1
|
Yang S, Xiao D, Geng H, Ai D, Fan J, Fu T, Song H, Duan F, Yang J. Real-Time 3D Instrument Tip Tracking Using 2D X-Ray Fluoroscopy With Vessel Deformation Correction Under Free Breathing. IEEE Trans Biomed Eng 2025; 72:1422-1436. [PMID: 40117137 DOI: 10.1109/tbme.2024.3508840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Accurate localization of the instrument tip within the hepatic vein is crucial for the success of transjugular intrahepatic portosystemic shunt (TIPS) procedures. Real-time tracking of the instrument tip in X-ray images is greatly influenced by vessel deformation due to patient's pose variation, respiratory motion, and puncture manipulation, frequently resulting in failed punctures. METHOD We propose a novel framework called deformable instrument tip tracking (DITT) to obtain the real-time tip positioning within the 3D deformable vasculature. First, we introduce a pose alignment module to improve the rigid matching between the preoperative vessel centerline and the intraoperative instrument centerline, in which the accurate matching of 3D/2D centerline features is implemented with an adaptive point sampling strategy. Second, a respiration compensation module using monoplane X-ray image sequences is constructed and provides the motion prior to predict intraoperative liver movement. Third, a deformation correction module is proposed to rectify the vessel deformation during procedures, in which a manifold regularization and the maximum likelihood-based acceleration are introduced to obtain the accurate and fast deformation learning. RESULTS Experimental results on simulated and clinical datasets show an average tracking error of 1.59 0.57 mm and 1.67 0.54 mm, respectively. CONCLUSION Our framework can track the tip in 3D vessel and dynamically overlap the branch roadmapping onto X-ray images to provide real-time guidance. SIGNIFICANCE Accurate and fast (43ms per frame) tip tracking with the proposed framework possesses a good potential for improving the outcomes of TIPS treatment and minimizes the usage of contrast agent.
Collapse
|
2
|
Sánchez Alarcón MF, Dietrich-Conzelmann S, Bassenge JP, Schulz-Menger J, Schmitter S, Aigner CS. Reproducibility of tailored and universal nonselective excitation pulses at 7 T for human cardiac MRI: A 3-year and an interday study. Magn Reson Med 2025. [PMID: 40079582 DOI: 10.1002/mrm.30495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Ultrahigh-field (UHF; ≥7 T) MRI is challenging due to spatially heterogeneous B1 + profiles. This longitudinal study evaluates the reproducibility of three parallel-transmission excitation strategies to enable UHF cardiac MRI: vendor-supplied radiofrequency (RF) shim, subject-tailored kT-points pulses (TPs), and universal kT-points pulses (UPs). METHODS Six healthy subjects underwent 7 T MRI scans performed by different MR operators using a 32-element parallel-transmission body array at four time points over 3 years. A single UP was computed and applied to all subjects. TPs were computed individually for each scan and organized into four configurations. Each configuration was applied to all scans from each subject to analyze intrasubject variability. Reproducibility was assessed by comparing the coefficient of variation (CV) of simulated flip angles (FAs) within the heart volume across scan sessions. RESULTS TPs designed for a specific scan session yielded lower CVs (2-fold reduction) than UP. Applying TPs to other scan sessions of the same subject, however, resulted in approximately 40% higher CVs and lower FA uniformity compared with the UP. On average, the UP consistently achieved the most reproducible results across inter-year, inter-day, and same-operator studies, with CVs of approximately 12%. CONCLUSION Although TPs showed advantages when tailored for a specific target volume, they struggled with long-term consistency and required lengthy calibration. The precomputed UP kT-points pulses proved to be the most consistent across all scans acquired in the 3 years by different operators, minimizing CV-data dispersion and maintaining FA uniformity.
Collapse
Affiliation(s)
- Manuel Fernando Sánchez Alarcón
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany
| | | | - Jean Pierre Bassenge
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany
| | - Jeanette Schulz-Menger
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Helios Clinics Berlin-Buch Department of Cardiology and Nephrology, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christoph Stefan Aigner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
3
|
Aigner CS, Dietrich-Conzelmann S, Lutz M, Krüger F, Schmitter S. Tailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T. Magn Reson Med 2024; 92:730-740. [PMID: 38440957 DOI: 10.1002/mrm.30072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE To research and evaluate the performance of broadband tailored kT-point pulses (TP) and universal pulses (UP) for homogeneous excitation of the human heart at 7T. METHODS Relative 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the thorax were acquired from 29 healthy volunteers. TP and UP were designed using the small-tip-angle approximation for a different composition of up to seven resonance frequencies. TP were computed for each of the 29B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, and UPs were calculated using 22B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps and tested in seven testcases. The performance of the pulses was analyzed using the coefficient of variation (CV) in the 3D heart volumes. The 3D gradient-echo (GRE) scans were acquired for the seven testcases to qualitatively validate theB 1 + $$ {\mathrm{B}}_1^{+} $$ -predictions. RESULTS Single- and double-frequency optimized pulses achieved homogeneity in flip angle (FA) for the frequencies they were optimized for, while the broadband pulses achieved uniformity in FA across a 1300 Hz frequency range. CONCLUSION Broadband TP and UP can be used for homogeneous excitation of the heart volume across a 1300 Hz frequency range, including the water and the main six fat peaks, or with longer pulse durations and higher FAs for a smaller transmit bandwidth. Moreover, despite large inter-volunteer variations, broadband UP can be used for calibration-free 3D heart FA homogenization in time-critical situations.
Collapse
Affiliation(s)
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Felix Krüger
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
5
|
Li P, Chen J, Nan D, Zou J, Lin D, Hu Y. Motion-Aligned 4D-MRI Reconstruction using Higher Degree Total Variation and Locally Low-Rank Regularization. Magn Reson Imaging 2022; 93:97-107. [DOI: 10.1016/j.mri.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
6
|
Aigner CS, Dietrich S, Schmitter S. Respiration induced B 1 + changes and their impact on universal and tailored 3D kT-point parallel transmission pulses for 7T cardiac imaging. Magn Reson Med 2022; 87:2862-2871. [PMID: 35142400 DOI: 10.1002/mrm.29183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Human heart imaging at ultra-high fields is highly challenging because of respiratory motion-induced artefacts and spatially heterogeneous B 1 + profiles. This work demonstrates that respiration resolved 3D B 1 + -maps can be used with a dedicated tailored and universal parallel transmission (pTx) pulse design to compensate respiration related B 1 + changes in subjects performing shallow and deep breathing (SB/DB). METHODS Three-dimensional (3D) B 1 + -maps of the thorax were acquired in 31 subjects under SB and in 15 subjects under SB and DB. Different universal and tailored non-selective pTx pulses were designed from non-respiration resolved (NRR) and respiration resolved (RR) reconstructions of the SB/DB B 1 + -maps. The performance of all pulses was tested with RR-SB/DB B 1 + -maps. Respiration-robust tailored and universal pulses were applied in vivo in 5 subjects at 7T in 3D gradient-echo free-breathing scans. RESULTS All optimized pTx pulses performed well for SB. For DB, however, only the universal and the tailored respiration-robust pulses achieved homogeneous flip angles (FAs) in all subjects and across all respiration states, whereas the tailored respiration-specific pulses resulted in a higher FA variation. The respiration-robust universal pulse resulted in an average coefficient of variation in the FA maps of 12.6% compared to 8.2% achieved by tailored respiration-robust pulses. In vivo measurements at 7T demonstrate the benefits of using respiration-robust pulses for DB. CONCLUSION Universal and tailored respiration-robust pTx pulses based on RR B 1 + -maps are highly preferred to achieve 3D heart FA homogenization at 7T when subjects perform DB, whereas universal and tailored pulses based on NRR B 1 + -maps are sufficient when subjects perform SB.
Collapse
Affiliation(s)
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Dietrich S, Aigner CS, Mayer J, Kolbitsch C, Schulz-Menger J, Schaeffter T, Schmitter S. Motion-compensated fat-water imaging for 3D cardiac MRI at ultra-high fields. Magn Reson Med 2022; 87:2621-2636. [PMID: 35092090 DOI: 10.1002/mrm.29144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B 1 + shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B 1 + and B0 variations, as well as respiratory and cardiac motion.
Collapse
Affiliation(s)
- Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Helios Clinics Berlin-Buch Department of Cardiology and Nephrology, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Department of Medical Engineering, Technische Universität Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Aigner CS, Dietrich S, Schaeffter T, Schmitter S. Calibration-free pTx of the human heart at 7T via 3D universal pulses. Magn Reson Med 2021; 87:70-84. [PMID: 34399002 DOI: 10.1002/mrm.28952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B 1 + profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T. METHODS Twenty-two channel-wise 3D B 1 + data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m2 ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m2 ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D B 1 + data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m2 ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the B 1 + data sets in group 1 and 2. RESULTS The proposed UP22-4kT provides low B 1 + variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart. CONCLUSION UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.
Collapse
Affiliation(s)
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Aigner CS, Dietrich S, Schmitter S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR IN BIOMEDICINE 2021; 34:e4450. [PMID: 33325581 DOI: 10.1002/nbm.4450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) human heart imaging at ultra-high fields is highly challenging due to respiratory and cardiac motion-induced artifacts as well as spatially heterogeneous B1+ profiles. In this study, we investigate the feasibility of applying 3D flip angle (FA) homogenization targeting the whole heart via static phase-only and dynamic kT-point in vivo parallel transmission at 7 T. 3D B1+ maps of the thorax were acquired under free breathing in eight subjects to compute parallel transmission pulses that improve excitation homogeneity in the human heart. To analyze the number of kT-points required, excitation homogeneity and radiofrequency (RF) power were compared using different regions of interest in six subjects with different body mass index (BMI) values of 20-34 kg/m2 for a wide range of regularization parameters. One subset of the optimized subject-specific pulses was applied in vivo on a 7 T scanner for six subjects in Cartesian 3D breath-hold scans as well as in two subjects in a radial phase-encoded 3D free-breathing scan. Across all subjects, 3-4 kT-points achieved a good tradeoff between RF power and nominal FA homogeneity. For subjects with a BMI in the normal range, the 4 kT-point pulses reliably improved the coefficient of variation by less than 10% compared with less than 25% achieved by static phase-only parallel transmission. in vivo measurements on a 7 T scanner validated the B1+ estimations and the pulse design, despite neglecting ΔB0 in the optimizations and Bloch simulations. This study demonstrates in vivo that kT-point pTx pulses are highly suitable for mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T. Furthermore, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.
Collapse
Affiliation(s)
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota
| |
Collapse
|
10
|
Dietrich S, Aigner CS, Kolbitsch C, Mayer J, Ludwig J, Schmidt S, Schaeffter T, Schmitter S. 3D Free-breathing multichannel absolute B 1 + Mapping in the human body at 7T. Magn Reson Med 2020; 85:2552-2567. [PMID: 33283915 DOI: 10.1002/mrm.28602] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce and investigate a method for free-breathing three-dimensional (3D) B 1 + mapping of the human body at ultrahigh field (UHF), which can be used to generate homogenous flip angle (FA) distributions in the human body at UHF. METHODS A 3D relative B 1 + mapping sequence with a radial phase-encoding (RPE) k-space trajectory was developed and applied in 11 healthy subjects at 7T. An RPE-based actual flip angle mapping method was applied with a dedicated B 1 + shim setting to calibrate the relative B 1 + maps yielding absolute B 1 + maps of the individual transmit channels. The method was evaluated in a motion phantom and by multidimensional in vivo measurements. Additionally, 3D gradient echo scans with and without static phase-only B 1 + shims were used to qualitatively validate B 1 + shim predictions. RESULTS The phantom validation revealed good agreement for B 1 + maps between dynamic measurement and static reference acquisition. The proposed 3D method was successfully validated in vivo by comparing magnitude and phase distributions with a 2D Cartesian reference. 3D B 1 + maps free from visible motion artifacts were successfully acquired for 11 subjects with body mass indexes ranging from 19 kg/m2 to 34 kg/m2 . 3D respiration-resolved absolute B 1 + maps indicated FA differences between inhalation and exhalation up to 15% for one channel and up to 24% for combined channels for shallow breathing. CONCLUSION The proposed method provides respiration-resolved absolute 3D B 1 + maps of the human body at UHF, which enables the investigation and development of 3D B 1 + shimming and parallel transmission methods to further enhance body imaging at UHF.
Collapse
Affiliation(s)
- Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph S Aigner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Juliane Ludwig
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Department of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Tran EH, Eiben B, Wetscherek A, Oelfke U, Meedt G, Hawkes DJ, McClelland JR. Evaluation of MRI-derived surrogate signals to model respiratory motion. Biomed Phys Eng Express 2020; 6:045015. [PMID: 33194224 PMCID: PMC7655234 DOI: 10.1088/2057-1976/ab944c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
An MR-Linac can provide motion information of tumour and organs-at-risk before, during, and after beam delivery. However, MR imaging cannot provide real-time high-quality volumetric images which capture breath-to-breath variability of respiratory motion. Surrogate-driven motion models relate the motion of the internal anatomy to surrogate signals, thus can estimate the 3D internal motion from these signals. Internal surrogate signals based on patient anatomy can be extracted from 2D cine-MR images, which can be acquired on an MR-Linac during treatment, to build and drive motion models. In this paper we investigate different MRI-derived surrogate signals, including signals generated by applying principal component analysis to the image intensities, or control point displacements derived from deformable registration of the 2D cine-MR images. We assessed the suitability of the signals to build models that can estimate the motion of the internal anatomy, including sliding motion and breath-to-breath variability. We quantitatively evaluated the models by estimating the 2D motion in sagittal and coronal slices of 8 lung cancer patients, and comparing them to motion measurements obtained from image registration. For sagittal slices, using the first and second principal components on the control point displacements as surrogate signals resulted in the highest model accuracy, with a mean error over patients around 0.80 mm which was lower than the in-plane resolution. For coronal slices, all investigated signals except the skin signal produced mean errors over patients around 1 mm. These results demonstrate that surrogate signals derived from 2D cine-MR images, including those generated by applying principal component analysis to the image intensities or control point displacements, can accurately model the motion of the internal anatomy within a single sagittal or coronal slice. This implies the signals should also be suitable for modelling the 3D respiratory motion of the internal anatomy.
Collapse
Affiliation(s)
- Elena H Tran
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Björn Eiben
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gustav Meedt
- Elekta, Medical Intelligence Medizintechnik GmbH, Schwabmünchen, Germany
| | - David J Hawkes
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
12
|
Weick S, Breuer K, Richter A, Exner F, Ströhle SP, Lutyj P, Tamihardja J, Veldhoen S, Flentje M, Polat B. Non-rigid image registration of 4D-MRI data for improved delineation of moving tumors. BMC Med Imaging 2020; 20:41. [PMID: 32326879 PMCID: PMC7178986 DOI: 10.1186/s12880-020-00439-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/31/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND To increase the image quality of end-expiratory and end-inspiratory phases of retrospective respiratory self-gated 4D MRI data sets using non-rigid image registration for improved target delineation of moving tumors. METHODS End-expiratory and end-inspiratory phases of volunteer and patient 4D MRI data sets are used as targets for non-rigid image registration of all other phases using two different registration schemes: In the first, all phases are registered directly (dir-Reg) while next neighbors are successively registered until the target is reached in the second (nn-Reg). Resulting data sets are quantitatively compared using diaphragm and tumor sharpness and the coefficient of variation of regions of interest in the lung, liver, and heart. Qualitative assessment of the patient data regarding noise level, tumor delineation, and overall image quality was performed by blinded reading based on a 4 point Likert scale. RESULTS The median coefficient of variation was lower for both registration schemes compared to the target. Median dir-Reg coefficient of variation of all ROIs was 5.6% lower for expiration and 7.0% lower for inspiration compared with nn-Reg. Statistical significant differences between the two schemes were found in all comparisons. Median sharpness in inspiration is lower compared to expiration sharpness in all cases. Registered data sets were rated better compared to the targets in all categories. Over all categories, mean expiration scores were 2.92 ± 0.18 for the target, 3.19 ± 0.22 for nn-Reg and 3.56 ± 0.14 for dir-Reg and mean inspiration scores 2.25 ± 0.12 for the target, 2.72 ± 215 0.04 for nn-Reg and 3.78 ± 0.04 for dir-Reg. CONCLUSIONS In this work, end-expiratory and inspiratory phases of a 4D MRI data sets are used as targets for non-rigid image registration of all other phases. It is qualitatively and quantitatively shown that image quality of the targets can be significantly enhanced leading to improved target delineation of moving tumors.
Collapse
Affiliation(s)
- Stefan Weick
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Kathrin Breuer
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Anne Richter
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Florian Exner
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Serge-Peer Ströhle
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Paul Lutyj
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Jörg Tamihardja
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| |
Collapse
|
13
|
Sarasaen C, Chatterjee S, Breitkopf M, Iuso D, Rose G, Speck O. Breathing deformation model - application to multi-resolution abdominal MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2769-2772. [PMID: 31946467 DOI: 10.1109/embc.2019.8857706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dynamic MRI is a technique of acquiring a series of images continuously to follow the physiological changes over time. However, such fast imaging results in low resolution images. In this work, abdominal deformation model computed from dynamic low resolution images have been applied to high resolution image, acquired previously, to generate dynamic high resolution MRI. Dynamic low resolution images were simulated into different breathing phases (inhale and exhale). Then, the image registration between breathing time points was performed using the B-spline SyN deformable model and using cross-correlation as a similarity metric. The deformation model between different breathing phases were estimated from highly undersampled data. This deformation model was then applied to the high resolution images to obtain high resolution images of different breathing phases. The results indicated that the deformation model could be computed from relatively very low resolution images.
Collapse
|
14
|
Zöllner FG, Šerifović-Trbalić A, Kabelitz G, Kociński M, Materka A, Rogelj P. Image registration in dynamic renal MRI-current status and prospects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:33-48. [PMID: 31598799 PMCID: PMC7210245 DOI: 10.1007/s10334-019-00782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.
Collapse
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | | | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marek Kociński
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Andrzej Materka
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
15
|
Kolbitsch C, Bastkowski R, Schäffter T, Prieto Vasquez C, Weiss K, Maintz D, Giese D. Respiratory motion corrected 4D flow using golden radial phase encoding. Magn Reson Med 2019; 83:635-644. [DOI: 10.1002/mrm.27918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Christoph Kolbitsch
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Rene Bastkowski
- Department of Radiology University Hospital of Cologne Cologne Germany
| | - Tobias Schäffter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Claudia Prieto Vasquez
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Kilian Weiss
- Department of Radiology University Hospital of Cologne Cologne Germany
- Philips GmbH Healthcare Hamburg Germany
| | - David Maintz
- Department of Radiology University Hospital of Cologne Cologne Germany
| | - Daniel Giese
- Department of Radiology University Hospital of Cologne Cologne Germany
| |
Collapse
|
16
|
Arif O, Afzal H, Abbas H, Amjad MF, Wan J, Nawaz R. Accelerated Dynamic MRI Using Kernel-Based Low Rank Constraint. J Med Syst 2019; 43:271. [DOI: 10.1007/s10916-019-1399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022]
|
17
|
van Kesteren Z, van der Horst A, Gurney-Champion OJ, Bones I, Tekelenburg D, Alderliesten T, van Tienhoven G, Klaassen R, van Laarhoven HWM, Bel A. A novel amplitude binning strategy to handle irregular breathing during 4DMRI acquisition: improved imaging for radiotherapy purposes. Radiat Oncol 2019; 14:80. [PMID: 31088490 PMCID: PMC6518684 DOI: 10.1186/s13014-019-1279-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background For radiotherapy of abdominal cancer, four-dimensional magnetic resonance imaging (4DMRI) is desirable for tumor definition and the assessment of tumor and organ motion. However, irregular breathing gives rise to image artifacts. We developed a outlier rejection strategy resulting in a 4DMRI with reduced image artifacts in the presence of irregular breathing. Methods We obtained 2D T2-weighted single-shot turbo spin echo images, with an interleaved 1D navigator acquisition to obtain the respiratory signal during free breathing imaging in 2 patients and 12 healthy volunteers. Prior to binning, upper and lower inclusion thresholds were chosen such that 95% of the acquired images were included, while minimizing the distance between the thresholds (inclusion range (IR)). We compared our strategy (Min95) with three commonly applied strategies: phase binning with all images included (Phase), amplitude binning with all images included (MaxIE), and amplitude binning with the thresholds set as the mean end-inhale and mean end-exhale diaphragm positions (MeanIE). We compared 4DMRI quality based on:Data included (DI); percentage of images remaining after outlier rejection. Reconstruction completeness (RC); percentage of bin-slice combinations containing at least one image after binning. Intra-bin variation (IBV); interquartile range of the diaphragm position within the bin-slice combination, averaged over three central slices and ten respiratory bins. IR. Image smoothness (S); quantified by fitting a parabola to the diaphragm profile in a sagittal plane of the reconstructed 4DMRI.
A two-sided Wilcoxon’s signed-rank test was used to test for significance in differences between the Min95 strategy and the Phase, MaxIE, and MeanIE strategies. Results Based on the fourteen subjects, the Min95 binning strategy outperformed the other strategies with a mean RC of 95.5%, mean IBV of 1.6 mm, mean IR of 15.1 mm and a mean S of 0.90. The Phase strategy showed a poor mean IBV of 6.2 mm and the MaxIE strategy showed a poor mean RC of 85.6%, resulting in image artifacts (mean S of 0.76). The MeanIE strategy demonstrated a mean DI of 85.6%. Conclusions Our Min95 reconstruction strategy resulted in a 4DMRI with less artifacts and more precise diaphragm position reconstruction compared to the other strategies. Trial registration Volunteers: protocol W15_373#16.007; patients: protocol NL47713.018.14 Electronic supplementary material The online version of this article (10.1186/s13014-019-1279-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Z van Kesteren
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - A van der Horst
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - O J Gurney-Champion
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.,Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK, SM2 5NG, UK
| | - I Bones
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - D Tekelenburg
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - T Alderliesten
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - G van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - R Klaassen
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Deng Z, Pang J, Lao Y, Bi X, Wang G, Chen Y, Fenchel M, Tuli R, Li D, Yang W, Fan Z. A post-processing method based on interphase motion correction and averaging to improve image quality of 4D magnetic resonance imaging: a clinical feasibility study. Br J Radiol 2019; 92:20180424. [PMID: 30604622 PMCID: PMC6541178 DOI: 10.1259/bjr.20180424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 11/05/2022] Open
Abstract
METHODS: Nine patients (seven pancreas, one liver, and one lung) were recruited. 4D-MRI was performed using two prototype k-space sorted techniques, stack-of-stars (SOS) and koosh-ball (KB) acquisitions. Post-processing using MoCoAve was implemented for both methods. Image quality score, apparent SNR (aSNR), sharpness, motion trajectory and standard deviation (σ_GTV) of the gross tumor volumes were compared between original and MoCoAve image sets. RESULTS: All subjects successfully underwent 4D-MRI scans and MoCoAve was performed on all data sets. Significantly higher image quality scores (2.64 ± 0.39 vs 1.18 ± 0.34, p = 0.001) and aSNR (37.6 ± 15.3 vs 18.1 ± 5.7, p = 0.001) was observed in the MoCoAve images when compared to the original images. High correlation in tumor motion trajectories in the superoinferior direction (SI: 0.91 ± 0.08) and weaker in the anteroposterior (AP: 0.51 ± 0.44) and mediolateral (ML: 0.37 ± 0.23) directions, similar image sharpness (0.367 ± 0.068 vs 0.369 ± 0.072, p = 0.805), and minimal average absolute difference (0.47 ± 0.34 mm) of the motion trajectory profiles was found between the two image sets. The σ_GTV in pancreas patients was significantly (p = 0.039) lower in MoCoAve images (1.48 ± 1.35 cm3) than in the original images (2.17 ± 1.31 cm3). CONCLUSION: MoCoAve using interphase motion correction and averaging has shown promise as a post-processing method for improving k-space sorted (SOS and KB) 4D-MRI image quality in thoracic and abdominal cancer patients. ADVANCES IN KNOWLEDGE: The proposed method is an image based post-processing method that could be applied to many k-space sorted 4D-MRI methods for improved image quality and signal-to-noise ratio while preserving image sharpness and respiratory motion fidelity. It is a useful technique for the radiotherapy planning community who are interested in using 4D-MRI but aren't satisfied with their current MR image quality.
Collapse
Affiliation(s)
- Zixin Deng
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Yi Lao
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaoming Bi
- MR R&D, Siemens Healthineers, Los Angeles, CA, USA
| | - Guan Wang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Yuhua Chen
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Richard Tuli
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
19
|
Meschini G, Paganelli C, Gianoli C, Summers P, Bellomi M, Baroni G, Riboldi M. A clustering approach to 4D MRI retrospective sorting for the investigation of different surrogates. Phys Med 2019; 58:107-113. [PMID: 30824141 DOI: 10.1016/j.ejmp.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE In retrospective 4-Dimensional Magnetic Resonance Imaging (4D MRI) sorting, respiratory surrogate selection affects the image quality of reconstructed volumes. We propose a method for retrospective 4D MRI sorting based on clustering, which allowed us to compare the performance of single or multiple internal surrogates vs. a conventional external signal. METHODS A k-medoids clustering algorithm was exploited for sorting 2D MRI into 4D MRI, relying on (A) multiple or (B) single automatically tracked internal landmarks or (C) respiratory belt signal. 4D MRI reconstructions for seven liver cancer patients were compared to those of the state-of-the-art mutual information (MI) approach. Sorting artifacts were measured by the root mean square error (RMSE) between the diaphragm profile and a fitted second order curve. Diaphragm and tumor motions were evaluated. RESULTS The median RMSEs ranged 0.97-1.66 mm, 1.24-1.89 mm, 1.43-2.27 mm, 1.74-3.72 mm for the MI, (A), (B) and (C) methods, respectively. Significant differences (Friedman, α = 5%) were found between (C) and all other methods, and between (B) and MI approaches. The discrepancies between (A) and MI approaches ranged 1.1-6.2 mm and 0.7-5.3 mm respectively in diaphragm and tumor motions. Methods (A) and (B) showed similar ranges of motion. CONCLUSION With multiple internal points, our method yielded the description of a higher range of motion and similar image quality with respect to the MI approach. The single point method led to more artifacts, suggesting the superior suitability of multiple internal surrogates for retrospective 4D MRI sorting. Considering internal rather than external information favored superior performance.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy.
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Chiara Gianoli
- Chair of Experimental Physics - Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Paul Summers
- Department of Imaging and Radiological Science, European Institute of Oncology, Via Giuseppe Ripamonti, 435, 20141 Milan, Italy
| | - Massimo Bellomi
- Department of Imaging and Radiological Science, European Institute of Oncology, Via Giuseppe Ripamonti, 435, 20141 Milan, Italy; Department of Oncology and Emato-oncology, University of Milan, Via Festa del Perdono, 7, 20122, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy; Bioengineering Unit, CNAO Foundation, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Marco Riboldi
- Chair of Experimental Physics - Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
20
|
Paganelli C, Whelan B, Peroni M, Summers P, Fast M, van de Lindt T, McClelland J, Eiben B, Keall P, Lomax T, Riboldi M, Baroni G. MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Phys Med Biol 2018; 63:22TR03. [PMID: 30457121 DOI: 10.1088/1361-6560/aaebcf] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability of magnetic resonance imaging (MRI) to provide radiation-free images with high-resolution and superb soft tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and motion management. In addition, these advantageous properties motivated several recent developments towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment adaptation. The aim of this review is to provide an overview of the state-of-the-art in MRI-based image guidance for organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion management are reviewed and their application in treatment planning, in-room guidance and adaptive radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future challenges are discussed.
Collapse
Affiliation(s)
- C Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Author to whom any correspondence should be addressed. www.cartcas.polimi.it
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. ACTA ACUST UNITED AC 2018; 63:21TR01. [DOI: 10.1088/1361-6560/aae56d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Fahmi S, Simonis FFJ, Abayazid M. Respiratory motion estimation of the liver with abdominal motion as a surrogate. Int J Med Robot 2018; 14:e1940. [PMID: 30112864 PMCID: PMC6282606 DOI: 10.1002/rcs.1940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022]
Abstract
Background: Respiratory‐induced motion (RIM) causes uncertainties in localizing hepatic lesions, which could lead to inaccurate targeting during interventions. One approach to mitigate the problem is respiratory motion estimation (RME), in which the liver motion is estimated by measuring external signals called surrogates. Methods: A learning‐based approach has been developed and validated to estimate the RIM of hepatic lesions. External markers placed on the human's abdomen were chosen as surrogates. Accordingly, appropriate motion models (multivariate, Ridge and Lasso regression models) were designed to correlate the liver motion with the abdominal motion, and trained to estimate the superior–inferior (SI) motion of the liver. Three subjects volunteered for 6 sessions of such that liver images acquired by magnetic resonance imaging (MRI) were recorded alongside camera‐tracked external markers. Results and conclusions: The proposed machine learning approach was validated in MRI on human subjects and the results show that the approach could estimate the respiratory‐induced SI motion of the liver with a mean absolute error (MAE) accuracy below 2 mm.
Collapse
Affiliation(s)
- Shamel Fahmi
- Robotics and Mechatronics group (RaM), the faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, 7500AE, the Netherlands.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Frank F J Simonis
- Magnetic Detection and Imaging Department, Faculty of Science and Technology, University of Twente, Enschede, 7500AE, the Netherlands
| | - Momen Abayazid
- Robotics and Mechatronics group (RaM), the faculty of Electrical Engineering Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, 7500AE, the Netherlands
| |
Collapse
|
23
|
Giger A, Stadelmann M, Preiswerk F, Jud C, De Luca V, Celicanin Z, Bieri O, Salomir R, Cattin PC. Ultrasound-driven 4D MRI. Phys Med Biol 2018; 63:145015. [PMID: 29864021 DOI: 10.1088/1361-6560/aaca1d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present an ultrasound-driven 4D magnetic resonance imaging (US-4DMRI) method for respiratory motion imaging in the thorax and abdomen. The proposed US-4DMRI comes along with a high temporal resolution, and allows for organ motion imaging beyond a single respiratory cycle. With the availability of the US surrogate both inside and outside the MR bore, 4D MR images can be reconstructed for 4D treatment planning and online respiratory motion prediction during radiotherapy. US-4DMRI relies on simultaneously acquired 2D liver US images and abdominal 2D MR multi-slice scans under free respiration. MR volumes are retrospectively composed by grouping the MR slices corresponding to the most similar US images. We present two different US similarity metrics: an intensity-based approach, and a similarity measure relying on predefined fiducials which are being tracked over time. The proposed method is demonstrated on MR liver scans of eight volunteers acquired over a duration of 5.5 min each at a temporal resolution of 2.6 Hz with synchronous US imaging at 14 Hz-17 Hz. Visual inspection of the reconstructed MR volumes revealed satisfactory results in terms of continuity in organ boundaries and blood vessels. In quantitative leave-one-out experiments, both US similarity metrics reach the performance level of state-of-the-art navigator-based approaches.
Collapse
Affiliation(s)
- Alina Giger
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland. Center for Medical Image Analysis & Navigation, University of Basel, Allschwil, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Eldeniz C, Fraum T, Salter A, Chen Y, Gach HM, Parikh PJ, Fowler KJ, An H. CAPTURE: Consistently Acquired Projections for Tuned and Robust Estimation: A Self-Navigated Respiratory Motion Correction Approach. Invest Radiol 2018; 53:293-305. [PMID: 29315083 PMCID: PMC5882511 DOI: 10.1097/rli.0000000000000442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In this study, we present a fully automated and robust self-navigated approach to obtain 4-dimensional (4-D) motion-resolved images during free breathing. MATERIALS AND METHODS The proposed method, Consistently Acquired Projections for Tuned and Robust Estimation (CAPTURE), is a variant of the stack-of-stars gradient-echo sequence. A 1-D navigator was consistently acquired at a fixed azimuthal angle for all stacks of spokes to reduce nonphysiological signal contamination due to system imperfections. The resulting projections were then "tuned" using complex phase rotation to adapt to scan-to-scan variations, followed by the detection of the respiratory curve. Four-dimensional motion-corrected and uncorrected images were then reconstructed via respiratory and temporal binning, respectively.This Health Insurance Portability and Accountability Act-compliant study was performed with Institutional Review Board approval. A phantom experiment was performed using a custom-made deformable motion phantom with an adjustable frequency and amplitude. For in vivo experiments, 10 healthy participants and 12 liver tumor patients provided informed consent and were imaged with the CAPTURE sequence.Two radiologists, blinded to which images were motion-corrected and which were not, independently reviewed the images and scored the image quality using a 5-point Likert scale. RESULTS In the respiratory motion phantom experiment, CAPTURE reversed the effects of motion blurring and restored edge sharpness from 36% to 78% of that observed in the images from the static scan.Despite large intra- and intersubject variability in respiration patterns, CAPTURE successfully detected the respiratory motion signal in all participants and significantly improved the image quality according to the subjective radiological assessments of 2 raters (P < 0.05 for both raters) with a 1 to 2-point improvement in the median Likert scores across the whole set of participants. Small lesions (<1 cm in size) which might otherwise be missed on uncorrected images because of motion blurring were more clearly depicted on the CAPTURE images. CONCLUSIONS CAPTURE provides a robust and fully automated solution for obtaining 4-D motion-resolved images in a free-breathing setting. With its unique tuning feature, CAPTURE can adapt to large intersubject and interscan variations. CAPTURE also enables better lesion delineation because of improved image sharpness, thereby increasing the visibility of small lesions.
Collapse
|
25
|
Breuer K, Meyer CB, Breuer FA, Richter A, Exner F, Weng AM, Ströhle S, Polat B, Jakob PM, Sauer OA, Flentje M, Weick S. Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers. ACTA ACUST UNITED AC 2018; 63:075002. [DOI: 10.1088/1361-6560/aab342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Lv J, Yang M, Zhang J, Wang X. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol 2018; 91:20170788. [PMID: 29261334 DOI: 10.1259/bjr.20170788] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Free-breathing abdomen imaging requires non-rigid motion registration of unavoidable respiratory motion in three-dimensional undersampled data sets. In this work, we introduce an image registration method based on the convolutional neural network (CNN) to obtain motion-free abdominal images throughout the respiratory cycle. METHODS Abdominal data were acquired from 10 volunteers using a 1.5 T MRI system. The respiratory signal was extracted from the central-space spokes, and the acquired data were reordered in three bins according to the corresponding breathing signal. Retrospective image reconstruction of the three near-motion free respiratory phases was performed using non-Cartesian iterative SENSE reconstruction. Then, we trained a CNN to analyse the spatial transform among the different bins. This network could generate the displacement vector field and be applied to perform registration on unseen image pairs. To demonstrate the feasibility of this registration method, we compared the performance of three different registration approaches for accurate image fusion of three bins: non-motion corrected (NMC), local affine registration method (LREG) and CNN. RESULTS Visualization of coronal images indicated that LREG had caused broken blood vessels, while the vessels of the CNN were sharper and more consecutive. As shown in the sagittal view, compared to NMC and CNN, distorted and blurred liver contours were caused by LREG. At the same time, zoom-in axial images presented that the vessels were delineated more clearly by CNN than LREG. The statistical results of the signal-to-noise ratio, visual score, vessel sharpness and registration time over all volunteers were compared among the NMC, LREG and CNN approaches. The SNR indicated that the CNN acquired the best image quality (207.42 ± 96.73), which was better than NMC (116.67 ± 44.70) and LREG (187.93 ± 96.68). The image visual score agreed with SNR, marking CNN (3.85 ± 0.12) as the best, followed by LREG (3.43 ± 0.13) and NMC (2.55 ± 0.09). A vessel sharpness assessment yielded similar values between the CNN (0.81 ± 0.03) and LREG (0.80 ± 0.04), differentiating them from the NMC (0.78 ± 0.06). When compared with the LREG-based reconstruction, the CNN-based reconstruction reduces the registration time from 1 h to 1 min. CONCLUSION Our preliminary results demonstrate the feasibility of the CNN-based approach, and this scheme outperforms the NMC- and LREG-based methods. Advances in knowledge: This method reduces the registration time from ~1 h to ~1 min, which has promising prospects for clinical use. To the best of our knowledge, this study shows the first convolutional neural network-based registration method to be applied in abdominal images.
Collapse
Affiliation(s)
- Jun Lv
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China
| | - Ming Yang
- 2 Vusion Tech Ltd. Co , Suzhou , China
| | - Jue Zhang
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China.,3 College of Engineering, Peking University , Beijing , China
| | - Xiaoying Wang
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China.,4 Department of Radiology, Peking University First Hospital , Beijing , China
| |
Collapse
|
27
|
Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo-Garcia D, Pedemonte S, Catana C. Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 2018; 59:1474-1479. [PMID: 29371404 DOI: 10.2967/jnumed.117.203943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of 18F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC6-min) and only the last 1 min (MC1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC6-min and MC1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUVmax and SUVmean, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Results: Motion-corrected MC6-min PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUVmax, SUVmean, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC1-min protocol: 19%, 10%, 15%, and 9% increases in average SUVmax, SUVmean, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.
Collapse
Affiliation(s)
- Niccolo Fuin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Michele Scipioni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Information Engineering, University of Pisa, Pisa, Italy; and
| | - Lisanne P W Canjels
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Stefano Pedemonte
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
28
|
Correia T, Cruz G, Schneider T, Botnar RM, Prieto C. Technical note: Accelerated nonrigid motion-compensated isotropic 3D coronary MR angiography. Med Phys 2017; 45:214-222. [PMID: 29131353 PMCID: PMC5814733 DOI: 10.1002/mp.12663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. METHODS Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled acquisition was performed using a variable-density Cartesian trajectory with radial order (VD-CAPR). Motion correction was performed in two steps: beat-to-beat 2D translational correction with motion estimated from interleaved image navigators, and bin-to-bin 3D nonrigid correction with motion estimated from respiratory-resolved images reconstructed from undersampled 3D CMRA data using CS. Nonrigid motion fields were incorporated into an undersampled motion-compensated reconstruction, which combines CS with the general matrix description formalism. The proposed approach was tested on 10 healthy subjects and compared against a conventional twofold accelerated 5-mm navigator-gated and tracked acquisition. RESULTS The proposed method achieves isotropic 1.2-mm Cartesian whole-heart CMRA in 5 min ± 1 min (~8× acceleration). The proposed approach provides good-quality images of the left and right coronary arteries, comparable to those of a twofold accelerated navigator-gated and tracked acquisition, but scan time was up to about four times faster. For both coronaries, no significant differences (P > 0.05) in vessel sharpness and length were found between the proposed method and reference scan. CONCLUSION The feasibility of a highly efficient motion-compensated reconstruction framework for accelerated 3D CMRA has been demonstrated in healthy subjects. Further investigation is required to assess the clinical value of the method.
Collapse
Affiliation(s)
- Teresa Correia
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Gastão Cruz
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - René M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
29
|
Chen F, Zhang T, Cheng JY, Shi X, Pauly JM, Vasanawala SS. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI. Magn Reson Med 2017; 78:1757-1766. [PMID: 27943402 PMCID: PMC5466545 DOI: 10.1002/mrm.26567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. METHODS A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. RESULTS For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). CONCLUSION The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Joseph Y. Cheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John M. Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
30
|
Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys 2017; 44:e430-e445. [DOI: 10.1002/mp.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ashley Gillman
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
- Faculty of Medicine; University of Queensland; Brisbane Australia
| | - Jye Smith
- Department of Radiation Oncology; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Paul Thomas
- Faculty of Medicine; University of Queensland; Brisbane Australia
- Herston Imaging Research Facility and Specialised PET Services Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Stephen Rose
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| | - Nicholas Dowson
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| |
Collapse
|
31
|
Deng Z, Yang W, Pang J, Bi X, Tuli R, Li D, Fan Z. Improved vessel-tissue contrast and image quality in 3D radial sampling-based 4D-MRI. J Appl Clin Med Phys 2017; 18:250-257. [PMID: 28980395 PMCID: PMC5689937 DOI: 10.1002/acm2.12194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose In radiation treatment planning for thoracic and abdominal tumors, 4D‐MRI has shown promise in respiratory motion characterization with improved soft‐tissue contrast compared to clinical standard, 4D computed tomography (4D‐CT). This study aimed to further improve vessel–tissue contrast and overall image quality in 3D radial sampling‐based 4D‐MRI using a slab‐selective (SS) excitation approach. Methods The technique was implemented in a 3D radial sampling with self‐gating‐based k‐space sorting sequence. The SS excitation approach was compared to a non‐selective (NS) approach in six cancer patients and two healthy volunteers at 3T. Improvements in vessel–tissue contrast ratio (CR) and vessel signal‐to‐noise ratio (SNR) were analyzed in five of the eight subjects. Image quality was visually assessed in all subjects on a 4‐point scale (0: poor; 3: excellent). Tumor (patients) and pancreas (healthy) motion trajectories were compared between the two imaging approaches. Results Compared with NS‐4D‐MRI, SS‐4D‐MRI significantly improved the overall vessel–tissue CR (2.60 ± 3.97 vs. 1.03 ± 1.44, P < 0.05), SNR (63.33 ± 38.45 vs. 35.74 ± 28.59, P < 0.05), and image quality score (2.6 ± 0.5 vs. 1.4 ± 0.5, P = 0.02). Motion trajectories from the two approaches exhibited strong correlation in the superior–inferior (0.96 ± 0.06), but weaker in the anterior–posterior (0.78 ± 0.24) and medial–lateral directions (0.46 ± 0.44). Conclusions The proposed 4D‐MRI with slab‐selectively excited 3D radial sampling allows for improved blood SNR, vessel–tissue CR, and image quality.
Collapse
Affiliation(s)
- Zixin Deng
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Wensha Yang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jianing Pang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,MR R&D, Siemens Healthineers, Chicago, IL, USA
| | - Xiaoming Bi
- MR R&D, Siemens Healthineers, Los Angeles, CA, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Kurugol S, Marami B, Afacan O, Warfield SK, Gholipour A. Motion-Robust Spatially Constrained Parameter Estimation in Renal Diffusion-Weighted MRI by 3D Motion Tracking and Correction of Sequential Slices. MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT : FIFTH INTERNATIONAL WORKSHOP, CMMI 2017, SECOND INTERNATIONAL WORKSHOP, RAMBO 2017, AND FIRST INTERNATIONAL WORKSHOP, SWITCH 2017, ... 2017; 10555:75-85. [PMID: 29457154 DOI: 10.1007/978-3-319-67564-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we introduce a novel motion-robust spatially constrained parameter estimation (MOSCOPE) technique for kidney diffusion-weighted MRI. The proposed motion compensation technique does not require a navigator, trigger, or breath-hold but only uses the intrinsic features of the acquired data to track and compensate for motion to reconstruct precise models of the renal diffusion signal. We have developed a technique for physiological motion tracking based on robust state estimation and sequential registration of diffusion sensitized slices acquired within 200ms. This allows a sampling rate of 5Hz for state estimation in motion tracking that is sufficiently faster than both respiratory and cardiac motion rates in children and adults, which range between 0.8 to 0.2Hz, and 2.5 to 1Hz, respectively. We then apply the estimated motion parameters to data from each slice and use motion-compensated data for 1) robust intra-voxel incoherent motion (IVIM) model estimation in the kidney using a spatially constrained model fitting approach, and 2) robust weighted least squares estimation of the diffusion tensor model. Experimental results, including precision of IVIM model parameters using bootstrap-sampling and in-vivo whole kidney tractography, showed significant improvement in precision and accuracy of these models using the proposed method compared to models based on the original data and volumetric registration.
Collapse
Affiliation(s)
- Sila Kurugol
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Bahram Marami
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Onur Afacan
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Simon K Warfield
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Ali Gholipour
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| |
Collapse
|
33
|
Gdaniec N, Schluter M, Moddel M, Kaul MG, Krishnan KM, Schlaefer A, Knopp T. Detection and Compensation of Periodic Motion in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1511-1521. [PMID: 28207386 DOI: 10.1109/tmi.2017.2666740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The temporal resolution of the tomographic imaging method magnetic particle imaging (MPI) is remarkably high. The spatial resolution is degraded for measured voltage signal with low signal-to-noise ratio, because the regularization in the image reconstruction step needs to be increased for system-matrix approaches and for deconvolution steps in x -space approaches. To improve the signal-to-noise ratio, blockwise averaging of the signal over time can be advantageous. However, since block-wise averaging decreases the temporal resolution, it prevents resolving the motion. In this paper, a framework for averaging motion-corrupted MPI raw data is proposed. The motion is considered to be periodic as it is the case for respiration and/or the heartbeat. The same state of motion is thus reached repeatedly in a time series exceeding the repetition time of the motion and can be used for averaging. As the motion process and the acquisition process are, in general, not synchronized, averaging of the captured MPI raw data corresponding to the same state of motion requires to shift the starting point of the individual frames. For high-frequency motion, a higher frame rate is potentially required. To address this issue, a binning method for using only parts of complete frames from a motion cycle is proposed that further reduces the motion artifacts in the final images. The frequency of motion is derived directly from the MPI raw data signal without the need to capture an additional navigator signal. Using a motion phantom, it is shown that the proposed method is capable of averaging experimental data with reduced motion artifacts. The methods are further validated on in-vivo data from mouse experiments to compensate the heartbeat.
Collapse
|
34
|
Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. Fully integrated 3D high-resolution multicontrast abdominal PET-MR with high scan efficiency. Magn Reson Med 2017; 79:900-911. [DOI: 10.1002/mrm.26757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare; Frimley UK
| | - Matthias Fenchel
- MR Oncology Application Development, Siemens Healthcare; Erlangen Germany
| | - Andrew Mallia
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Paul Marsden
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| |
Collapse
|
35
|
Chen X, Usman M, Baumgartner CF, Balfour DR, Marsden PK, Reader AJ, Prieto C, King AP. High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:960-971. [PMID: 28113339 DOI: 10.1109/tmi.2016.2636449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel retrospective self-gating method based on manifold alignment (MA), which enables reconstruction of free breathing, high spatial, and temporal resolution abdominal magnetic resonance imaging sequences. Based on a radial golden-angle acquisition trajectory, our method enables a multidimensional self-gating signal to be extracted from the k -space data for more accurate motion representation. The k -space radial profiles are evenly divided into a number of overlapping groups based on their radial angles. MA is then used to simultaneously learn and align the low dimensional manifolds of all groups, and embed them into a common manifold. In the manifold, k -space profiles that represent similar respiratory positions are close to each other. Image reconstruction is performed by combining radial profiles with evenly distributed angles that are close in the manifold. Our method was evaluated on both 2-D and 3-D synthetic and in vivo data sets. On the synthetic data sets, our method achieved high correlation with the ground truth in terms of image intensity and virtual navigator values. Using the in vivo data, compared with a state-of-the-art approach based on the center of k -space gating, our method was able to make use of much richer profile data for self-gating, resulting in statistically significantly better quantitative measurements in terms of organ sharpness and image gradient entropy.
Collapse
|
36
|
Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, Kachelrieß M. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys 2017; 43:6234. [PMID: 27908174 DOI: 10.1118/1.4966128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) of the thorax region is impaired by respiratory patient motion. To account for motion, the authors propose a new method for PET/magnetic resonance (MR) respiratory motion compensation (MoCo), which uses highly undersampled MR data with acquisition times as short as 1 min/bed. METHODS The proposed PET/MR MoCo method (4D jMoCo PET) uses radial MR data to estimate the respiratory patient motion employing MR joint motion estimation and image reconstruction with temporal median filtering. Resulting motion vector fields are incorporated into the system matrix of the PET reconstruction. The proposed approach is evaluated for the thorax region utilizing a PET/MR simulation with 1 min MR acquisition time and simultaneous PET/MR measurements of six patients with MR acquisition times of 1 and 5 min and radial undersampling factors of 11.2 and 2.2, respectively. Reconstruction results are compared to 3D PET, 4D gated PET and a standard MoCo method (4D sMoCo PET), which performs iterative image reconstruction and motion estimation sequentially. Quantitative analysis comprises the parameters SUVmean, SUVmax, full width at half-maximum/lesion volume, contrast and signal-to-noise ratio. RESULTS For simulated PET data, our quantitative analysis shows that the proposed 4D jMoCo PET approach with temporal filtering achieves the best quantification accuracy of all tested reconstruction methods with a mean absolute deviation of 2.3% when compared to the ground truth. For measured PET patient data, the mean absolute deviation of 4D jMoCo PET using a 1 min MR acquisition for motion estimation is 2.1% relative to the 5 min MR acquisition. This demonstrates a robust behavior even in case of strong undersampling at MR acquisition times as short as 1 min. In contrast, 4D sMoCo PET shows considerable reduction of quantification accuracy for the 1 min MR acquisition time. Relative to 3D PET, the proposed 4D jMoCo PET approach with temporal filtering yields an average increase of SUVmean, SUVmax, and contrast of 29.9% and 13.8% for simulated and measured PET data, respectively. CONCLUSIONS Employing artifact-robust motion estimation enables PET/MR respiratory MoCo with MR acquisition times as short as 1 min/bed improving PET image quality and quantification accuracy.
Collapse
Affiliation(s)
- Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thorsten Heußer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Martin T Freitag
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Oliver Sedlaczek
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D, Marsden P, Kellman P, Bluemke DA, Schaeffter T. Cardiac and Respiratory Motion Correction for Simultaneous Cardiac PET/MR. J Nucl Med 2017; 58:846-852. [PMID: 28183991 DOI: 10.2967/jnumed.115.171728] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac PET is a versatile imaging technique providing important diagnostic information about ischemic heart diseases. Respiratory and cardiac motion of the heart can strongly impair image quality and therefore diagnostic accuracy of cardiac PET scans. The aim of this study was to investigate a new cardiac PET/MR approach providing respiratory and cardiac motion-compensated MR and PET images in less than 5 min. Methods: Free-breathing 3-dimensional MR data were acquired and retrospectively binned into multiple respiratory and cardiac motion states. Three-dimensional cardiac and respiratory motion fields were obtained with a nonrigid registration algorithm and used in motion-compensated MR and PET reconstructions to improve image quality. The improvement in image quality and diagnostic accuracy of the technique was assessed in simultaneous 18F-FDG PET/MR scans of a canine model of myocardial infarct and was demonstrated in a human subject. Results: MR motion fields were successfully used to compensate for in vivo cardiac motion, leading to improvements in full width at half maximum of the canine myocardium of 13% ± 5%, similar to cardiac gating but with a 90% ± 57% higher contrast-to-noise ratio between myocardium and blood. Motion correction led to an improvement in MR image quality in all subjects, with an increase in sharpness of the canine coronary arteries of 85% ± 72%. A functional assessment showed good agreement with standard MR cine scans with a difference in ejection fraction of -2% ± 3%. MR-based respiratory and cardiac motion information was used to improve the PET image quality of a human in vivo scan. Conclusion: The MR technique presented here provides both diagnostic and motion information that can be used to improve MR and PET image quality. Reliable respiratory and cardiac motion correction could make cardiac PET results more reproducible.
Collapse
Affiliation(s)
- Christoph Kolbitsch
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom .,Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Mark A Ahlman
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Cynthia Davies-Venn
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Robert Evers
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Michael Hansen
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Devis Peressutti
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Paul Marsden
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Peter Kellman
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - David A Bluemke
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Tobias Schaeffter
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| |
Collapse
|
38
|
Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med 2016; 78:632-644. [DOI: 10.1002/mrm.26406] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
|
39
|
Cruz G, Atkinson D, Henningsson M, Botnar RM, Prieto C. Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med 2016; 77:1894-1908. [PMID: 27221073 PMCID: PMC5412916 DOI: 10.1002/mrm.26274] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022]
Abstract
Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Collapse
Affiliation(s)
- Gastão Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Henningsson
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
40
|
Hui C, Wen Z, Stemkens B, Tijssen RHN, van den Berg CAT, Hwang KP, Beddar S. 4D MR imaging using robust internal respiratory signal. Phys Med Biol 2016; 61:3472-87. [PMID: 27049817 DOI: 10.1088/0031-9155/61/9/3472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.
Collapse
Affiliation(s)
- CheukKai Hui
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Cruz G, Atkinson D, Buerger C, Schaeffter T, Prieto C. Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn Reson Med 2016; 75:1484-98. [PMID: 25996443 PMCID: PMC4979665 DOI: 10.1002/mrm.25708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Develop a nonrigid motion corrected reconstruction for highly accelerated free-breathing three-dimensional (3D) abdominal images without external sensors or additional scans. METHODS The proposed method accelerates the acquisition by undersampling and performs motion correction directly in the reconstruction using a general matrix description of the acquisition. Data are acquired using a self-gated 3D golden radial phase encoding trajectory, enabling a two stage reconstruction to estimate and then correct motion of the same data. In the first stage total variation regularized iterative SENSE is used to reconstruct highly undersampled respiratory resolved images. A nonrigid registration of these images is performed to estimate the complex motion in the abdomen. In the second stage, the estimated motion fields are incorporated in a general matrix reconstruction, which uses total variation regularization and incorporates k-space data from multiple respiratory positions. The proposed approach was tested on nine healthy volunteers and compared against a standard gated reconstruction using measures of liver sharpness, gradient entropy, visual assessment of image sharpness and overall image quality by two experts. RESULTS The proposed method achieves similar quality to the gated reconstruction with nonsignificant differences for liver sharpness (1.18 and 1.00, respectively), gradient entropy (1.00 and 1.00), visual score of image sharpness (2.22 and 2.44), and visual rank of image quality (3.33 and 3.39). An average reduction of the acquisition time from 102 s to 39 s could be achieved with the proposed method. CONCLUSION In vivo results demonstrate the feasibility of the proposed method showing similar image quality to the standard gated reconstruction while using data corresponding to a significantly reduced acquisition time. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Gastao Cruz
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - David Atkinson
- Centre for Medical ImagingUniversity College LondonLondonUnited Kingdom
| | | | - Tobias Schaeffter
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - Claudia Prieto
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|
42
|
Rank CM, Heußer T, Buzan MTA, Wetscherek A, Freitag MT, Dinkel J, Kachelrieß M. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med 2016; 77:1170-1183. [PMID: 26991911 DOI: 10.1002/mrm.26206] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop four-dimensional (4D) respiratory time-resolved MRI based on free-breathing acquisition of radial MR data with very high undersampling. METHODS We propose the 4D joint motion-compensated high-dimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions. RESULTS For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 ± 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively. CONCLUSIONS 4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak artifact levels and high image sharpness. Magn Reson Med 77:1170-1183, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thorsten Heußer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Maria T A Buzan
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy, Hasdeu Str. 6, 400371, Cluj-Napoca, Romania.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin T Freitag
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Julien Dinkel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
43
|
Wundrak S, Paul J, Ulrici J, Hell E, Geibel MA, Bernhardt P, Rottbauer W, Rasche V. A self-gating method for time-resolved imaging of nonuniform motion. Magn Reson Med 2015; 76:919-25. [DOI: 10.1002/mrm.26000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan Wundrak
- Department of Internal Medicine II; University Hospital of Ulm; Germany
- Sirona Dental Systems, Imaging Systems; Bensheim Germany
| | - Jan Paul
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| | | | - Erich Hell
- Sirona Dental Systems, Imaging Systems; Bensheim Germany
| | - Margrit-Ann Geibel
- Department of Oral and Maxillofacial Surgery; University of Ulm; Germany
| | - Peter Bernhardt
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| | | | - Volker Rasche
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| |
Collapse
|
44
|
Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, Li D, Fraass B, Fan Z. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med 2015; 75:1574-85. [PMID: 25981762 DOI: 10.1002/mrm.25753] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a four-dimensional MRI (4D-MRI) technique to characterize the average respiratory tumor motion for abdominal radiotherapy planning. METHODS A continuous spoiled gradient echo sequence was implemented with 3D radial trajectory and 1D self-gating for respiratory motion detection. Data were retrospectively sorted into different respiratory phases based on their temporal locations within a respiratory cycle, and each phase was reconstructed by means of a self-calibrating CG-SENSE program. Motion phantom, healthy volunteer and patient studies were performed to validate the respiratory motion detected by the proposed method against that from a 2D real-time protocol. RESULTS The proposed method successfully visualized the respiratory motion in phantom and human subjects. The 4D-MRI and real-time 2D-MRI yielded comparable superior-inferior (SI) motion amplitudes (intraclass correlation = 0.935) with up-to one pixel mean absolute differences in SI displacements over 10 phases and high cross-correlation between phase-resolved displacements (phantom: 0.985; human: 0.937-0.985). Comparable anterior-posterior and left-right displacements of the tumor or gold fiducial between 4D and real-time 2D-MRI were also observed in the two patients, and the hysteresis effect was shown in their 3D trajectories. CONCLUSION We demonstrated the feasibility of the proposed 4D-MRI technique to characterize abdominal respiratory motion, which may provide valuable information for radiotherapy planning.
Collapse
Affiliation(s)
- Zixin Deng
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yong Yue
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Benedick Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
45
|
Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors. Int J Radiat Oncol Biol Phys 2015; 91:571-8. [DOI: 10.1016/j.ijrobp.2014.10.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022]
|
46
|
Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, Ziegler SI, Kiefer B, Hornegger J, Block KT, Nekolla SG. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 2015; 19:110-20. [PMID: 25461331 DOI: 10.1016/j.media.2014.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 11/25/2022]
|
47
|
Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, Botnar RM. Highly efficient respiratory motion compensated free-breathing coronary MRA using golden-step Cartesian acquisition. J Magn Reson Imaging 2014; 41:738-46. [PMID: 24573992 DOI: 10.1002/jmri.24602] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/31/2014] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To develop an efficient 3D affine respiratory motion compensation framework for Cartesian whole-heart coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS The proposed method achieves 100% scan efficiency by estimating the affine respiratory motion from the data itself and correcting the acquired data in the reconstruction process. For this, a golden-step Cartesian sampling with spiral profile ordering was performed to enable reconstruction of respiratory resolved images at any breathing position and with different respiratory window size. Affine motion parameters were estimated from image-based registration of 3D undersampled respiratory resolved images reconstructed with iterative SENSE and motion correction was performed directly in the reconstruction using a multiple-coils generalized matrix formulation method. This approach was tested on healthy volunteers and compared against a conventional diaphragmatic navigator-gated acquisition using quantitative and qualitative image quality assessment. RESULTS The proposed approach achieved 47 ± 12% and 59 ± 6% vessel sharpness for the right (RCA) and left (LAD) coronary arteries, respectively. Also, good quality visual scores of 2.4 ± 0.74 and 2.44 ± 0.86 were observed for the RCA and LAD (scores from 0, no to 4, excellent coronary vessel delineation). A not statically significant difference (P = 0.05) was found between the proposed method and an 8-mm navigator-gated and tracked scan, although scan efficiency increased from 61 ± 10% to 100%. CONCLUSION We demonstrate the feasibility of a new 3D affine respiratory motion correction technique for Cartesian whole-heart CMRA that achieves 100% scan efficiency and therefore a predictable acquisition time. This approach yields image quality comparable to that of an 8-mm navigator-gated acquisition with lower scan efficiency. Further evaluation of this technique in patients is now warranted to determine its clinical use.
Collapse
Affiliation(s)
- Claudia Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, UK; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
48
|
Usman M, Vaillant G, Atkinson D, Schaeffter T, Prieto C. Compressive manifold learning: Estimating one-dimensional respiratory motion directly from undersampled k-space data. Magn Reson Med 2013; 72:1130-40. [DOI: 10.1002/mrm.25010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/06/2013] [Accepted: 10/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Usman
- King's College London, Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, Medical Engineering Centre of Research Excellence, London, United Kingdom
| | - Ghislain Vaillant
- King's College London, Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, Medical Engineering Centre of Research Excellence, London, United Kingdom
| | - David Atkinson
- University College London, Centre for Medical Imaging, London, United Kingdom
| | - Tobias Schaeffter
- King's College London, Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, Medical Engineering Centre of Research Excellence, London, United Kingdom
| | - Claudia Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, Medical Engineering Centre of Research Excellence, London, United Kingdom
- Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
49
|
Schmidt JFM, Wissmann L, Manka R, Kozerke S. Iterative k-t principal component analysis with nonrigid motion correction for dynamic three-dimensional cardiac perfusion imaging. Magn Reson Med 2013; 72:68-79. [PMID: 23913550 DOI: 10.1002/mrm.24894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/08/2022]
Abstract
PURPOSE In this study, an iterative k-t principal component analysis (PCA) algorithm with nonrigid frame-to-frame motion correction is proposed for dynamic contrast-enhanced three-dimensional perfusion imaging. METHODS An iterative k-t PCA algorithm was implemented with regularization using training data corrected for frame-to-frame motion in the x-pc domain. Motion information was extracted using shape-constrained nonrigid image registration of the composite of training and k-t undersampled data. The approach was tested for 10-fold k-t undersampling using computer simulations and in vivo data sets corrupted by respiratory motion artifacts owing to free-breathing or interrupted breath-holds. Results were compared to breath-held reference data. RESULTS Motion-corrected k-t PCA image reconstruction resolved residual aliasing. Signal intensity curves extracted from the myocardium were close to those obtained from the breath-held reference. Upslopes were found to be more homogeneous in space when using the k-t PCA approach with motion correction. CONCLUSIONS Iterative k-t PCA with nonrigid motion correction permits correction of respiratory motion artifacts in three-dimensional first-pass myocardial perfusion imaging.
Collapse
Affiliation(s)
- Johannes F M Schmidt
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
50
|
Buerger C, Prieto C, Schaeffter T. Highly efficient 3D motion-compensated abdomen MRI from undersampled golden-RPE acquisitions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 26:419-29. [DOI: 10.1007/s10334-013-0370-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
|