1
|
Bani Ahmad AYA, Alzubi JA, Vasanthan M, Kondaveeti SB, Shreyas J, Priyanka TP. Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images. Sci Rep 2025; 15:13605. [PMID: 40253418 PMCID: PMC12009285 DOI: 10.1038/s41598-025-96827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/01/2025] [Indexed: 04/21/2025] Open
Abstract
The most dangerous form of cancer is breast cancer. This disease is life-threatening because of its aggressive nature and high death rates. Therefore, early discovery increases the patient's survival. Mammography has recently been recommended as diagnosis technique. Mammography, is expensive and exposure the person to radioactivity. Thermography is a less invasive and affordable technique that is becoming increasingly popular. Considering this, a recent deep learning-based breast cancer diagnosis approach is executed by thermography images. Initially, thermography images are chosen from online sources. The collected thermography images are being preprocessed by Contrast Limited Adaptive Histogram Equalization (CLAHE) and contrasting enhancement methods to improve the quality and brightness of the images. Then, the optimal binary thresholding is done to segment the preprocessed images, where optimized the thresholding value using developed Rock Hyraxes Dandelion Algorithm Optimization (RHDAO). A newly implemented deep learning structure StackVRDNet is used for further processing breast cancer diagnosing using thermography images. The segmented images are fed to the StackVRDNet framework, where the Visual Geometry Group (VGG16), Resnet, and DenseNet are employed for constructing this model. The relevant features are extracted usingVGG16, Resnet, and DenseNet, and then obtain stacked weighted feature pool from the extracted features, where the weight optimization is done with the help of RHDAO. The final classification is performed using StackVRDNet, and the diagnosis results are obtained at the final layer of VGG16, Resnet, and DenseNet. A higher scoring method is rated for ensuring final diagnosis results. Here, the parameters present within the VGG16, Resnet, and DenseNet are optimized via the RHDAO to improve the diagnosis results. The simulation outcomes of the developed model achieve 97.05% and 86.86% in terms of accuracy and precision, respectively. The effectiveness of the designed methd is being analyzed via the conventional breast cancer diagnosis models in terms of various performance measures.
Collapse
Affiliation(s)
- Ahmad Y A Bani Ahmad
- Department of Accounting and Finance, Faculty of Business, Middle East University, Amman, 11831, Jordan
| | - Jafar A Alzubi
- Faculty of Engineering, Al-Balqa Applied University, Salt, 19117, Jordan
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM College of Pharmacy, Medicine and health sciences, SRM institute of Science and Technology Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Babu Kondaveeti
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, 412115, Maharashtra, India
| | - J Shreyas
- Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, 560064, Karnataka, India.
| | - Thella Preethi Priyanka
- Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
2
|
Tiwari A, Ghose A, Hasanova M, Faria SS, Mohapatra S, Adeleke S, Boussios S. The current landscape of artificial intelligence in computational histopathology for cancer diagnosis. Discov Oncol 2025; 16:438. [PMID: 40167870 PMCID: PMC11961855 DOI: 10.1007/s12672-025-02212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Artificial intelligence (AI) marks a frontier in histopathologic analysis shift towards the clinic, becoming a mainstream choice to interpret histological images. Surveying studies assessing AI applications in histopathology from 2013 to 2024, we review key methods (including supervised, unsupervised, weakly supervised and transfer learning) in deep learning-based pattern recognition in computational histopathology for diagnostic and prognostic purposes. Deep learning methods also showed utility in identifying a wide range of genetic mutations and standard pathology biomarkers from routine histology. This survey of 41 primary studies also encompasses key regions of AI applicability in histopathology in a multi-cancer review while marking prospects to introduce AI into the clinical setting with key examples including Swarm Learning and Data Fusion.
Collapse
Affiliation(s)
- Aaditya Tiwari
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cancer Institute, Cancer Research UK City of London Centre, Queen Mary University of London, London, UK
- Department of Oncology, Princess Alexandra Hospital NHS Trust, Harlow, UK
| | - Aruni Ghose
- Barts Cancer Institute, Cancer Research UK City of London Centre, Queen Mary University of London, London, UK.
- Department of Oncology, Princess Alexandra Hospital NHS Trust, Harlow, UK.
- Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, UK.
- Digital Health Network, European Cancer Organisation, Brussels, Belgium.
- OncoFlowTM, London, UK.
- United Kingdom and Ireland Global Cancer Network, Manchester, UK.
- Oncology Council, Royal Society of Medicine, London, UK.
| | - Maryam Hasanova
- OncoFlowTM, London, UK
- Division of Biosciences, University College London, London, UK
| | - Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Srishti Mohapatra
- General Internal Medicine Doctorate Programme, University of Hertfordshire, Hatfield, UK
- The Misdiagnosis Association and Research Institute, California, USA
| | - Sola Adeleke
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Guy's Cancer Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, UK
- Kent and Medway Medical School, University of Kent, Canterbury, UK
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury, UK
- Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- AELIA Organization, 9Th Km Thessaloniki-Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
3
|
Zhang W, Huang H, Wang L, Lehmann BD, Chen SX. An Integrative Multi-Omics Random Forest Framework for Robust Biomarker Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641533. [PMID: 40093058 PMCID: PMC11908250 DOI: 10.1101/2025.03.05.641533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
High-throughput technologies now produce a wide array of omics data, from genomic and transcriptomic profiles to epigenomic and proteomic measurements. Integrating these diverse data types can yield deeper insights into the biological mechanisms driving complex traits and diseases. Yet, extracting key shared biomarkers from multiple data layers remains a major challenge. We present a multivariate random forest (MRF)-based framework enhanced by a novel inverse minimal depth (IMD) metric for integrative variable selection. By assigning response variables to tree nodes and employing IMD to rank predictors, our approach efficiently identifies essential features across different omics types, even when confronted with high-dimensionality and noise. Through extensive simulations and analyses of multi-omics datasets from The Cancer Genome Atlas, we demonstrate that our method outperforms established integrative techniques in uncovering biologically meaningful biomarkers and pathways. Our findings show that selected biomarkers not only correlate with known regulatory and signaling networks but can also stratify patient subgroups with distinct clinical outcomes. The method's scalable, interpretable, and user-friendly implementation ensures broad applicability to a range of research questions. This MRF-based framework advances robust biomarker discovery and integrative multi-omics analyses, accelerating the translation of complex molecular data into tangible biological and clinical insights.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hanchen Huang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Brian D. Lehmann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven X. Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Wang M, Zhu X, Zhou G, Li K, Wu Q, Fan W. Anomaly detection in multidimensional time series for water injection pump operations based on LSTMA-AE and mechanism constraints. Sci Rep 2025; 15:2020. [PMID: 39814809 PMCID: PMC11736002 DOI: 10.1038/s41598-025-85436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Addressing the issues of inadequate information exchange among subsequences in the operational time series of water injection pumps, leading to low accuracy and high false alarm rates in anomaly detection, this paper proposes a multidimensional time series anomaly detection method for water injection pump operations, leveraging Long Short-Term Memory Autoencoder augmented with Attention Mechanism (LSTMA-AE) and mechanistic constraints. The LSTMA-AE framework encompasses three primary modules: a Time Feature Extraction Module (Encoder), an Attention Layer, and a Data Reconstruction Module (Decoder). The Encoder captures temporal dependencies and features within the input sequences, mapping the input data into a higher-dimensional space. The Attention Layer, embedded within the hidden state computation, dynamically adjusts the contribution of each timestep's input information to the hidden state, thereby enhancing the extraction of vital information while ignoring irrelevant data. The Decoder is responsible for reconstructing the latent representations generated by the Encoder back into the original time series data. By utilizing LSTMA-AE, we aim to improve the accuracy of anomaly detection, while simultaneously employing mechanistic constraints to mitigate false alarm rates. Experimental results demonstrate that this approach significantly outperforms methods such as polynomial interpolation, random forest, and LSTM-AE in terms of anomaly detection accuracy on field datasets from oilfields, accompanied by a notably lower false alarm rate.
Collapse
Affiliation(s)
- Mei Wang
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China
| | - Xinyuan Zhu
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China.
| | - Guangyue Zhou
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China
| | - Kewen Li
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China.
| | - Qingshan Wu
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China
| | - Wankai Fan
- College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China
| |
Collapse
|
5
|
Mahavar A, Patel A, Patel A. A Comprehensive Review on Deep Learning Techniques in Alzheimer's Disease Diagnosis. Curr Top Med Chem 2025; 25:335-349. [PMID: 38847164 DOI: 10.2174/0115680266310776240524061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2025]
Abstract
Alzheimer's Disease (AD) is a serious neurological illness that causes memory loss gradually by destroying brain cells. This deadly brain illness primarily strikes the elderly, impairing their cognitive and bodily abilities until brain shrinkage occurs. Modern techniques are required for an accurate diagnosis of AD. Machine learning has gained attraction in the medical field as a means of determining a person's risk of developing AD in its early stages. One of the most advanced soft computing neural network-based Deep Learning (DL) methodologies has garnered significant interest among researchers in automating early-stage AD diagnosis. Hence, a comprehensive review is necessary to gain insights into DL techniques for the advancement of more effective methods for diagnosing AD. This review explores multiple biomarkers associated with Alzheimer's Disease (AD) and various DL methodologies, including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), The k-nearest-neighbor (k-NN), Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN), which have been employed for automating the early diagnosis of AD. Moreover, the unique contributions of this review include the classification of ATN biomarkers for Alzheimer's Disease (AD), systemic description of diverse DL algorithms for early AD assessment, along with a discussion of widely utilized online datasets such as ADNI, OASIS, etc. Additionally, this review provides perspectives on future trends derived from critical evaluation of each variant of DL techniques across different modalities, dataset sources, AUC values, and accuracies.
Collapse
Affiliation(s)
- Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, 388421, Anand, Gujarat, India
| | - Atul Patel
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, 388421, Anand, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT- Campus, Changa, 388421, Anand, Gujarat, India
| |
Collapse
|
6
|
Kumar S, Chatterjee S. HistoSPACE: Histology-inspired spatial transcriptome prediction and characterization engine. Methods 2024; 232:107-114. [PMID: 39521362 DOI: 10.1016/j.ymeth.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics (ST) enables the visualization of gene expression within the context of tissue morphology. This emerging discipline has the potential to serve as a foundation for developing tools to design precision medicines. However, due to the higher costs and expertise required for such experiments, its translation into a regular clinical practice might be challenging. Despite implementing modern deep learning to enhance information obtained from histological images using AI, efforts have been constrained by limitations in the diversity of information. In this paper, we developed a model, HistoSPACE, that explores the diversity of histological images available with ST data to extract molecular insights from tissue images. Further, our approach allows us to link the predicted expression with disease pathology. Our proposed study built an image encoder derived from a universal image autoencoder. This image encoder was connected to convolution blocks to build the final model. It was further fine-tuned with the help of ST-Data. The number of model parameters is small and requires lesser system memory and relatively lesser training time. Making it lightweight in comparison to traditional histological models. Our developed model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation. Finally, its robustness was validated through an independent dataset, showing similar prediction with predefined disease pathology. Our code is available at https://github.com/samrat-lab/HistoSPACE.
Collapse
Affiliation(s)
- Shivam Kumar
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
7
|
Alqahtani H, Aldehim G, Alruwais N, Assiri M, Alneil AA, Mohamed A. Leveraging electrocardiography signals for deep learning-driven cardiovascular disease classification model. Heliyon 2024; 10:e35621. [PMID: 39224246 PMCID: PMC11367027 DOI: 10.1016/j.heliyon.2024.e35621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Electrocardiography (ECG) is the most non-invasive diagnostic tool for cardiovascular diseases (CVDs). Automatic analysis of ECG signals assists in accurately and rapidly detecting life-threatening arrhythmias like atrioventricular blockage, atrial fibrillation, ventricular tachycardia, etc. The ECG recognition models need to utilize algorithms to detect various kinds of waveforms in the ECG and identify complicated relationships over time. However, the high variability of wave morphology among patients and noise are challenging issues. Physicians frequently utilize automated ECG abnormality recognition models to classify long-term ECG signals. Recently, deep learning (DL) models can be used to achieve enhanced ECG recognition accuracy in the healthcare decision making system. In this aspect, this study introduces an automated DL enabled ECG signal recognition (ADL-ECGSR) technique for CVD detection and classification. The ADL-ECGSR technique employs three most important subprocesses: pre-processed, feature extraction, parameter tuning, and classification. Besides, the ADL-ECGSR technique involves the design of a bidirectional long short-term memory (BiLSTM) based feature extractor, and the Adamax optimizer is utilized to optimize the trained method of the BiLSTM model. Finally, the dragonfly algorithm (DFA) with a stacked sparse autoencoder (SSAE) module is applied to recognize and classify EEG signals. An extensive range of simulations occur on benchmark PTB-XL datasets to validate the enhanced ECG recognition efficiency. The comparative analysis of the ADL-ECGSR methodology showed a remarkable performance of 91.24 % on the existing methods.
Collapse
Affiliation(s)
- Hamed Alqahtani
- Department of Information Systems, College of Computer Science, Center of Artificial Intelligence, Unit of Cybersecurity, King Khalid University, Abha, Saudi Arabia
| | - Ghadah Aldehim
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Nuha Alruwais
- Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Saudi Arabia, P.O.Box 22459, Riyadh, 11495, Saudi Arabia
| | - Mohammed Assiri
- Department of Computer Science, College of Sciences and Humanities- Aflaj, Prince Sattam bin Abdulaziz University, Aflaj, 16273, Saudi Arabia
| | - Amani A. Alneil
- Department of Computer Science, College of Sciences and Humanities- Aflaj, Prince Sattam bin Abdulaziz University, Aflaj, 16273, Saudi Arabia
| | - Abdullah Mohamed
- Research Centre, Future University in Egypt, New Cairo, 11845, Egypt
| |
Collapse
|
8
|
Cai C, Zhou Y, Jiao Y, Li L, Xu J. Prognostic Analysis Combining Histopathological Features and Clinical Information to Predict Colorectal Cancer Survival from Whole-Slide Images. Dig Dis Sci 2024; 69:2985-2995. [PMID: 38837111 DOI: 10.1007/s10620-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor within the digestive tract with both a high incidence rate and mortality. Early detection and intervention could improve patient clinical outcomes and survival. METHODS This study computationally investigates a set of prognostic tissue and cell features from diagnostic tissue slides. With the combination of clinical prognostic variables, the pathological image features could predict the prognosis in CRC patients. Our CRC prognosis prediction pipeline sequentially consisted of three modules: (1) A MultiTissue Net to delineate outlines of different tissue types within the WSI of CRC for further ROI selection by pathologists. (2) Development of three-level quantitative image metrics related to tissue compositions, cell shape, and hidden features from a deep network. (3) Fusion of multi-level features to build a prognostic CRC model for predicting survival for CRC. RESULTS Experimental results suggest that each group of features has a particular relationship with the prognosis of patients in the independent test set. In the fusion features combination experiment, the accuracy rate of predicting patients' prognosis and survival status is 81.52%, and the AUC value is 0.77. CONCLUSION This paper constructs a model that can predict the postoperative survival of patients by using image features and clinical information. Some features were found to be associated with the prognosis and survival of patients.
Collapse
Affiliation(s)
- Chengfei Cai
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- College of Information Engineering, Taizhou University, Taizhou, 225300, China.
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yangshu Zhou
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Yiping Jiao
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
9
|
Tang Q, Cai Y. Deep radial basis function networks with subcategorization for mitosis detection in breast histopathology images. Med Image Anal 2024; 95:103204. [PMID: 38761438 DOI: 10.1016/j.media.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Due to the intra-class diversity of mitotic cells and the morphological overlap with similarly looking imposters, automatic mitosis detection in histopathology slides is still a challenging task. In this paper, we propose a novel mitosis detection model in a weakly supervised way, which consists of a candidate proposal network and a verification network. The candidate proposal network based on patch learning aims to separate both mitotic cells and their mimics from the background as candidate objects, which substantially reduces missed detections in the screening process of candidates. These obtained candidate results are then fed into the verification network for mitosis refinement. The verification network adopts an RBF-based subcategorization scheme to deal with the problems of high intra-class variability of mitosis and the mimics with similar appearance. We utilize the RBF centers to define subcategories containing mitotic cells with similar properties and capture representative RBF center locations through joint training of classification and clustering. Due to the lower intra-class variation within a subcategory, the localized feature space at subcategory level can better characterize a certain type of mitotic figures and can provide a better similarity measurement for distinguishing mitotic cells from nonmitotic cells. Our experiments manifest that this subcategorization scheme helps improve the performance of mitosis detection and achieves state-of-the-art results on the publicly available mitosis datasets using only weak labels.
Collapse
Affiliation(s)
- Qiling Tang
- School of Biomedical Engineering, South Central Minzu University, Wuhan 430074, PR China.
| | - Yu Cai
- School of Biomedical Engineering, South Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Wang X, Yuan W. Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification. iScience 2024; 27:109826. [PMID: 38832012 PMCID: PMC11145340 DOI: 10.1016/j.isci.2024.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
New breast cancer cases have surpassed lung cancer, becoming the world's most prevalent cancer. Despite advancing medical image analysis, deep learning's lack of interpretability limits its adoption among pathologists. Hence, a nuclei-level prior knowledge constrained multiple instance learning (MIL) (NPKC-MIL) for breast whole slide image (WSI) classification is proposed. NPKC-MIL primarily involves the following steps: Initially, employing the transfer learning to extract patch-level features and aggregate them into slide-level features through attention pooling. Subsequently, abstract the extracted nuclei as nodes, establish nucleus topology using the K-NN (K-Nearest Neighbors, K-NN) algorithm, and create handcrafted features for nodes. Finally, combine patch-level deep learning features with nuclei-level handcrafted features to fine-tune classification results generated by slide-level deep learning features. The experimental results demonstrate that NPKC-MIL outperforms current comparable deep learning models. NPKC-MIL expands the analytical dimension of WSI classification tasks and integrates prior knowledge into deep learning models to improve interpretability.
Collapse
Affiliation(s)
- Xunping Wang
- School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
| | - Wei Yuan
- Co-Creation Center for Disaster Resilience, International Research Institute of Disaster Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
11
|
Vijayan S, Panneerselvam R, Roshini TV. Hybrid machine learning-based breast cancer segmentation framework using ultrasound images with optimal weighted features. Cell Biochem Funct 2024; 42:e4054. [PMID: 38783623 DOI: 10.1002/cbf.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
One of the most dangerous conditions in clinical practice is breast cancer because it affects the entire life of women in recent days. Nevertheless, the existing techniques for diagnosing breast cancer are complicated, expensive, and inaccurate. Many trans-disciplinary and computerized systems are recently created to prevent human errors in both quantification and diagnosis. Ultrasonography is a crucial imaging technique for cancer detection. Therefore, it is essential to develop a system that enables the healthcare sector to rapidly and effectively detect breast cancer. Due to its benefits in predicting crucial feature identification from complicated breast cancer datasets, machine learning is widely employed in the categorization of breast cancer patterns. The performance of machine learning models is limited by the absence of a successful feature enhancement strategy. There are a few issues that need to be handled with the traditional breast cancer detection method. Thus, a novel breast cancer detection model is designed based on machine learning approaches and employing ultrasonic images. At first, ultrasound images utilized for the analysis is acquired from the benchmark resources and offered as the input to preprocessing phase. The images are preprocessed by utilizing a filtering and contrast enhancement approach and attained the preprocessed image. Then, the preprocessed images are subjected to the segmentation phase. In this phase, segmentation is performed by employing Fuzzy C-Means, active counter, and watershed algorithm and also attained the segmented images. Later, the segmented images are provided to the pixel selection phase. Here, the pixels are selected by the developed hybrid model Conglomerated Aphid with Galactic Swarm Optimization (CAGSO) to attain the final segmented pixels. Then, the selected segmented pixel is fed in to feature extraction phase for attaining the shape features and the textual features. Further, the acquired features are offered to the optimal weighted feature selection phase, and also their weights are tuned tune by the developed CAGSO. Finally, the optimal weighted features are offered to the breast cancer detection phase. Finally, the developed breast cancer detection model secured an enhanced performance rate than the classical approaches throughout the experimental analysis.
Collapse
Affiliation(s)
- Sudharsana Vijayan
- Department of Electronics and Communication Engineering, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Radhika Panneerselvam
- Department of Electronics and Communication Engineering, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thundi Valappil Roshini
- Department of Electronics and Communication Engineering, Vimal Jyothi Engineering College, Chemperi, Kannur, Kerala, India
| |
Collapse
|
12
|
Alahmari SS, Goldgof D, Hall LO, Mouton PR. A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7458-7477. [PMID: 36327184 DOI: 10.1109/tnnls.2022.3213407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation.
Collapse
|
13
|
Zhang W, Yang Y, Wu QMJ, Wang T, Zhang H. Multimodal Moore-Penrose Inverse-Based Recomputation Framework for Big Data Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:6570-6582. [PMID: 36279331 DOI: 10.1109/tnnls.2022.3211149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most multilayer Moore-Penrose inverse (MPI)-based neural networks, such as deep random vector functional link (RVFL), are structured with two separate stages: unsupervised feature encoding and supervised pattern classification. Once the unsupervised learning is finished, the latent encoding is fixed without supervised fine-tuning. However, in complex tasks such as handling the ImageNet dataset, there are often many more clues that can be directly encoded, while unsupervised learning, by definition, cannot know exactly what is useful for a certain task. There is a need to retrain the latent space representations in the supervised pattern classification stage to learn some clues that unsupervised learning has not yet been learned. In particular, the residual error in the output layer is pulled back to each hidden layer, and the parameters of the hidden layers are recalculated with MPI for more robust representations. In this article, a recomputation-based multilayer network using Moore-Penrose inverse (RML-MP) is developed. A sparse RML-MP (SRML-MP) model to boost the performance of RML-MP is then proposed. The experimental results with varying training samples (from 3k to 1.8 million) show that the proposed models provide higher Top-1 testing accuracy than most representation learning algorithms. For reproducibility, the source codes are available at https://github.com/W1AE/Retraining.
Collapse
|
14
|
Yao J, Han L, Guo G, Zheng Z, Cong R, Huang X, Ding J, Yang K, Zhang D, Han J. Position-based anchor optimization for point supervised dense nuclei detection. Neural Netw 2024; 171:159-170. [PMID: 38091760 DOI: 10.1016/j.neunet.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/29/2024]
Abstract
Nuclei detection is one of the most fundamental and challenging problems in histopathological image analysis, which can localize nuclei to provide effective computer-aided cancer diagnosis, treatment decision, and prognosis. The fully-supervised nuclei detector requires a large number of nuclei annotations on high-resolution digital images, which is time-consuming and needs human annotators with professional knowledge. In recent years, weakly-supervised learning has attracted significant attention in reducing the labeling burden. However, detecting dense nuclei of complex crowded distribution and diverse appearances remains a challenge. To solve this problem, we propose a novel point-supervised dense nuclei detection framework that introduces position-based anchor optimization to complete morphology-based pseudo-label supervision. Specifically, we first generate cellular-level pseudo labels (CPL) for the detection head via a morphology-based mechanism, which can help to build a baseline point-supervised detection network. Then, considering the crowded distribution of the dense nuclei, we propose a mechanism called Position-based Anchor-quality Estimation (PAE), which utilizes the positional deviation between an anchor and its corresponding point label to suppress low-quality detections far from each nucleus. Finally, to better handle the diverse appearances of nuclei, an Adaptive Anchor Selector (AAS) operation is proposed to automatically select positive and negative anchors according to morphological and positional statistical characteristics of nuclei. We conduct comprehensive experiments on two widely used benchmarks, MO and Lizard, using ResNet50 and PVTv2 as backbones. The results demonstrate that the proposed approach has superior capacity compared with other state-of-the-art methods. In particularly, in dense nuclei scenarios, our method can achieve 95.1% performance of the fully-supervised approach. The code is available at https://github.com/NucleiDet/DenseNucleiDet.
Collapse
Affiliation(s)
- Jieru Yao
- Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Longfei Han
- School of Computer Science, Beijing Technology and Business University, Beijing, 100048, China; Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China
| | - Guangyu Guo
- Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Runmin Cong
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiankai Huang
- Beijing Technology and Business University, Beijing, 100048, China
| | - Jin Ding
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kaihui Yang
- School of software, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Dingwen Zhang
- Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China; Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Junwei Han
- Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China
| |
Collapse
|
15
|
Sierra-Jerez F, Martinez F. A non-aligned translation with a neoplastic classifier regularization to include vascular NBI patterns in standard colonoscopies. Comput Biol Med 2024; 170:108008. [PMID: 38277922 DOI: 10.1016/j.compbiomed.2024.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Polyp vascular patterns are key to categorizing colorectal cancer malignancy. These patterns are typically observed in situ from specialized narrow-band images (NBI). Nonetheless, such vascular characterization is lost from standard colonoscopies (the primary attention mechanism). Besides, even for NBI observations, the categorization remains biased for expert observations, reporting errors in classification from 59.5% to 84.2%. This work introduces an end-to-end computational strategy to enhance in situ standard colonoscopy observations, including vascular patterns typically observed from NBI mechanisms. These retrieved synthetic images are achieved by adjusting a deep representation under a non-aligned translation task from optical colonoscopy (OC) to NBI. The introduced scheme includes an architecture to discriminate enhanced neoplastic patterns achieving a remarkable separation into the embedding representation. The proposed approach was validated in a public dataset with a total of 76 sequences, including standard optical sequences and the respective NBI observations. The enhanced optical sequences were automatically classified among adenomas and hyperplastic samples achieving an F1-score of 0.86%. To measure the sensibility capability of the proposed approach, serrated samples were projected to the trained architecture. In this experiment, statistical differences from three classes with a ρ-value <0.05 were reported, following a Mann-Whitney U test. This work showed remarkable polyp discrimination results in enhancing OC sequences regarding typical NBI patterns. This method also learns polyp class distributions under the unpaired criteria (close to real practice), with the capability to separate serrated samples from adenomas and hyperplastic ones.
Collapse
Affiliation(s)
- Franklin Sierra-Jerez
- Biomedical Imaging, Vision and Learning Laboratory (BIVL(2)ab), Universidad Industrial de Santander (UIS), Colombia
| | - Fabio Martinez
- Biomedical Imaging, Vision and Learning Laboratory (BIVL(2)ab), Universidad Industrial de Santander (UIS), Colombia.
| |
Collapse
|
16
|
Zheng TL, Sha JC, Deng Q, Geng S, Xiao SY, Yang WJ, Byrne CD, Targher G, Li YY, Wang XX, Wu D, Zheng MH. Object detection: A novel AI technology for the diagnosis of hepatocyte ballooning. Liver Int 2024; 44:330-343. [PMID: 38014574 DOI: 10.1111/liv.15799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions worldwide and is the most frequent cause of chronic liver disease in developed countries. Within the spectrum of liver disease in MAFLD, steatohepatitis is a progressive form of liver disease and hepatocyte ballooning (HB) is a cardinal pathological feature of steatohepatitis. The accurate and reproducible diagnosis of HB is therefore critical for the early detection and treatment of steatohepatitis. Currently, a diagnosis of HB relies on pathological examination by expert pathologists, which may be a time-consuming and subjective process. Hence, there has been interest in developing automated methods for diagnosing HB. This narrative review briefly discusses the development of artificial intelligence (AI) technology for diagnosing fatty liver disease pathology over the last 30 years and provides an overview of the current research status of AI algorithms for the identification of HB, including published articles on traditional machine learning algorithms and deep learning algorithms. This narrative review also provides a summary of object detection algorithms, including the principles, historical developments, and applications in the medical image analysis. The potential benefits of object detection algorithms for HB diagnosis (specifically those combined with a transformer architecture) are discussed, along with the future directions of object detection algorithms in HB diagnosis and the potential applications of generative AI on transformer architecture in this field. In conclusion, object detection algorithms have huge potential for the identification of HB and could make the diagnosis of MAFLD more accurate and efficient in the near future.
Collapse
Affiliation(s)
- Tian-Lei Zheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Cheng Sha
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Deng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wen-Jun Yang
- Department of Pathology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCSS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Yang-Yang Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Xue Wang
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Wu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
17
|
Liu Z, Cai Y, Tang Q. Nuclei detection in breast histopathology images with iterative correction. Med Biol Eng Comput 2024; 62:465-478. [PMID: 37914958 DOI: 10.1007/s11517-023-02947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
This work presents a deep network architecture to improve nuclei detection performance and achieve the high localization accuracy of nuclei in breast cancer histopathology images. The proposed model consists of two parts, generating nuclear candidate module and refining nuclear localization module. We first design a novel patch learning method to obtain high-quality nuclear candidates, where in addition to categories, location representations are also added to the patch information to implement the multi-task learning process of nuclear classification and localization; meanwhile, the deep supervision mechanism is introduced to obtain the coherent contributions from each scale layer. In order to refine nuclear localization, we propose an iterative correction strategy to make the prediction progressively closer to the ground truth, which significantly improves the accuracy of nuclear localization and facilitates neighbor size selection in the nonmaximum suppression step. Experimental results demonstrate the superior performance of our method for nuclei detection on the H&E stained histopathological image dataset as compared to previous state-of-the-art methods, especially in multiple cluttered nuclei detection, can achieve better results than existing techniques.
Collapse
Affiliation(s)
- Ziyi Liu
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, People's Republic of China
- Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264001, People's Republic of China
| | - Yu Cai
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Qiling Tang
- School of Biomedical Engineering, South Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
18
|
Priya C V L, V G B, B R V, Ramachandran S. Deep learning approaches for breast cancer detection in histopathology images: A review. Cancer Biomark 2024; 40:1-25. [PMID: 38517775 PMCID: PMC11191493 DOI: 10.3233/cbm-230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Breast cancer is one of the leading causes of death in women worldwide. Histopathology analysis of breast tissue is an essential tool for diagnosing and staging breast cancer. In recent years, there has been a significant increase in research exploring the use of deep-learning approaches for breast cancer detection from histopathology images. OBJECTIVE To provide an overview of the current state-of-the-art technologies in automated breast cancer detection in histopathology images using deep learning techniques. METHODS This review focuses on the use of deep learning algorithms for the detection and classification of breast cancer from histopathology images. We provide an overview of publicly available histopathology image datasets for breast cancer detection. We also highlight the strengths and weaknesses of these architectures and their performance on different histopathology image datasets. Finally, we discuss the challenges associated with using deep learning techniques for breast cancer detection, including the need for large and diverse datasets and the interpretability of deep learning models. RESULTS Deep learning techniques have shown great promise in accurately detecting and classifying breast cancer from histopathology images. Although the accuracy levels vary depending on the specific data set, image pre-processing techniques, and deep learning architecture used, these results highlight the potential of deep learning algorithms in improving the accuracy and efficiency of breast cancer detection from histopathology images. CONCLUSION This review has presented a thorough account of the current state-of-the-art techniques for detecting breast cancer using histopathology images. The integration of machine learning and deep learning algorithms has demonstrated promising results in accurately identifying breast cancer from histopathology images. The insights gathered from this review can act as a valuable reference for researchers in this field who are developing diagnostic strategies using histopathology images. Overall, the objective of this review is to spark interest among scholars in this complex field and acquaint them with cutting-edge technologies in breast cancer detection using histopathology images.
Collapse
Affiliation(s)
- Lakshmi Priya C V
- Department of Electronics and Communication Engineering, College of Engineering Trivandrum, Kerala, India
| | - Biju V G
- Department of Electronics and Communication Engineering, College of Engineering Munnar, Kerala, India
| | - Vinod B R
- Department of Electronics and Communication Engineering, College of Engineering Trivandrum, Kerala, India
| | - Sivakumar Ramachandran
- Department of Electronics and Communication Engineering, Government Engineering College Wayanad, Kerala, India
| |
Collapse
|
19
|
Liu H, Shi Y, Li A, Wang M. Multi-modal fusion network with intra- and inter-modality attention for prognosis prediction in breast cancer. Comput Biol Med 2024; 168:107796. [PMID: 38064843 DOI: 10.1016/j.compbiomed.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Accurate breast cancer prognosis prediction can help clinicians to develop appropriate treatment plans and improve life quality for patients. Recent prognostic prediction studies suggest that fusing multi-modal data, e.g., genomic data and pathological images, plays a crucial role in improving predictive performance. Despite promising results of existing approaches, there remain challenges in effective multi-modal fusion. First, albeit a powerful fusion technique, Kronecker product produces high-dimensional quadratic expansion of features that may result in high computational cost and overfitting risk, thereby limiting its performance and applicability in cancer prognosis prediction. Second, most existing methods put more attention on learning cross-modality relations between different modalities, ignoring modality-specific relations that are complementary to cross-modality relations and beneficial for cancer prognosis prediction. To address these challenges, in this study we propose a novel attention-based multi-modal network to accurately predict breast cancer prognosis, which efficiently models both modality-specific and cross-modality relations without bringing in high-dimensional features. Specifically, two intra-modality self-attentional modules and an inter-modality cross-attentional module, accompanied by latent space transformation of channel affinity matrix, are developed to successfully capture modality-specific and cross-modality relations for efficient integration of genomic data and pathological images, respectively. Moreover, we design an adaptive fusion block to take full advantage of both modality-specific and cross-modality relations. Comprehensive experiment demonstrates that our method can effectively boost prognosis prediction performance of breast cancer and compare favorably with the state-of-the-art methods.
Collapse
Affiliation(s)
- Honglei Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Yi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China.
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
20
|
Tu C, Du D, Zeng T, Zhang Y. Deep Multi-Dictionary Learning for Survival Prediction With Multi-Zoom Histopathological Whole Slide Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:14-25. [PMID: 37788195 DOI: 10.1109/tcbb.2023.3321593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.
Collapse
|
21
|
Golfe A, Del Amor R, Colomer A, Sales MA, Terradez L, Naranjo V. ProGleason-GAN: Conditional progressive growing GAN for prostatic cancer Gleason grade patch synthesis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107695. [PMID: 37393742 DOI: 10.1016/j.cmpb.2023.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Prostate cancer is one of the most common diseases affecting men. The main diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial intelligence applications were developed to automatize it. The training process is often confronted with insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim of this work is to develop a generative deep learning model capable of synthesising patches of any selected Gleason grade to perform data augmentation on unbalanced data and test the improvement of classification models. METHODOLOGY The methodology proposed in this work consists of a conditional Progressive Growing GAN (ProGleason-GAN) capable of synthesising prostate histopathological tissue patches by selecting the desired Gleason Grade cancer pattern in the synthetic sample. The conditional Gleason Grade information is introduced into the model through the embedding layers, so there is no need to add a term to the Wasserstein loss function. We used minibatch standard deviation and pixel normalisation to improve the performance and stability of the training process. RESULTS The reality assessment of the synthetic samples was performed with the Frechet Inception Distance (FID). We obtained an FID metric of 88.85 for non-cancerous patterns, 81.86 for GG3, 49.32 for GG4 and 108.69 for GG5 after post-processing stain normalisation. In addition, a group of expert pathologists was selected to perform an external validation of the proposed framework. Finally, the application of our proposed framework improved the classification results in SICAPv2 dataset, proving its effectiveness as a data augmentation method. CONCLUSIONS ProGleason-GAN approach combined with a stain normalisation post-processing provides state-of-the-art results regarding Frechet's Inception Distance. This model can synthesise samples of non-cancerous patterns, GG3, GG4 or GG5. The inclusion of conditional information about the Gleason grade during the training process allows the model to select the cancerous pattern in a synthetic sample. The proposed framework can be used as a data augmentation method.
Collapse
Affiliation(s)
- Alejandro Golfe
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain.
| | - Rocío Del Amor
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain
| | - Adrián Colomer
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain; ValgrAI - Valencian Graduate School and Research Network for Artificial Intelligence, Spain
| | - María A Sales
- Anatomical Pathology Service, University Clinical Hospital of Valencia, Spain
| | - Liria Terradez
- Anatomical Pathology Service, University Clinical Hospital of Valencia, Spain
| | - Valery Naranjo
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politècnica de València, 46022, Spain
| |
Collapse
|
22
|
Zheng Y, Huang D, Hao X, Wei J, Lu H, Liu Y. UniVisNet: A Unified Visualization and Classification Network for accurate grading of gliomas from MRI. Comput Biol Med 2023; 165:107332. [PMID: 37598632 DOI: 10.1016/j.compbiomed.2023.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Accurate grading of brain tumors plays a crucial role in the diagnosis and treatment of glioma. While convolutional neural networks (CNNs) have shown promising performance in this task, their clinical applicability is still constrained by the interpretability and robustness of the models. In the conventional framework, the classification model is trained first, and then visual explanations are generated. However, this approach often leads to models that prioritize classification performance or complexity, making it difficult to achieve a precise visual explanation. Motivated by these challenges, we propose the Unified Visualization and Classification Network (UniVisNet), a novel framework that aims to improve both the classification performance and the generation of high-resolution visual explanations. UniVisNet addresses attention misalignment by introducing a subregion-based attention mechanism, which replaces traditional down-sampling operations. Additionally, multiscale feature maps are fused to achieve higher resolution, enabling the generation of detailed visual explanations. To streamline the process, we introduce the Unified Visualization and Classification head (UniVisHead), which directly generates visual explanations without the need for additional separation steps. Through extensive experiments, our proposed UniVisNet consistently outperforms strong baseline classification models and prevalent visualization methods. Notably, UniVisNet achieves remarkable results on the glioma grading task, including an AUC of 94.7%, an accuracy of 89.3%, a sensitivity of 90.4%, and a specificity of 85.3%. Moreover, UniVisNet provides visually interpretable explanations that surpass existing approaches. In conclusion, UniVisNet innovatively generates visual explanations in brain tumor grading by simultaneously improving the classification performance and generating high-resolution visual explanations. This work contributes to the clinical application of deep learning, empowering clinicians with comprehensive insights into the spatial heterogeneity of glioma.
Collapse
Affiliation(s)
- Yao Zheng
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Dong Huang
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Xiaoshuo Hao
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Jie Wei
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Hongbing Lu
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.
| | - Yang Liu
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.
| |
Collapse
|
23
|
Al-Thelaya K, Gilal NU, Alzubaidi M, Majeed F, Agus M, Schneider J, Househ M. Applications of discriminative and deep learning feature extraction methods for whole slide image analysis: A survey. J Pathol Inform 2023; 14:100335. [PMID: 37928897 PMCID: PMC10622844 DOI: 10.1016/j.jpi.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 11/07/2023] Open
Abstract
Digital pathology technologies, including whole slide imaging (WSI), have significantly improved modern clinical practices by facilitating storing, viewing, processing, and sharing digital scans of tissue glass slides. Researchers have proposed various artificial intelligence (AI) solutions for digital pathology applications, such as automated image analysis, to extract diagnostic information from WSI for improving pathology productivity, accuracy, and reproducibility. Feature extraction methods play a crucial role in transforming raw image data into meaningful representations for analysis, facilitating the characterization of tissue structures, cellular properties, and pathological patterns. These features have diverse applications in several digital pathology applications, such as cancer prognosis and diagnosis. Deep learning-based feature extraction methods have emerged as a promising approach to accurately represent WSI contents and have demonstrated superior performance in histology-related tasks. In this survey, we provide a comprehensive overview of feature extraction methods, including both manual and deep learning-based techniques, for the analysis of WSIs. We review relevant literature, analyze the discriminative and geometric features of WSIs (i.e., features suited to support the diagnostic process and extracted by "engineered" methods as opposed to AI), and explore predictive modeling techniques using AI and deep learning. This survey examines the advances, challenges, and opportunities in this rapidly evolving field, emphasizing the potential for accurate diagnosis, prognosis, and decision-making in digital pathology.
Collapse
Affiliation(s)
- Khaled Al-Thelaya
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Nauman Ullah Gilal
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mahmood Alzubaidi
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Fahad Majeed
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Marco Agus
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Jens Schneider
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mowafa Househ
- Department of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
24
|
Sivamurugan J, Sureshkumar G. Applying dual models on optimized LSTM with U-net segmentation for breast cancer diagnosis using mammogram images. Artif Intell Med 2023; 143:102626. [PMID: 37673584 DOI: 10.1016/j.artmed.2023.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND OF THE STUDY Breast cancer is the most fatal disease that widely affects women. When the cancerous lumps grow from the cells of the breast, it causes breast cancer. Self-analysis and regular medical check-ups help for detecting the disease earlier and enhance the survival rate. Hence, an automated breast cancer detection system in mammograms can assist clinicians in the patient's treatment. In medical techniques, the categorization of breast cancer becomes challenging for investigators and researchers. The advancement in deep learning approaches has established more attention to their advantages to medical imaging issues, especially for breast cancer detection. AIM The research work plans to develop a novel hybrid model for breast cancer diagnosis with the support of optimized deep-learning architecture. METHODS The required images are gathered from the benchmark datasets. These collected datasets are used in three pre-processing approaches like "Median Filtering, Histogram Equalization, and morphological operation", which helps to remove unwanted regions from the images. Then, the pre-processed images are applied to the Optimized U-net-based tumor segmentation phase for obtaining accurate segmented results along with the optimization of certain parameters in U-Net by employing "Adapted-Black Widow Optimization (A-BWO)". Further, the detection is performed in two different ways that is given as model 1 and model 2. In model 1, the segmented tumors are used to extract the significant patterns with the help of the "Gray-Level Co-occurrence Matrix (GLCM) and Local Gradient pattern (LGP)". Further, these extracted patterns are utilized in the "Dual Model accessed Optimized Long Short-Term Memory (DM-OLSTM)" for performing breast cancer detection and the detected score 1 is obtained. In model 2, the same segmented tumors are given into the different variants of CNN, such as "VGG19, Resnet150, and Inception". The extracted deep features from three CNN-based approaches are fused to form a single set of deep features. These fused deep features are inserted into the developed DM-OLSTM for getting the detected score 2 for breast cancer diagnosis. In the final phase of the hybrid model, the score 1 and score 2 obtained from model 1 and model 2 are averaged to get the final detection output. RESULTS The accuracy and F1-score of the offered DM-OLSTM model are achieved at 96 % and 95 %. CONCLUSION Experimental analysis proves that the recommended methodology achieves better performance by analyzing with the benchmark dataset. Hence, the designed model is helpful for detecting breast cancer in real-time applications.
Collapse
Affiliation(s)
- J Sivamurugan
- Department of Computer Science and Engineering, School of Engineering & Technology, Pondicherry University (karaikal Campus), karaikal-609605, Puducherry UT, India..
| | - G Sureshkumar
- Department of Computer Science and Engineering, School of Engineering & Technology, Pondicherry University (karaikal Campus), karaikal-609605, Puducherry UT, India
| |
Collapse
|
25
|
Zhang X, Dong S, Shen Q, Zhou J, Min J. Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition. Front Neuroinform 2023; 17:1205529. [PMID: 37692360 PMCID: PMC10483404 DOI: 10.3389/fninf.2023.1205529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Intelligent recognition of electroencephalogram (EEG) signals can remarkably improve the accuracy of epileptic seizure prediction, which is essential for epileptic diagnosis. Extreme learning machine (ELM) has been applied to EEG signals recognition, however, the artifacts and noises in EEG signals have a serious effect on recognition efficiency. Deep learning is capable of noise resistance, contributing to removing the noise in raw EEG signals. But traditional deep networks suffer from time-consuming training and slow convergence. Methods Therefore, a novel deep learning based ELM (denoted as DELM) motivated by stacking generalization principle is proposed in this paper. Deep extreme learning machine (DELM) is a hierarchical network composed of several independent ELM modules. Augmented EEG knowledge is taken as complementary component, which will then be mapped into next module. This learning process is so simple and fast, meanwhile, it can excavate the implicit knowledge in raw data to a greater extent. Additionally, the proposed method is operated in a single-direction manner, so there is no need to perform parameters fine-tuning, which saves the expense of time. Results Extensive experiments are conducted on the public Bonn EEG dataset. The experimental results demonstrate that compared with the commonly-used seizure prediction methods, the proposed DELM wins the best average accuracies in 13 out of the 22 data and the best average F-measure scores in 10 out of the 22 data. And the running time of DELM is more than two times quickly than deep learning methods. Discussion Therefore, DELM is superior to traditional and some state-of-the-art machine learning methods. The proposed architecture demonstrates its feasibility and superiority in epileptic EEG signal recognition. The proposed less computationally intensive deep classifier enables faster seizure onset detection, which is showing great potential on the application of real-time EEG signal classification.
Collapse
Affiliation(s)
- Xiongtao Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Shuai Dong
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Qing Shen
- School of Information Engineering, Huzhou University, Huzhou, China
- Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou University, Huzhou, China
| | - Jie Zhou
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China
| | - Jingjing Min
- Department of Neurology, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
26
|
Drioua WR, Benamrane N, Sais L. Breast Cancer Histopathological Images Segmentation Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:7318. [PMID: 37687772 PMCID: PMC10490494 DOI: 10.3390/s23177318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Hospitals generate a significant amount of medical data every day, which constitute a very rich database for research. Today, this database is still not exploitable because to make its valorization possible, the images require an annotation which remains a costly and difficult task. Thus, the use of an unsupervised segmentation method could facilitate the process. In this article, we propose two approaches for the semantic segmentation of breast cancer histopathology images. On the one hand, an autoencoder architecture for unsupervised segmentation is proposed, and on the other hand, an improvement U-Net architecture for supervised segmentation is proposed. We evaluate these models on a public dataset of histological images of breast cancer. In addition, the performance of our segmentation methods is measured using several evaluation metrics such as accuracy, recall, precision and F1 score. The results are competitive with those of other modern methods.
Collapse
Affiliation(s)
- Wafaa Rajaa Drioua
- Laboratoire SIMPA, Département d’Informatique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB), Oran 31000, Algeria;
| | - Nacéra Benamrane
- Laboratoire SIMPA, Département d’Informatique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB), Oran 31000, Algeria;
| | - Lakhdar Sais
- Centre de Recherche en Informatique de Lens, CRIL, CNRS, Université d’Artois, 62307 Lens, France;
| |
Collapse
|
27
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
28
|
Liu X, Zhang J, Zhu M, Tong W, Xin Z, Wang Y, Lei M, Hua B, Cai Y, Zou Y, Yu J. Nonlinearity mitigation in a fiber-wireless integrated system based on low-complexity autoencoder and BiLSTM-ANN equalizer. OPTICS EXPRESS 2023; 31:20005-20018. [PMID: 37381404 DOI: 10.1364/oe.493470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
We propose and experimentally demonstrate an intelligent nonlinear compensation method using a stacked autoencoder (SAE) model in conjunction with principal component analysis (PCA) technology and a bidirectional long-short-term memory coupled with ANN (BiLSTM-ANN) nonlinear equalizer for an end-to-end (E2E) fiber-wireless integrated system. The SAE-optimized nonlinear constellation is utilized to mitigate nonlinearity during the optical and electrical conversion process. Our proposed BiLSTM-ANN equalizer is primarily based on time memory and information extraction characteristics, which can compensate for the remaining nonlinear redundancy. A low-complexity 50 Gbps E2E-optimized nonlinear 32 QAM signal is successfully transmitted over a span of 20 km standard single-mode fiber (SSMF) and 6 m wireless link at 92.5 GHz. The extended experimental results indicate that the proposed E2E system can achieve a reduction of up to 78% in BER and a gain in receiver sensitivity of over 0.7 dB at BER of 3.8 × 10-3. Moreover, computational complexity is reduced by more than 10 times compared to the classical training model.
Collapse
|
29
|
Kong Y, Ao J, Chen Q, Su W, Zhao Y, Fei Y, Ma J, Ji M, Mi L. Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells 2023; 12:1524. [PMID: 37296645 PMCID: PMC10252613 DOI: 10.3390/cells12111524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in tissue engineering, as their differentiation status directly affects the quality of the final cultured tissue, which is critical to the success of transplantation therapy. Furthermore, the precise control of MSC differentiation is essential for stem cell therapy in clinical settings, as low-purity stem cells can lead to tumorigenic problems. Therefore, to address the heterogeneity of MSCs during their differentiation into adipogenic or osteogenic lineages, numerous label-free microscopic images were acquired using fluorescence lifetime imaging microscopy (FLIM) and stimulated Raman scattering (SRS), and an automated evaluation model for the differentiation status of MSCs was built based on the K-means machine learning algorithm. The model is capable of highly sensitive analysis of individual cell differentiation status, so it has great potential for stem cell differentiation research.
Collapse
Affiliation(s)
- Yawei Kong
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jianpeng Ao
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Qiushu Chen
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Wenhua Su
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Yinping Zhao
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jiong Ma
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Lan Mi
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Bhausaheb DP, Kashyap KL. Shuffled Shepherd Deer Hunting Optimization based Deep Neural Network for Breast Cancer Classification using Breast Histopathology Images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Chauhan C, Tripathy RK, Agrawal M. Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
32
|
Li G, Togo R, Ogawa T, Haseyama M. Boosting automatic COVID-19 detection performance with self-supervised learning and batch knowledge ensembling. Comput Biol Med 2023; 158:106877. [PMID: 37019015 PMCID: PMC10063457 DOI: 10.1016/j.compbiomed.2023.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
PROBLEM Detecting COVID-19 from chest X-ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19. However, the existing methods usually use supervised transfer learning from natural images as a pretraining process. These methods do not consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. AIM In this paper, we want to design a novel high-accuracy COVID-19 detection method that uses CXR images, which can consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. METHODS Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. RESULTS On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. CONCLUSION The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
Collapse
Affiliation(s)
- Guang Li
- Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Ren Togo
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Miki Haseyama
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
33
|
Ding K, Zhou M, Wang H, Gevaert O, Metaxas D, Zhang S. A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer. Sci Data 2023; 10:231. [PMID: 37085533 PMCID: PMC10121551 DOI: 10.1038/s41597-023-02125-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
The success of training computer-vision models heavily relies on the support of large-scale, real-world images with annotations. Yet such an annotation-ready dataset is difficult to curate in pathology due to the privacy protection and excessive annotation burden. To aid in computational pathology, synthetic data generation, curation, and annotation present a cost-effective means to quickly enable data diversity that is required to boost model performance at different stages. In this study, we introduce a large-scale synthetic pathological image dataset paired with the annotation for nuclei semantic segmentation, termed as Synthetic Nuclei and annOtation Wizard (SNOW). The proposed SNOW is developed via a standardized workflow by applying the off-the-shelf image generator and nuclei annotator. The dataset contains overall 20k image tiles and 1,448,522 annotated nuclei with the CC-BY license. We show that SNOW can be used in both supervised and semi-supervised training scenarios. Extensive results suggest that synthetic-data-trained models are competitive under a variety of model training settings, expanding the scope of better using synthetic images for enhancing downstream data-driven clinical tasks.
Collapse
Affiliation(s)
- Kexin Ding
- Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, 28262, USA
| | - Mu Zhou
- Sensebrain Research, San Jose, CA, 95131, USA
| | - He Wang
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Dimitris Metaxas
- Department of Computer Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
34
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
35
|
CT-Based Automatic Spine Segmentation Using Patch-Based Deep Learning. INT J INTELL SYST 2023. [DOI: 10.1155/2023/2345835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
CT vertebral segmentation plays an essential role in various clinical applications, such as computer-assisted surgical interventions, assessment of spinal abnormalities, and vertebral compression fractures. Automatic CT vertebral segmentation is challenging due to the overlapping shadows of thoracoabdominal structures such as the lungs, bony structures such as the ribs, and other issues such as ambiguous object borders, complicated spine architecture, patient variability, and fluctuations in image contrast. Deep learning is an emerging technique for disease diagnosis in the medical field. This study proposes a patch-based deep learning approach to extract the discriminative features from unlabeled data using a stacked sparse autoencoder (SSAE). 2D slices from a CT volume are divided into overlapping patches fed into the model for training. A random under sampling (RUS)-module is applied to balance the training data by selecting a subset of the majority class. SSAE uses pixel intensities alone to learn high-level features to recognize distinctive features from image patches. Each image is subjected to a sliding window operation to express image patches using autoencoder high-level features, which are then fed into a sigmoid layer to classify whether each patch is a vertebra or not. We validate our approach on three diverse publicly available datasets: VerSe, CSI-Seg, and the Lumbar CT dataset. Our proposed method outperformed other models after configuration optimization by achieving 89.9% in precision, 90.2% in recall, 98.9% in accuracy, 90.4% in F-score, 82.6% in intersection over union (IoU), and 90.2% in Dice coefficient (DC). The results of this study demonstrate that our model’s performance consistency using a variety of validation strategies is flexible, fast, and generalizable, making it suited for clinical application.
Collapse
|
36
|
Chen J, Luo T, Jiang M, Liu J, Gupta GP, Li Y. Cell composition inference and identification of layer-specific spatial transcriptional profiles with POLARIS. SCIENCE ADVANCES 2023; 9:eadd9818. [PMID: 36857450 PMCID: PMC9977174 DOI: 10.1126/sciadv.add9818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Spatial transcriptomics (ST) technology, providing spatially resolved transcriptional profiles, facilitates advanced understanding of key biological processes related to health and disease. Sequencing-based ST technologies provide whole-transcriptome profiles but are limited by the non-single cell-level resolution. Lack of knowledge in the number of cells or cell type composition at each spot can lead to invalid downstream analysis, which is a critical issue recognized in ST data analysis. Methods developed, however, tend to underuse histological images, which conceptually provide important and complementary information including anatomical structure and distribution of cells. To fill in the gaps, we present POLARIS, a versatile ST analysis method that can perform cell type deconvolution, identify anatomical or functional layer-wise differentially expressed (LDE) genes, and enable cell composition inference from histology images. Applied to four tissues, POLARIS demonstrates high deconvolution accuracy, accurately predicts cell composition solely from images, and identifies LDE genes that are biologically relevant and meaningful.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Minzhi Jiang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Zheng Y, Xu Z, Xiao A. Deep learning in economics: a systematic and critical review. Artif Intell Rev 2023; 56:1-43. [PMID: 36777109 PMCID: PMC9898707 DOI: 10.1007/s10462-022-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From the perspective of historical review, the methodology of economics develops from qualitative to quantitative, from a small sampling of data to a vast amount of data. Because of the superiority in learning inherent law and representative level, deep learning models assist in realizing intelligent decision-making in economics. After presenting some statistical results of relevant researches, this paper systematically investigates deep learning in economics, including a survey of frequently-used deep learning models in economics, several applications of deep learning models used in economics. Then, some critical reviews of deep learning in economics are provided, including models and applications, why and how to implement deep learning in economics, research gap and future challenges, respectively. It is obvious that several deep learning models and their variants have been widely applied in different subfields of economics, e.g., financial economics, macroeconomics and monetary economics, agricultural and natural resource economics, industrial organization, urban, rural, regional, real estate and transportation economics, health, education and welfare, business administration and microeconomics, etc. We are very confident that decision-making in economics will be more intelligent with the development of deep learning, because the research of deep learning in economics has become a hot and important topic recently.
Collapse
Affiliation(s)
- Yuanhang Zheng
- College of Computer Science, Sichuan University, 610064 Chengdu, PR China
| | - Zeshui Xu
- Business School, Sichuan University, 610064 Chengdu, PR China
| | - Anran Xiao
- Business School, Sichuan University, 610064 Chengdu, PR China
| |
Collapse
|
38
|
A Heuristic Machine Learning-Based Optimization Technique to Predict Lung Cancer Patient Survival. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:4506488. [PMID: 36776617 PMCID: PMC9911240 DOI: 10.1155/2023/4506488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Cancer has been a significant threat to human health and well-being, posing the biggest obstacle in the history of human sickness. The high death rate in cancer patients is primarily due to the complexity of the disease and the wide range of clinical outcomes. Increasing the accuracy of the prediction is equally crucial as predicting the survival rate of cancer patients, which has become a key issue of cancer research. Many models have been suggested at the moment. However, most of them simply use single genetic data or clinical data to construct prediction models for cancer survival. There is a lot of emphasis in present survival studies on determining whether or not a patient will survive five years. The personal issue of how long a lung cancer patient will survive remains unanswered. The proposed technique Naive Bayes and SSA is estimating the overall survival time with lung cancer. Two machine learning challenges are derived from a single customized query. To begin with, determining whether a patient will survive for more than five years is a simple binary question. The second step is to develop a five-year survival model using regression analysis. When asked to forecast how long a lung cancer patient would survive within five years, the mean absolute error (MAE) of this technique's predictions is accurate within a month. Several biomarker genes have been associated with lung cancers. The accuracy, recall, and precision achieved from this algorithm are 98.78%, 98.4%, and 98.6%, respectively.
Collapse
|
39
|
Wang J, Xie Y, Xie S, Chen X. Optimization of aluminum fluoride addition in aluminum electrolysis process based on pruned sparse fuzzy neural network. ISA TRANSACTIONS 2023; 133:285-301. [PMID: 35811160 DOI: 10.1016/j.isatra.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The aluminum fluoride (AF) addition in aluminum electrolysis process (AEP) can directly influence the current efficiency, energy consumption, and stability of the process. This paper proposes an optimization scheme for AF addition based on pruned sparse fuzzy neural network (PSFNN), aiming at providing an optimal AF addition for aluminum electrolysis cell under normal superheat degree (SD) condition. Firstly, a Gaussian mixture model (GMM) is introduced to identify SD conditions in which the operating modes of AEP are unknown. Then, PSFNN is proposed to establish the AF addition model under normal SD condition identified by GMM. Specifically, a sparse regularization term is designed in loss function of PSFNN to extract the sparse representation from nonlinear process data. A structure optimization strategy based on enhanced optimal brain surgeon (EOBS) algorithm is proposed to prune redundant neurons in the rule layer. Mini-batch gradient descent and AdaBound optimizer are then introduced to optimize the parameters of PSFNN. Finally, the performance is confirmed on the simulated Tennessee Eastman process (TEP) and real-world AEP. Experimental results demonstrate that the proposed scheme provides a satisfactory performance.
Collapse
Affiliation(s)
- Jie Wang
- The School of Automation, Central South University, Changsha 410083, China; The Engineering Research Center of Nonferrous Metallurgical Automation, Ministry of Education, Central South University, Changsha 410083, China.
| | - Yongfang Xie
- The School of Automation, Central South University, Changsha 410083, China; The Engineering Research Center of Nonferrous Metallurgical Automation, Ministry of Education, Central South University, Changsha 410083, China.
| | - Shiwen Xie
- The School of Automation, Central South University, Changsha 410083, China; The Engineering Research Center of Nonferrous Metallurgical Automation, Ministry of Education, Central South University, Changsha 410083, China.
| | - Xiaofang Chen
- The School of Automation, Central South University, Changsha 410083, China; The Engineering Research Center of Nonferrous Metallurgical Automation, Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
40
|
Sun Y, Cong J, Zhang K, Jian M, Wei B. Unsupervised medical image feature learning by using de-melting reduction auto-encoder. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Sun Q, Cheng L, Meng A, Ge S, Chen J, Zhang L, Gong P. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. Front Genet 2023; 13:1032768. [PMID: 36685873 PMCID: PMC9846505 DOI: 10.3389/fgene.2022.1032768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Integrating multi-omics data for cancer subtype recognition is an important task in bioinformatics. Recently, deep learning has been applied to recognize the subtype of cancers. However, existing studies almost integrate the multi-omics data simply by concatenation as the single data and then learn a latent low-dimensional representation through a deep learning model, which did not consider the distribution differently of omics data. Moreover, these methods ignore the relationship of samples. To tackle these problems, we proposed SADLN: A self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. SADLN combined encoder, self-attention, decoder, and discriminator into a unified framework, which can not only integrate multi-omics data but also adaptively model the sample's relationship for learning an accurately latent low-dimensional representation. With the integrated representation learned from the network, SADLN used Gaussian Mixture Model to identify cancer subtypes. Experiments on ten cancer datasets of TCGA demonstrated the advantages of SADLN compared to ten methods. The Self-Attention Based Deep Learning Network (SADLN) is an effective method of integrating multi-omics data for cancer subtype recognition.
Collapse
Affiliation(s)
- Qiuwen Sun
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Lei Cheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ao Meng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shuguang Ge
- School of Information and Control Engineering, University of Mining and Technology, Xuzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Gong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
42
|
Nasser M, Yusof UK. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics (Basel) 2023; 13:diagnostics13010161. [PMID: 36611453 PMCID: PMC9818155 DOI: 10.3390/diagnostics13010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is one of the precarious conditions that affect women, and a substantive cure has not yet been discovered for it. With the advent of Artificial intelligence (AI), recently, deep learning techniques have been used effectively in breast cancer detection, facilitating early diagnosis and therefore increasing the chances of patients' survival. Compared to classical machine learning techniques, deep learning requires less human intervention for similar feature extraction. This study presents a systematic literature review on the deep learning-based methods for breast cancer detection that can guide practitioners and researchers in understanding the challenges and new trends in the field. Particularly, different deep learning-based methods for breast cancer detection are investigated, focusing on the genomics and histopathological imaging data. The study specifically adopts the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which offer a detailed analysis and synthesis of the published articles. Several studies were searched and gathered, and after the eligibility screening and quality evaluation, 98 articles were identified. The results of the review indicated that the Convolutional Neural Network (CNN) is the most accurate and extensively used model for breast cancer detection, and the accuracy metrics are the most popular method used for performance evaluation. Moreover, datasets utilized for breast cancer detection and the evaluation metrics are also studied. Finally, the challenges and future research direction in breast cancer detection based on deep learning models are also investigated to help researchers and practitioners acquire in-depth knowledge of and insight into the area.
Collapse
|
43
|
Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol 2023; 149:503-510. [PMID: 35796775 DOI: 10.1007/s00432-022-04161-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading worldwide disease that depends on oncogenic mutations and non-mutated genes for survival. Recent advancements in next-generation sequencing (NGS) have transformed the health care sector with big data and machine learning (ML) approaches. NGS data are able to detect the abnormalities and mutations in the oncogenes. These multi-omics analyses are used for risk prediction, early diagnosis, accurate prognosis, and identification of biomarkers in cancer patients. The availability of these cancer data and their analysis may provide insights into the biology of the disease, which can be used for the personalized treatment of cancer patients. Bioinformatics tools are delivering this promise by managing, integrating, and analyzing these complex datasets. The clinical outcomes of cancer patients are improved by the use of various innovative methods implicated particularly for diagnosis and therapeutics. ML-based artificial intelligence (AI) applications are solving these issues to a great extent. AI techniques are used to update the patients on a personalized basis about their treatment procedures, progress, recovery, therapies used, dietary changes in lifestyles patterns along with the survival summary of previously recovered cancer patients. In this way, the patients are becoming more aware of their diseases and the entire clinical treatment procedures. Though the technology has its own advantages and disadvantages, we hope that the day is not so far when AI techniques will provide personalized treatment to cancer patients tailored to their needs in much quicker ways.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
44
|
Huang C, Luo X, Wang S, Wan YU, Wang J, Tang X, Schatz C, Zhang H, Haybaeck J, Yang Z. Minimally Invasive Cytopathology and Accurate Diagnosis: Technical Procedures and Ancillary Techniques. In Vivo 2023; 37:11-21. [PMID: 36593030 PMCID: PMC9843757 DOI: 10.21873/invivo.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023]
Abstract
In recent years, the demand for cytopathological accurate diagnoses has increased as expanding minimally invasive procedures obtain materials from patients with advanced cancer for diagnostic, prognostic, and predictive purposes. However, inadequate knowledge of cytopathological technical procedures and ancillary techniques by clinicians remains the most common reason for the limited availability of cytopathology. The objectives of this review were to understand the technical procedures, ancillary techniques, and application and effectiveness of various types of tests in cytopathology. Each of the many ancillary technologies described in the literature has specific advantages and limitations and laboratories select one or more methods depending on their infrastructure and expertise to achieve the goal from initial screening of the disease to the final diagnosis of the cytopathology. This paper systematically reviews the development of cytopathology, summarizes the existing problems in cytopathology and the new progress of auxiliary examination, to provide a theoretical basis for the advanced development of cytopathological diagnostic technologies and to consolidate the minimally invasive and accurate diagnosis of cytopathologies for clinicians. Cytopathology offers many advantages over other clinical examinations, particularly for minimally invasive and accurate diagnosis.
Collapse
Affiliation(s)
- Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Xing Luo
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Shaohua Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Y U Wan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Xiaoqin Tang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Huiling Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China;
| |
Collapse
|
45
|
Thalakottor LA, Shirwaikar RD, Pothamsetti PT, Mathews LM. Classification of Histopathological Images from Breast Cancer Patients Using Deep Learning: A Comparative Analysis. Crit Rev Biomed Eng 2023; 51:41-62. [PMID: 37581350 DOI: 10.1615/critrevbiomedeng.2023047793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Cancer, a leading cause of mortality, is distinguished by the multi-stage conversion of healthy cells into cancer cells. Discovery of the disease early can significantly enhance the possibility of survival. Histology is a procedure where the tissue of interest is first surgically removed from a patient and cut into thin slices. A pathologist will then mount these slices on glass slides, stain them with specialized dyes like hematoxylin and eosin (H&E), and then inspect the slides under a microscope. Unfortunately, a manual analysis of histopathology images during breast cancer biopsy is time consuming. Literature suggests that automated techniques based on deep learning algorithms with artificial intelligence can be used to increase the speed and accuracy of detection of abnormalities within the histopathological specimens obtained from breast cancer patients. This paper highlights some recent work on such algorithms, a comparative study on various deep learning methods is provided. For the present study the breast cancer histopathological database (BreakHis) is used. These images are processed to enhance the inherent features, classified and an evaluation is carried out regarding the accuracy of the algorithm. Three convolutional neural network (CNN) models, visual geometry group (VGG19), densely connected convolutional networks (DenseNet201), and residual neural network (ResNet50V2), were employed while analyzing the images. Of these the DenseNet201 model performed better than other models and attained an accuracy of 91.3%. The paper includes a review of different classification techniques based on machine learning methods including CNN-based models and some of which may replace manual breast cancer diagnosis and detection.
Collapse
Affiliation(s)
- Louie Antony Thalakottor
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), 560054, India
| | - Rudresh Deepak Shirwaikar
- Department of Computer Engineering, Agnel Institute of Technology and Design (AITD), Goa University, Assagao, Goa, India, 403507
| | - Pavan Teja Pothamsetti
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), 560054, India
| | - Lincy Meera Mathews
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), 560054, India
| |
Collapse
|
46
|
Liang Y, Yin Z, Liu H, Zeng H, Wang J, Liu J, Che N. Weakly Supervised Deep Nuclei Segmentation With Sparsely Annotated Bounding Boxes for DNA Image Cytometry. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:785-795. [PMID: 34951851 DOI: 10.1109/tcbb.2021.3138189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nuclei segmentation is an essential step in DNA ploidy analysis by image-based cytometry (DNA-ICM) which is widely used in cytopathology and allows an objective measurement of DNA content (ploidy). The routine fully supervised learning-based method requires often tedious and expensive pixel-wise labels. In this paper, we propose a novel weakly supervised nuclei segmentation framework which exploits only sparsely annotated bounding boxes, without any segmentation labels. The key is to integrate the traditional image segmentation and self-training into fully supervised instance segmentation. We first leverage the traditional segmentation to generate coarse masks for each box-annotated nucleus to supervise the training of a teacher model, which is then responsible for both the refinement of these coarse masks and pseudo labels generation of unlabeled nuclei. These pseudo labels and refined masks along with the original manually annotated bounding boxes jointly supervise the training of student model. Both teacher and student share the same architecture and especially the student is initialized by the teacher. We have extensively evaluated our method with both our DNA-ICM dataset and public cytopathological dataset. Without bells and whistles, our method outperforms all existing weakly supervised entries on both datasets. Code and our DNA-ICM dataset are publicly available at https://github.com/CVIU-CSU/Weakly-Supervised-Nuclei-Segmentation.
Collapse
|
47
|
Yang Y, Liu Z, Huang J, Sun X, Ao J, Zheng B, Chen W, Shao Z, Hu H, Yang Y, Ji M. Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning. Theranostics 2023; 13:1342-1354. [PMID: 36923541 PMCID: PMC10008736 DOI: 10.7150/thno.81784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 03/14/2023] Open
Abstract
Core-needle biopsy (CNB) plays a vital role in the initial diagnosis of breast cancer. However, the complex tissue processing and global shortage of pathologists have hindered traditional histopathology from timely diagnosis on fresh biopsies. In this work, we developed a full digital platform by integrating label-free stimulated Raman scattering (SRS) microscopy with weakly-supervised learning for rapid and automated cancer diagnosis on un-labelled breast CNB. Methods: We first compared the results of SRS imaging with standard hematoxylin and eosin (H&E) staining on adjacent frozen tissue sections. Then fresh unprocessed biopsy tissues were imaged by SRS to reveal diagnostic histoarchitectures. Next, weakly-supervised learning, i.e., the multi-instance learning (MIL) model was conducted to evaluate the ability to differentiate between benign and malignant cases, and compared with the performance of supervised learning model. Finally, gradient-weighted class activation mapping (Grad-CAM) and semantic segmentation were performed to spatially resolve benign/malignant areas with high efficiency. Results: We verified the ability of SRS in revealing essential histological hallmarks of breast cancer in both thin frozen sections and fresh unprocessed biopsy, generating histoarchitectures well correlated with H&E staining. Moreover, we demonstrated that weakly-supervised MIL model could achieve superior classification performance to supervised learnings, reaching diagnostic accuracy of 95% on 61 biopsy specimens. Furthermore, Grad-CAM allowed the trained MIL model to visualize the histological heterogeneity within the CNB. Conclusion: Our results indicate that MIL-assisted SRS microscopy provides rapid and accurate diagnosis on histologically heterogeneous breast CNB, and could potentially help the subsequent management of patients.
Collapse
Affiliation(s)
- Yifan Yang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Jing Huang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Xiangjie Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Bin Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanyuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao Hu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yinlong Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai 200433, China
| |
Collapse
|
48
|
He Q, He L, Duan H, Sun Q, Zheng R, Guan J, He Y, Huang W, Guan T. Expression site agnostic histopathology image segmentation framework by self supervised domain adaption. Comput Biol Med 2023; 152:106412. [PMID: 36516576 DOI: 10.1016/j.compbiomed.2022.106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MOTIVATION With the sites of antigen expression different, the segmentation of immunohistochemical (IHC) histopathology images is challenging, due to the visual variances. With H&E images highlighting the tissue structure and cell distribution more broadly, transferring more salient features from H&E images can achieve considerable performance on expression site agnostic IHC images segmentation. METHODS To the best of our knowledge, this is the first work that focuses on domain adaptive segmentation for different expression sites. We propose an expression site agnostic domain adaptive histopathology image semantic segmentation framework (ESASeg). In ESASeg, multi-level feature alignment encodes expression site invariance by learning generic representations of global and multi-scale local features. Moreover, self-supervision enhances domain adaptation to perceive high-level semantics by predicting pseudo-labels. RESULTS We construct a dataset with three IHCs (Her2 with membrane stained, Ki67 with nucleus stained, GPC3 with cytoplasm stained) with different expression sites from two diseases (breast and liver cancer). Intensive experiments on tumor region segmentation illustrate that ESASeg performs best across all metrics, and the implementation of each module proves to achieve impressive improvements. CONCLUSION The performance of ESASeg on the tumor region segmentation demonstrates the efficiency of the proposed framework, which provides a novel solution on expression site agnostic IHC related tasks. Moreover, the proposed domain adaption and self-supervision module can improve feature domain adaption and extraction without labels. In addition, ESASeg lays the foundation to perform joint analysis and information interaction for IHCs with different expression sites.
Collapse
Affiliation(s)
- Qiming He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Ling He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Hufei Duan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Qiehe Sun
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Runliang Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Jian Guan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Yonghong He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Wenting Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Tian Guan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
49
|
Zhao Y, Zhang J, Hu D, Qu H, Tian Y, Cui X. Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. MICROMACHINES 2022; 13:2197. [PMID: 36557496 PMCID: PMC9781697 DOI: 10.3390/mi13122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
With the development of artificial intelligence technology and computer hardware functions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis. This study was an attempt to use statistical methods to analyze studies related to the detection, segmentation, and classification of breast cancer in pathological images. After an analysis of 107 articles on the application of deep learning to pathological images of breast cancer, this study is divided into three directions based on the types of results they report: detection, segmentation, and classification. We introduced and analyzed models that performed well in these three directions and summarized the related work from recent years. Based on the results obtained, the significant ability of deep learning in the application of breast cancer pathological images can be recognized. Furthermore, in the classification and detection of pathological images of breast cancer, the accuracy of deep learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a comprehensive review of the development of breast cancer pathological imaging-related research and provides reliable recommendations for the structure of deep learning network models in different application scenarios.
Collapse
Affiliation(s)
- Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| | - Jie Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
50
|
Coutinho MG, Câmara GB, Barbosa RDM, Fernandes MA. SARS-CoV-2 virus classification based on stacked sparse autoencoder. Comput Struct Biotechnol J 2022; 21:284-298. [PMID: 36530948 PMCID: PMC9742810 DOI: 10.1016/j.csbj.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Since December 2019, the world has been intensely affected by the COVID-19 pandemic, caused by the SARS-CoV-2. In the case of a novel virus identification, the early elucidation of taxonomic classification and origin of the virus genomic sequence is essential for strategic planning, containment, and treatments. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis. Considering that motivation, the authors proposed an efficient viral genome classifier for the SARS-CoV-2 using the deep neural network based on the stacked sparse autoencoder (SSAE). For the best performance of the model, we explored the utilization of image representations of the complete genome sequences as the SSAE input to provide a classification of the SARS-CoV-2. For that, a dataset based on k-mers image representation was applied. We performed four experiments to provide different levels of taxonomic classification of the SARS-CoV-2. The SSAE technique provided great performance results in all experiments, achieving classification accuracy between 92% and 100% for the validation set and between 98.9% and 100% when the SARS-CoV-2 samples were applied for the test set. In this work, samples of the SARS-CoV-2 were not used during the training process, only during subsequent tests, in which the model was able to infer the correct classification of the samples in the vast majority of cases. This indicates that our model can be adapted to classify other emerging viruses. Finally, the results indicated the applicability of this deep learning technique in genome classification problems.
Collapse
Affiliation(s)
- Maria G.F. Coutinho
- Laboratory of Machine Learning and Intelligent Instrumentation, IMD/nPITI, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gabriel B.M. Câmara
- Laboratory of Machine Learning and Intelligent Instrumentation, IMD/nPITI, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raquel de M. Barbosa
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, 18071 Granada, Spain
| | - Marcelo A.C. Fernandes
- Laboratory of Machine Learning and Intelligent Instrumentation, IMD/nPITI, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Computer and Automation Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|