilities of the Inveon SPECT system using single-and multipinhole collimators. J Nucl Med 2013; 54:1833-40. [PMID: 24009279 DOI: 10.2967/jnumed.112.117572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The Inveon small-animal SPECT system comes with several types of multipinhole collimator plates. We evaluate here the performance measurements of the Inveon SPECT system using 6 different collimators: 3 dedicated for mouse imaging and 3 for rat imaging. METHODS The measured performance parameters include the sensitivity, the spatial resolution using line sources, the ultra-micro Derenzo phantom, the recovery coefficient and the noise measurements using the National Electrical Manufacturers Association NU-4 image quality phantom, obtained with the 2 reconstruction algorithms available with the Inveon Acquisition Workplace, version 1.5-the 3-dimensional ordered-subset expectation maximization (3DOSEM) and the 3-dimensional maximum a posteriori (3DMAP). Further, the overall performance of the system is illustrated by an animal experiment. RESULTS The results show that the Inveon SPECT scanner offers a spatial resolution, measured at the center of the field of view, ranging from 0.6 to 1 mm with the collimator plates dedicated to mouse imaging and from 1.2 to less than 2 mm with rat collimator plates. The system sensitivity varies from 29 to 404 cps/MBq for mouse collimators and from 53 to 175 cps/MBq for rat collimators. The image quality study showed that 3DMAP allows better noise reduction while preserving the recovery coefficient, compared with other regularization strategies such as the premature termination of the 3DOSEM reconstruction or 3DOSEM followed by gaussian filtering. CONCLUSION The acquisition parameters, such as the collimator set and the radius of rotation, offer a wide range of possibilities to apply to a large number of biologic studies. However, special care must be taken because this increase in sensitivity can be offset by image degradation, such as image artifacts caused by projection overlap and statistical noise due to a higher number of iterations required for convergence. 3DMAP allowed better noise reduction while maintaining relatively constant recovery coefficients, as compared with other reconstruction strategies.
Collapse
Affiliation(s)
- Frederic Boisson
- Australian Nuclear Science and Technology Organisation, New South Wales, Australia; and
| | | | | | | | | | | | | |
Collapse
|
29
|
Ma D, Wolf P, Clough AV, Schmidt TG. The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2013; 60:10.1109/TNS.2012.2214235. [PMID: 24273334 PMCID: PMC3835826 DOI: 10.1109/tns.2012.2214235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stationary small-animal SPECT systems are being developed for rapid dynamic imaging from limited angular views. This paper quantified, through simulations, the performance of Maximum Likelihood Expectation Maximization (MLEM) for reconstructing a time-activity curve (TAC) with uptake duration of a few seconds from a stationary, three-camera multi-pinhole SPECT system. The study also quantified the benefits of a heuristic method of initializing the reconstruction with a prior image reconstructed from a conventional number of views, for example from data acquired during the late-study portion of the dynamic TAC. We refer to MLEM reconstruction initialized by a prior-image initial guess (IG) as MLEM ig . The effect of the prior-image initial guess on the depiction of contrast between two regions of a static phantom was quantified over a range of angular sampling schemes. A TAC was modeled from the experimentally measured uptake of 99m Tc-hexamethylpropyleneamine oxime (HMPAO) in the rat lung. The resulting time series of simulated images was quantitatively analyzed with respect to the accuracy of the estimated exponential washin and washout parameters. In both static and dynamic phantom studies, the prior-image initial guess improved the spatial depiction of the phantom, for example improved definition of the cylinder boundaries and more accurate quantification of relative contrast between cylinders. For example in the dynamic study, there was ~50% error in relative contrast for MLEM reconstructions compared to ~25-30% error for MLEM ig . In the static phantom study, the benefits of the initial guess decreased as the number of views increased. The prior-image initial guess introduced an additive offset in the reconstructed dynamic images, likely due to biases introduced by the prior image. MLEM initialized with a uniform initial guess yielded images that faithfully reproduced the time dependence of the simulated TAC; there were no statistically significant differences in the mean exponential washin/washout parameters estimated from MLEM reconstructions compared to the true values. Washout parameters estimated from MLEM ig reconstructions did not differ significantly from the true values, however the estimated washin parameter differed significantly from the true value in some cases. Overall, MLEM reconstruction from few views and a uniform initial guess accurately quantified the time dependance of the TAC while introducing errors in the spatial depiction of the object. Initializing the reconstruction with a late-study initial guess improved spatial accuracy while decreasing temporal accuracy in some cases.
Collapse
Affiliation(s)
- Dan Ma
- Department of Biomedical Engineering, Case Western University, Cleveland, OH 44105 and formerly with the Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53201, ( )
| | | | | | | |
Collapse
|
30
|
Deleye S, Van Holen R, Verhaeghe J, Vandenberghe S, Stroobants S, Staelens S. Performance evaluation of small-animal multipinhole μSPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging 2013; 40:744-58. [PMID: 23344137 DOI: 10.1007/s00259-012-2326-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023]
Abstract
PURPOSE We compared the performance of three commercial small-animal μSPECT scanners equipped with multipinhole general purpose (GP) and multipinhole high-resolution (HR) collimators designed for imaging mice. METHODS Spatial resolution, image uniformity, point source sensitivity and contrast recovery were determined for the U-SPECT-II (MILabs), the NanoSPECT-NSO (BioScan) and the X-SPECT (GE) scanners. The pinhole diameters of the HR collimator were 0.35 mm, 0.6 mm and 0.5 mm for these three systems respectively. A pinhole diameter of 1 mm was used for the GP collimator. To cover a broad field of imaging applications three isotopes were used with various photon energies: (99m)Tc (140 keV), (111)In (171 and 245 keV) and (125)I (27 keV). Spatial resolution and reconstructed image uniformity were evaluated in both HR and a GP mode with hot rod phantoms, line sources and a uniform phantom. Point source sensitivity and contrast recovery measures were additionally obtained in the GP mode with a novel contrast recovery phantom developed in-house containing hot and cold submillimetre capillaries on a warm background. RESULTS In hot rod phantom images, capillaries as small as 0.4 mm with the U-SPECT-II, 0.75 mm with the X-SPECT and 0.6 mm with the NanoSPECT-NSO could be resolved with the HR collimators for (99m)Tc. The NanoSPECT-NSO achieved this resolution in a smaller field-of-view (FOV) and line source measurements showed that this device had a lower axial than transaxial resolution. For all systems, the degradation in image resolution was only minor when acquiring the more challenging isotopes (111)In and (125)I. The point source sensitivity with (99m)Tc and GP collimators was 3,984 cps/MBq for the U-SPECT-II, 620 cps/MBq for the X-SPECT and 751 cps/MBq for the NanoSPECT-NSO. The effects of volume sensitivity over a larger object were evaluated by measuring the contrast recovery phantom in a realistic FOV and acquisition time. For 1.5-mm rods at a noise level of 8 %, the contrast recovery coefficient (CRC) was 42 %, 37 % and 34 % for the U-SPECT-II, X-SPECT and NanoSPECT-NSO, respectively. At maximal noise levels of 10 %, a CRCcold of 70 %, 52 % and 42 % were obtained for the U-SPECT-II, X-SPECT and NanoSPECT-NSO, respectively. When acquiring (99m)Tc with the GP collimators, the integral/differential uniformity values were 30 %/14 % for the U-SPECT-II, 50 %/30 % for the X-SPECT and 38 %/25 % for the NanoSPECT-NSO. When using the HR collimators, these uniformity values remained similar for U-SPECT-II and X-SPECT, but not for the NanoSPECT-NSO for which the uniformity deteriorated with larger volumes. CONCLUSION We compared three μSPECT systems by acquiring and analysing mouse-sized phantoms including a contrast recovery phantom built in-house offering the ability to measure the hot contrast on a warm background in the submillimetre resolution range. We believe our evaluation addressed the differences in imaging potential for each system to realistically image tracer distributions in mouse-sized objects.
Collapse
Affiliation(s)
- Steven Deleye
- Molecular Imaging Center Antwerp, Antwerp University, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Deprez K, Pato LRV, Vandenberghe S, Van Holen R. Characterization of a SPECT pinhole collimator for optimal detector usage (the lofthole). Phys Med Biol 2013; 58:859-85. [DOI: 10.1088/0031-9155/58/4/859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JPH, Booij J, Molthoff CFM, Beekman FJ. VECTor: A Preclinical Imaging System for Simultaneous Submillimeter SPECT and PET. J Nucl Med 2012; 54:306-12. [PMID: 23077113 DOI: 10.2967/jnumed.112.109538] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Abstract
Preclinical SPECT of rodents is both in demand and very demanding. The need for high spatial resolution in combination with good sensitivity has given rise to considerable innovation in the areas of detectors, collimation, acquisition geometry, and image reconstruction. Some of the developments described herein are beginning to carry over into clinical imaging as well.
Collapse
Affiliation(s)
- Todd E Peterson
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA
| | | |
Collapse
|
34
|
Mahmood S, Erlandsson K, Cullum I, Hutton B. Experimental results from a prototype slit-slat collimator with mixed multiplexed and non-multiplexed data. Phys Med Biol 2011; 56:4311-31. [DOI: 10.1088/0031-9155/56/14/007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Peremans K, Vermeire S, Dobbeleir A, Gielen I, Samoy Y, Piron K, Vandermeulen E, Slegers G, van Bree H, De Spiegeleer B, Dik K. Recognition of anatomical predilection sites in canine elbow pathology on bone scans using micro-single photon emission tomography. Vet J 2011; 188:64-72. [DOI: 10.1016/j.tvjl.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
36
|
Mok GSP, Tsui BMW, Beekman FJ. The effects of object activity distribution on multiplexing multi-pinhole SPECT. Phys Med Biol 2011; 56:2635-50. [PMID: 21454926 DOI: 10.1088/0031-9155/56/8/019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We aim to study the effects of activity distribution for multiplexing multi-pinhole (MPH) SPECT. Three digital phantoms, including a hot rod, a cold rod and a cold sphere phantom, were used. Different degrees of multiplexing were obtained by (i) adjusting the MPH pattern for the same 4-pinhole collimator (scheme 1) and (ii) increasing the number of pinholes (scheme 2). Noise-free and noisy projections were generated using a 3D analytical MPH projector based on the same acquisition time. Projections were reconstructed using OS-EM without resolution recovery. Normalized mean-square-error (NMSE), noise, image profiles and signal-to-background ratios (SBR) were assessed. For the hot rod phantom, the NMSE-noise trade-offs slightly improves for multiplexing designs in scheme 2. Substantial artifacts were observed and the NMSE-noise trade-offs slightly worsened for multiplexing designs for the cold phantoms. Resolutions slightly degraded for higher degrees of multiplexing (∼39-65%) for the cold rod phantom. For the cold sphere phantom, image profiles showed non-multiplexing designs better emulated the phantom, while ∼20% multiplexing performs similarly as compared to non-multiplexing in SBR. Our results indicate that multiplexing can help for sparse objects but leads to a significant image degradation in non-sparse distributions. Since many tracers are not highly specific, and the gain of detection efficiency by allowing multiplexing is fairly offset by image degradations, multiplexing needs to be kept to a minimum for optimum MPH collimator designs.
Collapse
Affiliation(s)
- Greta S P Mok
- Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, People's Republic of China.
| | | | | |
Collapse
|
37
|
Evaluation of a Multi-pinhole Collimator for Imaging Small Animals with Different Sizes. Mol Imaging Biol 2011; 14:60-9. [DOI: 10.1007/s11307-011-0472-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Shokouhi S, Wilson DW, Metzler SD, Peterson TE. Evaluation of image reconstruction for mouse brain imaging with synthetic collimation from highly multiplexed SiliSPECT projections. Phys Med Biol 2010; 55:5151-68. [PMID: 20714046 DOI: 10.1088/0031-9155/55/17/017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have performed a theoretical study to explore the potential and limitations of synthetic collimation for SPECT imaging with stacked-detector acquisition (dual magnification). This study will be used to optimize SiliSPECT, a small-animal SPECT for imaging small volumes such as a mouse brain at high sensitivity and resolution. The synthetic collimation enables image reconstruction with a limited number of camera views and in the presence of significant multiplexing. We also developed a new formulation to quantify the multiplexed object sensitivity and investigated how this changes for different acquisition parameters such as number of pinholes and combinations of front and back detector distances for imaging objects as small as the mouse brain. In our theoretical studies, we were not only able to demonstrate better reconstruction results by incorporating two detector magnifications in comparison to either one alone, but also observed an improved image reconstruction by optimizing the detector-collimator distances to change the multiplexing ratio between the front and back detectors.
Collapse
Affiliation(s)
- S Shokouhi
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
| | | | | | | |
Collapse
|
39
|
Mahmood ST, Erlandsson K, Cullum I, Hutton BF. The potential for mixed multiplexed and non-multiplexed data to improve the reconstruction quality of a multi-slit–slat collimator SPECT system. Phys Med Biol 2010; 55:2247-68. [DOI: 10.1088/0031-9155/55/8/009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Pissarek M, Meyer-Kirchrath J, Hohlfeld T, Vollmar S, Oros-Peusquens AM, Flögel U, Jacoby C, Krügel U, Schramm N. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with (99m)Tc- and (123)I-labelled probes. Eur J Nucl Med Mol Imaging 2009; 36:1495-509. [PMID: 19421750 PMCID: PMC2724637 DOI: 10.1007/s00259-009-1142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 04/02/2009] [Indexed: 11/21/2022]
Abstract
PURPOSE The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of (123)I- and (99m)Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake. METHODS A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D(2) receptor ligand [(123)I]IBZM and the cerebral perfusion tracer [(99m)Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [(123)I]IPPA (0.94 +/- 0.05 MBq/g body weight) and the perfusion tracer [(99m)Tc]sestamibi (3.8 +/- 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP(3) receptor. RESULTS In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [(123)I]IBZM and of cardiac [(99m)Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [(123)I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [(99m)Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [(123)I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight. CONCLUSION Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of (123)I- and (99m)Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers.
Collapse
Affiliation(s)
- M Pissarek
- Institute of Neurosciences and Biophysics-Nuclear Chemistry (INB-4), Research Centre Juelich, Leo-Brandt-Str., 52428, Juelich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nuyts J, Vunckx K, Defrise M, Vanhove C. Small animal imaging with multi-pinhole SPECT. Methods 2009; 48:83-91. [DOI: 10.1016/j.ymeth.2009.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
|
42
|
Mahmood ST, Erlandsson K, Cullum I, Hutton BF. Design of a novel slit-slat collimator system for SPECT imaging of the human brain. Phys Med Biol 2009; 54:3433-49. [PMID: 19436098 DOI: 10.1088/0031-9155/54/11/011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present three novel multi-slit-slat (MSS) system designs which allow for the acquisition of data with variable multiplexing in order to optimize the use of a high intrinsic resolution detector for clinical brain SPECT. In this paper we first study the relationship between the geometric parameters of a MSS collimator system and the resulting resolution and sensitivity for an on-axis point at the centre of the field-of-view (FOV), assuming a continuous cylindrical detector model. The model predicts that for optimal system sensitivity and resolution, the ratio of the detector radius to slit collimator radius should be 1.3-1.5, as any further increase in this ratio results in significant deterioration in both system resolution and sensitivity. The analytical results were used to fix the geometric parameters for the three novel MSS system designs. Comparison of the three designs, asymmetric rotating collimator (ARC), asymmetric rotating detector (ARD) and symmetric rotating collimator (SRC) with variable slit spacing, suggests that the SRC system performs better in terms of the system sensitivity (5.1 x 10(-4)) for the same average resolution (6.0 mm) in comparison to designs based on an ARC (3.7 x 10(-4)) and ARD (4.2 x 10(-4)).
Collapse
Affiliation(s)
- S T Mahmood
- Institute of Nuclear Medicine, UCL and UCLH NHS Foundation Trust, London, UK.
| | | | | | | |
Collapse
|
43
|
van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C, Staelens SG, Beekman FJ. U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging. J Nucl Med 2009; 50:599-605. [PMID: 19289425 DOI: 10.2967/jnumed.108.056606] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED We present a new rodent SPECT system (U-SPECT-II) that enables molecular imaging of murine organs down to resolutions of less than half a millimeter and high-resolution total-body imaging. METHODS The U-SPECT-II is based on a triangular stationary detector set-up, an XYZ stage that moves the animal during scanning, and interchangeable cylindric collimators (each containing 75 pinhole apertures) for both mouse and rat imaging. A novel graphical user interface incorporating preselection of the field of view with the aid of optical images of the animal focuses the pinholes to the area of interest, thereby maximizing sensitivity for the task at hand. Images are obtained from list-mode data using statistical reconstruction that takes system blurring into account to increase resolution. RESULTS For (99m)Tc, resolutions determined with capillary phantoms were smaller than 0.35 and 0.45 mm using the mouse collimator with 0.35- and 0.6-mm pinholes, respectively, and less than 0.8 mm using the rat collimator with 1.0-mm pinholes. Peak geometric sensitivity is 0.07% and 0.18% for the mouse collimator with 0.35- and 0.6-mm pinholes, respectively, and 0.09% for the rat collimator. Resolution with (111)In, compared with that with (99m)Tc, was barely degraded, and resolution with (125)I was degraded by about 10%, with some additional distortion. In vivo, kidney, tumor, and bone images illustrated that U-SPECT-II could be used for novel applications in the study of dynamic biologic systems and radiopharmaceuticals at the suborgan level. CONCLUSION Images and movies obtained with U-SPECT-II provide high-resolution radiomolecule visualization in rodents. Discrimination of molecule concentrations between adjacent volumes of about 0.04 microL in mice and 0.5 microL in rats with U-SPECT-II is readily possible.
Collapse
Affiliation(s)
- Frans van der Have
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mok GSP, Wang Y, Tsui BMW. Quantification of the Multiplexing Effects in Multi-Pinhole Small Animal SPECT: A Simulation Study. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2009; 56:2636-2643. [PMID: 21643442 PMCID: PMC3105775 DOI: 10.1109/tns.2009.2023444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our goal is to study the trade-off between image degradation and improved detection efficiency and resolution from allowing multiplexing in multi-pinhole (MPH) SPECT, and to determine the optimal pinhole number for MPH design. We used an analytical 3D MPH projector and two digitized phantoms: the mouse whole body (MOBY) phantom and a hot sphere phantom to generate noise-free and noisy projections, simulating pinhole collimators fitted with pre-studied pinhole patterns. We performed three schemes to achieve different degrees of multiplexing: 1. Fixed magnification and detection efficiency; 2. Fixed detection efficiency and changed magnification; 3. Fixed magnification and changed detection efficiency. We generated various noisy data sets by simulating Poisson noise using differently scaled noise-free projections and obtained 20 noise realizations for each setting. All datasets were reconstructed using 3D MPH ML-EM reconstruction method. We analyzed the quantitative accuracy by the normalized-mean-square-error. We evaluated the image contrast for the hot sphere phantom simulation, and also the image noise by the average normalized-standard-deviation of certain pixels for different degrees of multiplexing. Generally, no apparent artifacts were observed in the reconstructed images, illustrating the effectiveness of reconstructions. Bias increased for increased degree of multiplexing. Contrast was not significantly affected by multiplexing in the specific simulation scheme (1). Scheme (2) showed that excessive multiplexing to improve image resolution would not improve the overall trade-off of bias and noise compared to no multiplexing. However, scheme (3) showed that when comparing to no multiplexing, the trade-off improved initially with increased multiplexing by allowing more number of pinholes to improve detection efficiency. The trade-off reached a maximum and decreased with further multiplexing due to image degradation from increased bias. The optimal pinhole number was 7 for a compact camera with size of 12 cm × 12 cm and 9 for a standard gamma camera with size of 40 cm × 40 cm in this scheme. We conclude that the gains in improved detection efficiency and resolution by increased multiplexing are offset by increased image degradations. All the aforementioned factors must be considered in the optimum MPH collimator design for small animal SPECT imaging.
Collapse
Affiliation(s)
- Greta S. P. Mok
- Department of Diagnostic Radiology and Organ Imaging, The Chinese University of Hong Kong, Hong Kong
| | - Yuchuan Wang
- Dana-Farber Cancer Institute, Harvard Medical School, MA 02115 USA
| | | |
Collapse
|
45
|
Difilippo FP. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners. Phys Med Biol 2008; 53:4185-201. [PMID: 18635899 DOI: 10.1088/0031-9155/53/15/012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.
Collapse
Affiliation(s)
- Frank P Difilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
46
|
Abstract
A geometric model and calibration process are developed for single photon emission computed tomography (SPECT) imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360 degrees rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180 degrees rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging.
Collapse
Affiliation(s)
- Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| |
Collapse
|