1
|
Lin SH, Ma J, Park JM. Volumetric Patch-Based Super-Resolution Reconstruction of Hyperpolarized 13C Cardiac MRI. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:164315-164324. [PMID: 39726803 PMCID: PMC11671125 DOI: 10.1109/access.2024.3491592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The achievable spatial resolution of 13C metabolic images acquired with hyperpolarized 13C-pyruvate is worse than 1H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of 13C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution 13C cardiac MRI by utilizing structural information from 1H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution 1H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice 13C MRI. The method was tested with a multi-compartmental digital phantom for optimizing the patch size and an anthropomorphic cardiac MR phantom for validating the performance. Finally, the method was applied to human cardiac 13C images, acquired with an injection of hyperpolarized [1-13C]pyruvate. The phantom studies demonstrated that high-resolution multi-slice 13C images, reconstructed from a single-slice low-resolution input 13C image, retained the signal intensity range. The reconstruction accuracy was asymptotically improved as the patch size increased whereas intra-segmental spatial fluctuations were preserved better with smaller patches. However, a structurally non-identified tissue region was not restored regardless of the patch size. The cardiac MR phantom and the human cardiac images demonstrated improved spatial resolutions in the reconstructed images (10 × 10 × 30 mm3/voxel to 2 × 2 × 5 mm3/voxel). The volumetric patch-based super-resolution method reconstructs multi-slice high-resolution of 13C images, enhancing the cardiac structure, while preserving the quantitative accuracy. The proposed method is applicable to other multi-modal images that suffer from limited spatial resolution.
Collapse
Affiliation(s)
- Sung-Han Lin
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Ma
- GE Healthcare, Jersey City, NJ 07302, USA
| | - Jae Mo Park
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Kuang X, Li B, Lyu T, Xue Y, Huang H, Xie Q, Zhu W. PET image reconstruction using weighted nuclear norm maximization and deep learning prior. Phys Med Biol 2024; 69:215023. [PMID: 39374634 DOI: 10.1088/1361-6560/ad841d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
The ill-posed Positron emission tomography (PET) reconstruction problem usually results in limited resolution and significant noise. Recently, deep neural networks have been incorporated into PET iterative reconstruction framework to improve the image quality. In this paper, we propose a new neural network-based iterative reconstruction method by using weighted nuclear norm (WNN) maximization, which aims to recover the image details in the reconstruction process. The novelty of our method is the application of WNN maximization rather than WNN minimization in PET image reconstruction. Meanwhile, a neural network is used to control the noise originated from WNN maximization. Our method is evaluated on simulated and clinical datasets. The simulation results show that the proposed approach outperforms state-of-the-art neural network-based iterative methods by achieving the best contrast/noise tradeoff with a remarkable contrast improvement on the lesion contrast recovery. The study on clinical datasets also demonstrates that our method can recover lesions of different sizes while suppressing noise in various low-dose PET image reconstruction tasks. Our code is available athttps://github.com/Kuangxd/PETReconstruction.
Collapse
Affiliation(s)
- Xiaodong Kuang
- Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Tianling Lyu
- Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Yitian Xue
- Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Hailiang Huang
- Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Qingguo Xie
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Wentao Zhu
- Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Huemer M, Stilianu C, Maier O, Fabian MS, Schmidt M, Doerfler A, Bredies K, Zaiss M, Stollberger R. Improved quantification in CEST-MRI by joint spatial total generalized variation. Magn Reson Med 2024; 92:1683-1697. [PMID: 38703028 DOI: 10.1002/mrm.30129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE In this work, the use of joint Total Generalized Variation (TGV) regularization to improve Multipool-Lorentzian fitting of chemical exchange saturation transfer (CEST) Spectra in terms of stability and parameter signal-to-noise ratio (SNR) was investigated. THEORY AND METHODS The joint TGV term was integrated into the nonlinear parameter fitting problem. To increase convergence and weight the gradients, preconditioning using a voxel-wise singular value decomposition was applied to the problem, which was then solved using the iteratively regularized Gauss-Newton method combined with a Primal-Dual splitting algorithm. The TGV method was evaluated on simulated numerical phantoms, 3T phantom data and 7T in vivo data with respect to systematic errors and robustness. Three reference methods were also implemented: The standard nonlinear fitting, a method using a nonlocal-means filter for denoising and the pyramid scheme, which uses downsampled images to acquire accurate start values. RESULTS The proposed regularized fitting method showed significantly improved robustness (compared to the reference methods). In testing, over a range of SNR values the TGV fit outperformed the other methods and showed accurate results even for large amounts of added noise. Parameter values found were closer or comparable to the ground truth. For in vivo datasets, the added regularization increased the parameter map SNR and prevented instabilities. CONCLUSION The proposed fitting method using TGV regularization leads to improved results over a range of different data-sets and noise levels. Furthermore, it can be applied to all Z-spectrum data, with different amounts of pools, where the improved SNR and stability can increase diagnostic confidence.
Collapse
Affiliation(s)
- Markus Huemer
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Clemens Stilianu
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Oliver Maier
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Moritz Simon Fabian
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Manuel Schmidt
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Kristian Bredies
- Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
4
|
Xie T, Cui ZX, Luo C, Wang H, Liu C, Zhang Y, Wang X, Zhu Y, Chen G, Liang D, Jin Q, Zhou Y, Wang H. Joint diffusion: mutual consistency-driven diffusion model for PET-MRI co-reconstruction. Phys Med Biol 2024; 69:155019. [PMID: 38981592 DOI: 10.1088/1361-6560/ad6117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Objective. Positron Emission Tomography and Magnetic Resonance Imaging (PET-MRI) systems can obtain functional and anatomical scans. But PET suffers from a low signal-to-noise ratio, while MRI are time-consuming. To address time-consuming, an effective strategy involves reducing k-space data collection, albeit at the cost of lowering image quality. This study aims to leverage the inherent complementarity within PET-MRI data to enhance the image quality of PET-MRI.Approach. A novel PET-MRI joint reconstruction model, termed MC-Diffusion, is proposed in the Bayesian framework. The joint reconstruction problem is transformed into a joint regularization problem, where data fidelity terms of PET and MRI are expressed independently. The regular term, the derivative of the logarithm of the joint probability distribution of PET and MRI, employs a joint score-based diffusion model for learning. The diffusion model involves the forward diffusion process and the reverse diffusion process. The forward diffusion process adds noise to transform a complex joint data distribution into a known joint prior distribution for PET and MRI simultaneously, resembling a denoiser. The reverse diffusion process removes noise using a denoiser to revert the joint prior distribution to the original joint data distribution, effectively utilizing joint probability distribution to describe the correlations of PET and MRI for improved quality of joint reconstruction.Main results. Qualitative and quantitative improvements are observed with the MC-Diffusion model. Comparative analysis against LPLS and Joint ISAT-net on the ADNI dataset demonstrates superior performance by exploiting complementary information between PET and MRI. The MC-Diffusion model effectively enhances the quality of PET and MRI images.Significance. This study employs the MC-Diffusion model to enhance the quality of PET-MRI images by integrating the fundamental principles of PET and MRI modalities and leveraging their inherent complementarity. Furthermore, utilizing the diffusion model to learn the joint probability distribution of PET and MRI, thereby elucidating their latent correlation, facilitates a more profound comprehension of the priors obtained through deep learning, contrasting with black-box prior or artificially constructed structural similarities.
Collapse
Affiliation(s)
- Taofeng Xie
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, People's Republic of China
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, People's Republic of China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Zhuo-Xu Cui
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Chen Luo
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Huayu Wang
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Congcong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Yuanzhi Zhang
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, People's Republic of China
| | - Xuemei Wang
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, People's Republic of China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Guoqing Chen
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qiyu Jin
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yihang Zhou
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| |
Collapse
|
5
|
Shin M, Seo M, Lee K, Yoon K. Super-resolution techniques for biomedical applications and challenges. Biomed Eng Lett 2024; 14:465-496. [PMID: 38645589 PMCID: PMC11026337 DOI: 10.1007/s13534-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.
Collapse
Affiliation(s)
- Minwoo Shin
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Minjee Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyunghyun Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
6
|
Schramm G, Filipovic M, Qian Y, Alivar A, Lui YW, Nuyts J, Boada F. Resolution enhancement, noise suppression, and joint T2* decay estimation in dual-echo sodium-23 MR imaging using anatomically guided reconstruction. Magn Reson Med 2024; 91:1404-1418. [PMID: 38044789 PMCID: PMC10916150 DOI: 10.1002/mrm.29936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Sodium MRI is challenging because of the low tissue concentration of the 23 Na nucleus and its extremely fast biexponential transverse relaxation rate. In this article, we present an iterative reconstruction framework using dual-echo 23 Na data and exploiting anatomical prior information (AGR) from high-resolution, low-noise, 1 H MR images. This framework enables the estimation and modeling of the spatially varying signal decay due to transverse relaxation during readout (AGRdm), which leads to images of better resolution and reduced noise resulting in improved quantification of the reconstructed 23 Na images. METHODS The proposed framework was evaluated using reconstructions of 30 noise realizations of realistic simulations of dual echo twisted projection imaging (TPI) 23 Na data. Moreover, three dual echo 23 Na TPI brain datasets of healthy controls acquired on a 3T Siemens Prisma system were reconstructed using conventional reconstruction, AGR and AGRdm. RESULTS Our simulations show that compared to conventional reconstructions, AGR and AGRdm show improved bias-noise characteristics in several regions of the brain. Moreover, AGR and AGRdm images show more anatomical detail and less noise in the reconstructions of the experimental data sets. Compared to AGR and the conventional reconstruction, AGRdm shows higher contrast in the sodium concentration ratio between gray and white matter and between gray matter and the brain stem. CONCLUSION AGR and AGRdm generate 23 Na images with high resolution, high levels of anatomical detail, and low levels of noise, potentially enabling high-quality 23 Na MR imaging at 3T.
Collapse
Affiliation(s)
- Georg Schramm
- Radiological Sciences Laboratory, School of Medicine, Stanford University, Stanford, California, USA
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Yongxian Qian
- Center for Biomedical Imaging, Department of Radiology, Grossman School of Medicine, New York University (NYU), New York, New York, USA
| | - Alaleh Alivar
- Center for Biomedical Imaging, Department of Radiology, Grossman School of Medicine, New York University (NYU), New York, New York, USA
| | - Yvonne W. Lui
- Center for Biomedical Imaging, Department of Radiology, Grossman School of Medicine, New York University (NYU), New York, New York, USA
| | - Johan Nuyts
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Fernando Boada
- Radiological Sciences Laboratory, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Küstner T, Hepp T, Seith F. Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities. Nuklearmedizin 2023; 62:306-313. [PMID: 37802058 DOI: 10.1055/a-2157-6670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Machine learning (ML) is considered an important technology for future data analysis in health care. METHODS The inherently technology-driven fields of diagnostic radiology and nuclear medicine will both benefit from ML in terms of image acquisition and reconstruction. Within the next few years, this will lead to accelerated image acquisition, improved image quality, a reduction of motion artifacts and - for PET imaging - reduced radiation exposure and new approaches for attenuation correction. Furthermore, ML has the potential to support decision making by a combined analysis of data derived from different modalities, especially in oncology. In this context, we see great potential for ML in multiparametric hybrid imaging and the development of imaging biomarkers. RESULTS AND CONCLUSION In this review, we will describe the basics of ML, present approaches in hybrid imaging of MRI, CT, and PET, and discuss the specific challenges associated with it and the steps ahead to make ML a diagnostic and clinical tool in the future. KEY POINTS · ML provides a viable clinical solution for the reconstruction, processing, and analysis of hybrid imaging obtained from MRI, CT, and PET..
Collapse
Affiliation(s)
- Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| | - Tobias Hepp
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| |
Collapse
|
8
|
Lim H, Dewaraja YK, Fessler JA. SPECT reconstruction with a trained regularizer using CT-side information: Application to 177Lu SPECT imaging. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2023; 9:846-856. [PMID: 38516350 PMCID: PMC10956080 DOI: 10.1109/tci.2023.3318993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Improving low-count SPECT can shorten scans and support pre-therapy theranostic imaging for dosimetry-based treatment planning, especially with radionuclides like 177Lu known for low photon yields. Conventional methods often underperform in low-count settings, highlighting the need for trained regularization in model-based image reconstruction. This paper introduces a trained regularizer for SPECT reconstruction that leverages segmentation based on CT imaging. The regularizer incorporates CT-side information via a segmentation mask from a pre-trained network (nnUNet). In this proof-of-concept study, we used patient studies with 177Lu DOTATATE to train and tested with phantom and patient datasets, simulating pre-therapy imaging conditions. Our results show that the proposed method outperforms both standard unregularized EM algorithms and conventional regularization with CT-side information. Specifically, our method achieved marked improvements in activity quantification, noise reduction, and root mean square error. The enhanced low-count SPECT approach has promising implications for theranostic imaging, post-therapy imaging, whole body SPECT, and reducing SPECT acquisition times.
Collapse
Affiliation(s)
- Hongki Lim
- Department of Electronic Engineering, Inha University, Incheon, 22212, South Korea
| | - Yuni K Dewaraja
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jeffrey A Fessler
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
9
|
Farag A, Huang J, Kohan A, Mirshahvalad SA, Basso Dias A, Fenchel M, Metser U, Veit-Haibach P. Evaluation of MR anatomically-guided PET reconstruction using a convolutional neural network in PSMA patients. Phys Med Biol 2023; 68:185014. [PMID: 37625418 DOI: 10.1088/1361-6560/acf439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Background. Recently, approaches have utilized the superior anatomical information provided by magnetic resonance imaging (MRI) to guide the reconstruction of positron emission tomography (PET). One of those approaches is the Bowsher's prior, which has been accelerated lately with a convolutional neural network (CNN) to reconstruct MR-guided PET in the imaging domain in routine clinical imaging. Two differently trained Bowsher-CNN methods (B-CNN0 and B-CNN) have been trained and tested on brain PET/MR images with non-PSMA tracers, but so far, have not been evaluated in other anatomical regions yet.Methods. A NEMA phantom with five of its six spheres filled with the same, calibrated concentration of 18F-DCFPyL-PSMA, and thirty-two patients (mean age 64 ± 7 years) with biopsy-confirmed PCa were used in this study. Reconstruction with either of the two available Bowsher-CNN methods were performed on the conventional MR-based attenuation correction (MRAC) and T1-MR images in the imaging domain. Detectable volume of the spheres and tumors, relative contrast recovery (CR), and background variation (BV) were measured for the MRAC and the Bowsher-CNN images, and qualitative assessment was conducted by ranking the image sharpness and quality by two experienced readers.Results. For the phantom study, the B-CNN produced 12.7% better CR compared to conventional reconstruction. The small sphere volume (<1.8 ml) detectability improved from MRAC to B-CNN by nearly 13%, while measured activity was higher than the ground-truth by 8%. The signal-to-noise ratio, CR, and BV were significantly improved (p< 0.05) in B-CNN images of the tumor. The qualitative analysis determined that tumor sharpness was excellent in 76% of the PET images reconstructed with the B-CNN method, compared to conventional reconstruction.Conclusions. Applying the MR-guided B-CNN in clinical prostate PET/MR imaging improves some quantitative, as well as qualitative imaging measures. The measured improvements in the phantom are also clearly translated into clinical application.
Collapse
Affiliation(s)
- Adam Farag
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Jin Huang
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Adriano Basso Dias
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | | | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
10
|
Liu K, Li B, Wu W, May C, Chang O, Knezevich S, Reisch L, Elmore J, Shapiro L. VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION 2023; 2023:1918-1927. [PMID: 36865487 PMCID: PMC9977454 DOI: 10.1109/wacv56688.2023.00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Detection of melanocytes serves as a critical prerequisite in assessing melanocytic growth patterns when diagnosing melanoma and its precursor lesions on skin biopsy specimens. However, this detection is challenging due to the visual similarity of melanocytes to other cells in routine Hematoxylin and Eosin (H&E) stained images, leading to the failure of current nuclei detection methods. Stains such as Sox10 can mark melanocytes, but they require an additional step and expense and thus are not regularly used in clinical practice. To address these limitations, we introduce VSGD-Net, a novel detection network that learns melanocyte identification through virtual staining from H&E to Sox10. The method takes only routine H&E images during inference, resulting in a promising approach to support pathologists in the diagnosis of melanoma. To the best of our knowledge, this is the first study that investigates the detection problem using image synthesis features between two distinct pathology stainings. Extensive experimental results show that our proposed model outperforms state-of-the-art nuclei detection methods for melanocyte detection. The source code and pre-trained model are available at: https://github.com/kechunl/VSGD-Net.
Collapse
Affiliation(s)
| | - Beibin Li
- University of Washington
- Microsoft Research
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schramm G, Holler M. Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET. Phys Med Biol 2022; 67. [PMID: 35594853 PMCID: PMC9361154 DOI: 10.1088/1361-6560/ac71f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Complete time of flight (TOF) sinograms of state-of-the-art TOF PET scanners have a large memory footprint. Currently, they contain ∼4 · 109 data bins which amount to ∼17 GB in 32 bit floating point precision. Moreover, their size will continue to increase with advances in the achievable detector TOF resolution and increases in the axial field of view. Using iterative algorithms to reconstruct such enormous TOF sinograms becomes increasingly challenging due to the memory requirements and the computation time needed to evaluate the forward model for every data bin. This is especially true for more advanced optimization algorithms such as the stochastic primal-dual hybrid gradient (SPDHG) algorithm which allows for the use of non-smooth priors for regularization using subsets with guaranteed convergence. SPDHG requires the storage of additional sinograms in memory, which severely limits its application to data sets from state-of-the-art TOF PET systems using conventional computing hardware. Approach. Motivated by the generally sparse nature of the TOF sinograms, we propose and analyze a new listmode (LM) extension of the SPDHG algorithm for image reconstruction of sparse data following a Poisson distribution. The new algorithm is evaluated based on realistic 2D and 3D simulationsn, and a real data set acquired on a state-of-the-art TOF PET/CT system. The performance of the newly proposed LM SPDHG algorithm is compared against the conventional sinogram SPDHG and the listmode EM-TV algorithm. Main results. We show that the speed of convergence of the proposed LM-SPDHG is equivalent the original SPDHG operating on binned data (TOF sinograms). However, we find that for a TOF PET system with 400 ps TOF resolution and 25 cm axial FOV, the proposed LM-SPDHG reduces the required memory from approximately 56 to 0.7 GB for a short dynamic frame with 107 prompt coincidences and to 12.4 GB for a long static acquisition with 5·108 prompt coincidences. Significance. In contrast to SPDHG, the reduced memory requirements of LM-SPDHG enables a pure GPU implementation on state-of-the-art GPUs—avoiding memory transfers between host and GPU—which will substantially accelerate reconstruction times. This in turn will allow the application of LM-SPDHG in routine clinical practice where short reconstruction times are crucial.
Collapse
|
12
|
Kim KH, Seo S, Do WJ, Luu HM, Park SH. Varying undersampling directions for accelerating multiple acquisition magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4572. [PMID: 34114253 DOI: 10.1002/nbm.4572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
In this study, we propose a new sampling strategy for efficiently accelerating multiple acquisition MRI. The new sampling strategy is to obtain data along different phase-encoding directions across multiple acquisitions. The proposed sampling strategy was evaluated in multicontrast MR imaging (T1, T2, proton density) and multiple phase-cycled (PC) balanced steady-state free precession (bSSFP) imaging by using convolutional neural networks with central and random sampling patterns. In vivo MRI acquisitions as well as a public database were used to test the concept. Based on both visual inspection and quantitative analysis, the proposed sampling strategy showed better performance than sampling along the same phase-encoding direction in both multicontrast MR imaging and multiple PC-bSSFP imaging, regardless of sampling pattern (central, random) or datasets (public, retrospective and prospective in vivo). For the prospective in vivo applications, acceleration was performed by sampling along different phase-encoding directions at the time of acquisition with a conventional rectangular field of view, which demonstrated the advantage of the proposed sampling strategy in the real environment. Preliminary trials on compressed sensing (CS) also demonstrated improvement of CS with the proposed idea. Sampling along different phase-encoding directions across multiple acquisitions is advantageous for accelerating multiacquisition MRI, irrespective of sampling pattern or datasets, with further improvement through transfer learning.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sunghun Seo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Won-Joon Do
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Huan Minh Luu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
13
|
Wu X, Huang W, Wu X, Wu S, Huang J. Classification of thermal image of clinical burn based on incremental reinforcement learning. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-05772-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Küstner T, Hepp T, Seith F. Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities. ROFO-FORTSCHR RONTG 2022; 194:605-612. [PMID: 35211929 DOI: 10.1055/a-1718-4128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Machine learning (ML) is considered an important technology for future data analysis in health care. METHODS The inherently technology-driven fields of diagnostic radiology and nuclear medicine will both benefit from ML in terms of image acquisition and reconstruction. Within the next few years, this will lead to accelerated image acquisition, improved image quality, a reduction of motion artifacts and - for PET imaging - reduced radiation exposure and new approaches for attenuation correction. Furthermore, ML has the potential to support decision making by a combined analysis of data derived from different modalities, especially in oncology. In this context, we see great potential for ML in multiparametric hybrid imaging and the development of imaging biomarkers. RESULTS AND CONCLUSION In this review, we will describe the basics of ML, present approaches in hybrid imaging of MRI, CT, and PET, and discuss the specific challenges associated with it and the steps ahead to make ML a diagnostic and clinical tool in the future. KEY POINTS · ML provides a viable clinical solution for the reconstruction, processing, and analysis of hybrid imaging obtained from MRI, CT, and PET.. CITATION FORMAT · Küstner T, Hepp T, Seith F. Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1718-4128.
Collapse
Affiliation(s)
- Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| | - Tobias Hepp
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
| |
Collapse
|
15
|
Esfahani EE. Isotropic multichannel total variation framework for joint reconstruction of multicontrast parallel MRI. J Med Imaging (Bellingham) 2022; 9:013502. [PMID: 35187198 PMCID: PMC8849322 DOI: 10.1117/1.jmi.9.1.013502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose: To develop a synergistic image reconstruction framework that exploits multicontrast (MC), multicoil, and compressed sensing (CS) redundancies in magnetic resonance imaging (MRI). Approach: CS, MC acquisition, and parallel imaging (PI) have been individually well developed, but the combination of the three has not been equally well studied, much less the potential benefits of isotropy within such a setting. Inspired by total variation theory, we introduce an isotropic MC image regularizer and attain its full potential by integrating it into compressed MC multicoil MRI. A convex optimization problem is posed to model the new variational framework and a first-order algorithm is developed to solve the problem. Results: It turns out that the proposed isotropic regularizer outperforms many of the state-of-the-art reconstruction methods not only in terms of rotation-invariance preservation of symmetrical features, but also in suppressing noise or streaking artifacts, which are normally encountered in PI methods at aggressive undersampling rates. Moreover, the new framework significantly prevents intercontrast leakage of contrast-specific details, which seems to be a difficult situation to handle for some variational and low-rank MC reconstruction approaches. Conclusions: The new framework is a viable option for image reconstruction in fast protocols of MC parallel MRI, potentially reducing patient discomfort in otherwise long and time-consuming scans.
Collapse
Affiliation(s)
- Erfan Ebrahim Esfahani
- Independent Researcher, Tehran, Iran,Address all correspondence to Erfan Ebrahim Esfahani,
| |
Collapse
|
16
|
Guo S, Sheng Y, Chai L, Zhang J. Kernel graph filtering-A new method for dynamic sinogram denoising. PLoS One 2021; 16:e0260374. [PMID: 34855798 PMCID: PMC8638912 DOI: 10.1371/journal.pone.0260374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Low count PET (positron emission tomography) imaging is often desirable in clinical diagnosis and biomedical research, but its images are generally very noisy, due to the very weak signals in the sinograms used in image reconstruction. To address this issue, this paper presents a novel kernel graph filtering method for dynamic PET sinogram denoising. This method is derived from treating the dynamic sinograms as the signals on a graph, and learning the graph adaptively from the kernel principal components of the sinograms to construct a lowpass kernel graph spectrum filter. The kernel graph filter thus obtained is then used to filter the original sinogram time frames to obtain the denoised sinograms for PET image reconstruction. Extensive tests and comparisons on the simulated and real life in-vivo dynamic PET datasets show that the proposed method outperforms the existing methods in sinogram denoising and image enhancement of dynamic PET at all count levels, especially at low count, with a great potential in real life applications of dynamic PET imaging.
Collapse
Affiliation(s)
- Shiyao Guo
- Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Yuxia Sheng
- Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Li Chai
- Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Jingxin Zhang
- School of Science, Computing and Engineering Technology, Swinburne University of Technology Melbourne, VIC, Australia
| |
Collapse
|
17
|
Papoutsellis E, Ametova E, Delplancke C, Fardell G, Jørgensen JS, Pasca E, Turner M, Warr R, Lionheart WRB, Withers PJ. Core Imaging Library - Part II: multichannel reconstruction for dynamic and spectral tomography. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200193. [PMID: 34218671 PMCID: PMC8255950 DOI: 10.1098/rsta.2020.0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
The newly developed core imaging library (CIL) is a flexible plug and play library for tomographic imaging with a specific focus on iterative reconstruction. CIL provides building blocks for tailored regularized reconstruction algorithms and explicitly supports multichannel tomographic data. In the first part of this two-part publication, we introduced the fundamentals of CIL. This paper focuses on applications of CIL for multichannel data, e.g. dynamic and spectral. We formalize different optimization problems for colour processing, dynamic and hyperspectral tomography and demonstrate CIL's capabilities for designing state-of-the-art reconstruction methods through case studies and code snapshots. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Evangelos Papoutsellis
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
- Scientific Computing Department, Science Technology Facilities Council, UK Research and Innovation, Rutherford Appleton Laboratory, Didcot, UK
| | - Evelina Ametova
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Gemma Fardell
- Scientific Computing Department, Science Technology Facilities Council, UK Research and Innovation, Rutherford Appleton Laboratory, Didcot, UK
| | - Jakob S Jørgensen
- Department of Mathematics, The University of Manchester, Manchester, UK
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edoardo Pasca
- Scientific Computing Department, Science Technology Facilities Council, UK Research and Innovation, Rutherford Appleton Laboratory, Didcot, UK
| | - Martin Turner
- Research IT Services, The University of Manchester, Manchester, UK
| | - Ryan Warr
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | | | - Philip J Withers
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Brown R, Kolbitsch C, Delplancke C, Papoutsellis E, Mayer J, Ovtchinnikov E, Pasca E, Neji R, da Costa-Luis C, Gillman AG, Ehrhardt MJ, McClelland JR, Eiben B, Thielemans K. Motion estimation and correction for simultaneous PET/MR using SIRF and CIL. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200208. [PMID: 34218674 DOI: 10.1098/rsta.2020.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 05/10/2023]
Abstract
SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Richard Brown
- Institute of Nuclear Medicine, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christoph Kolbitsch
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Evangelos Papoutsellis
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Evgueni Ovtchinnikov
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Edoardo Pasca
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Casper da Costa-Luis
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ashley G Gillman
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| | - Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Bjoern Eiben
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
19
|
Arridge SR, Ehrhardt MJ, Thielemans K. (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200205. [PMID: 33966461 DOI: 10.1098/rsta.2020.0205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Imaging is omnipresent in modern society with imaging devices based on a zoo of physical principles, probing a specimen across different wavelengths, energies and time. Recent years have seen a change in the imaging landscape with more and more imaging devices combining that which previously was used separately. Motivated by these hardware developments, an ever increasing set of mathematical ideas is appearing regarding how data from different imaging modalities or channels can be synergistically combined in the image reconstruction process, exploiting structural and/or functional correlations between the multiple images. Here we review these developments, give pointers to important challenges and provide an outlook as to how the field may develop in the forthcoming years. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.
Collapse
Affiliation(s)
- Simon R Arridge
- Department of Computer Science, University College London, London, UK
| | - Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, Bath, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
| |
Collapse
|
20
|
Bödenler M, Maier O, Stollberger R, Broche LM, Ross PJ, MacLeod M, Scharfetter H. Joint multi-field T 1 quantification for fast field-cycling MRI. Magn Reson Med 2021; 86:2049-2063. [PMID: 34110028 PMCID: PMC8362152 DOI: 10.1002/mrm.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Purpose Recent developments in hardware design enable the use of fast field‐cycling (FFC) techniques in MRI to exploit the different relaxation rates at very low field strength, achieving novel contrast. The method opens new avenues for in vivo characterizations of pathologies but at the expense of longer acquisition times. To mitigate this, we propose a model‐based reconstruction method that fully exploits the high information redundancy offered by FFC methods. Methods The proposed model‐based approach uses joint spatial information from all fields by means of a Frobenius ‐ total generalized variation regularization. The algorithm was tested on brain stroke images, both simulated and acquired from FFC patients scans using an FFC spin echo sequences. The results are compared to three non‐linear least squares fits with progressively increasing complexity. Results The proposed method shows excellent abilities to remove noise while maintaining sharp image features with large signal‐to‐noise ratio gains at low‐field images, clearly outperforming the reference approach. Especially patient data show huge improvements in visual appearance over all fields. Conclusion The proposed reconstruction technique largely improves FFC image quality, further pushing this new technology toward clinical standards.
Collapse
Affiliation(s)
- Markus Bödenler
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
- Institute of eHealthUniversity of Applied Sciences FH JOANNEUMGrazAustria
| | - Oliver Maier
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
| | - Rudolf Stollberger
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Lionel M. Broche
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenForesterhill, AberdeenUK
| | - P. James Ross
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenForesterhill, AberdeenUK
| | - Mary‐Joan MacLeod
- Institute of Medical SciencesUniversity of AberdeenForesterhill, AberdeenUK
| | | |
Collapse
|
21
|
Wapler MC, Testud F, Hucker P, Leupold J, von Elverfeldt D, Zaitsev M, Wallrabe U. MR-compatible optical microscope for in-situ dual-mode MR-optical microscopy. PLoS One 2021; 16:e0250903. [PMID: 33970948 PMCID: PMC8109821 DOI: 10.1371/journal.pone.0250903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
We present the development of a dual-mode imaging platform that combines optical microscopy with magnetic resonance microscopy. Our microscope is designed to operate inside a 9.4T small animal scanner with the option to use a 72mm bore animal RF coil or different integrated linear micro coils. With a design that minimizes the magnetic distortions near the sample, we achieved a field inhomogeneity of 19 ppb RMS. We further integrated a waveguide in the optical layout for the electromagnetic shielding of the camera, which minimizes the noise increase in the MR and optical images below practical relevance. The optical layout uses an adaptive lens for focusing, 2 × 2 modular combinations of objectives with 0.6mm to 2.3mm field of view and 4 configurable RGBW illumination channels and achieves a plano-apochromatic optical aberration correction with 0.6μm to 2.3μm resolution. We present the design, implementation and characterization of the prototype including the general optical and MR-compatible design strategies, a knife-edge optical characterization and different concurrent imaging demonstrations.
Collapse
Affiliation(s)
- Matthias C. Wapler
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| | - Frederik Testud
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Hucker
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxim Zaitsev
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for High-Field Magnetic Resonance, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ulrike Wallrabe
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Kang SK, Lee JS. Anatomy-guided PET reconstruction using l1bowsher prior. Phys Med Biol 2021; 66. [PMID: 33780912 DOI: 10.1088/1361-6560/abf2f7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.
Collapse
Affiliation(s)
- Seung Kwan Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul 04793, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul 04793, Republic of Korea
| |
Collapse
|
23
|
Maier O, Spann SM, Pinter D, Gattringer T, Hinteregger N, Thallinger GG, Enzinger C, Pfeuffer J, Bredies K, Stollberger R. Non-linear fitting with joint spatial regularization in arterial spin labeling. Med Image Anal 2021; 71:102067. [PMID: 33930830 DOI: 10.1016/j.media.2021.102067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Multi-Delay single-shot arterial spin labeling (ASL) imaging provides accurate cerebral blood flow (CBF) and, in addition, arterial transit time (ATT) maps but the inherent low SNR can be challenging. Especially standard fitting using non-linear least squares often fails in regions with poor SNR, resulting in noisy estimates of the quantitative maps. State-of-the-art fitting techniques improve the SNR by incorporating prior knowledge in the estimation process which typically leads to spatial blurring. To this end, we propose a new estimation method with a joint spatial total generalized variation regularization on CBF and ATT. This joint regularization approach utilizes shared spatial features across maps to enhance sharpness and simultaneously improves noise suppression in the final estimates. The proposed method is evaluated at three levels, first on synthetic phantom data including pathologies, followed by in vivo acquisitions of healthy volunteers, and finally on patient data following an ischemic stroke. The quantitative estimates are compared to two reference methods, non-linear least squares fitting and a state-of-the-art ASL quantification algorithm based on Bayesian inference. The proposed joint regularization approach outperforms the reference implementations, substantially increasing the SNR in CBF and ATT while maintaining sharpness and quantitative accuracy in the estimates.
Collapse
Affiliation(s)
- Oliver Maier
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Stefan M Spann
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Thomas Gattringer
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Nicole Hinteregger
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Christian Enzinger
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Henkestraße 127, Erlangen 91052, Germany.
| | - Kristian Bredies
- Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| |
Collapse
|
24
|
Dwork N, Gordon JW, Tang S, O'Connor D, Hansen ESS, Laustsen C, Larson PEZ. Di-chromatic interpolation of magnetic resonance metabolic images. MAGMA (NEW YORK, N.Y.) 2021; 34:57-72. [PMID: 33502669 DOI: 10.1007/s10334-020-00903-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Magnetic resonance imaging with hyperpolarized contrast agents can provide unprecedented in vivo measurements of metabolism, but yields images that are lower resolution than that achieved with proton anatomical imaging. In order to spatially localize the metabolic activity, the metabolic image must be interpolated to the size of the proton image. The most common methods for choosing the unknown values rely exclusively on values of the original uninterpolated image. METHODS In this work, we present an alternative method that uses the higher-resolution proton image to provide additional spatial structure. The interpolated image is the result of a convex optimization algorithm which is solved with the fast iterative shrinkage threshold algorithm (FISTA). RESULTS Results are shown with images of hyperpolarized pyruvate, lactate, and bicarbonate using data of the heart and brain from healthy human volunteers, a healthy porcine heart, and a human with prostate cancer.
Collapse
Affiliation(s)
- Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California in San Francisco, San Francisco, USA.
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California in San Francisco, San Francisco, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California in San Francisco, San Francisco, USA
| | - Daniel O'Connor
- Department of Mathematics and Statistics, University of San Francisco, San Francisco, USA
| | | | | | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California in San Francisco, San Francisco, USA
| |
Collapse
|
25
|
Schramm G, Rigie D, Vahle T, Rezaei A, Van Laere K, Shepherd T, Nuyts J, Boada F. Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network. Neuroimage 2021; 224:117399. [PMID: 32971267 PMCID: PMC7812485 DOI: 10.1016/j.neuroimage.2020.117399] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
In the last two decades, it has been shown that anatomically-guided PET reconstruction can lead to improved bias-noise characteristics in brain PET imaging. However, despite promising results in simulations and first studies, anatomically-guided PET reconstructions are not yet available for use in routine clinical because of several reasons. In light of this, we investigate whether the improvements of anatomically-guided PET reconstruction methods can be achieved entirely in the image domain with a convolutional neural network (CNN). An entirely image-based CNN post-reconstruction approach has the advantage that no access to PET raw data is needed and, moreover, that the prediction times of trained CNNs are extremely fast on state of the art GPUs which will substantially facilitate the evaluation, fine-tuning and application of anatomically-guided PET reconstruction in real-world clinical settings. In this work, we demonstrate that anatomically-guided PET reconstruction using the asymmetric Bowsher prior can be well-approximated by a purely shift-invariant convolutional neural network in image space allowing the generation of anatomically-guided PET images in almost real-time. We show that by applying dedicated data augmentation techniques in the training phase, in which 16 [18F]FDG and 10 [18F]PE2I data sets were used, lead to a CNN that is robust against the used PET tracer, the noise level of the input PET images and the input MRI contrast. A detailed analysis of our CNN in 36 [18F]FDG, 18 [18F]PE2I, and 7 [18F]FET test data sets demonstrates that the image quality of our trained CNN is very close to the one of the target reconstructions in terms of regional mean recovery and regional structural similarity.
Collapse
Affiliation(s)
- Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium.
| | - David Rigie
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NYC, US
| | | | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Timothy Shepherd
- Department of Neuroradiology, NYU Langone Health, Department of Radiology, New York University School of Medicine, New York, US
| | - Johan Nuyts
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Fernando Boada
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NYC, US
| |
Collapse
|
26
|
Polak D, Cauley S, Bilgic B, Gong E, Bachert P, Adalsteinsson E, Setsompop K. Joint multi-contrast variational network reconstruction (jVN) with application to rapid 2D and 3D imaging. Magn Reson Med 2020; 84:1456-1469. [PMID: 32129529 PMCID: PMC7539238 DOI: 10.1002/mrm.28219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To improve the image quality of highly accelerated multi-channel MRI data by learning a joint variational network that reconstructs multiple clinical contrasts jointly. METHODS Data from our multi-contrast acquisition were embedded into the variational network architecture where shared anatomical information is exchanged by mixing the input contrasts. Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retrospective under-sampling at R = 6 (2D) and R = 4 × 4 (3D) acceleration. Prospective acceleration was also performed for 3D data where the combined acquisition time for whole brain coverage at 1 mm isotropic resolution across three contrasts was less than 3 min. RESULTS Across all test datasets, our joint multi-contrast network better preserved fine anatomical details with reduced image-blurring when compared to the corresponding single-contrast reconstructions. Improvement in image quality was also obtained through complementary k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the overall best performance as evidenced by exemplary slices and quantitative error metrics. CONCLUSION By leveraging shared anatomical structures across the jointly reconstructed scans, our joint multi-contrast approach learnt more efficient regularizers, which helped to retain natural image appearance and avoid over-smoothing. When synergistically combined with advanced encoding techniques, the performance was further improved, enabling up to R = 16-fold acceleration with good image quality. This should help pave the way to very rapid high-resolution brain exams.
Collapse
Affiliation(s)
- Daniel Polak
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Stephen Cauley
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Berkin Bilgic
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Peter Bachert
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Sudarshan VP, Egan GF, Chen Z, Awate SP. Joint PET-MRI image reconstruction using a patch-based joint-dictionary prior. Med Image Anal 2020; 62:101669. [DOI: 10.1016/j.media.2020.101669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
|
28
|
Kopanoglu E, Güngör A, Kilic T, Saritas EU, Oguz KK, Çukur T, Güven HE. Simultaneous use of individual and joint regularization terms in compressive sensing: Joint reconstruction of multi-channel multi-contrast MRI acquisitions. NMR IN BIOMEDICINE 2020; 33:e4247. [PMID: 31970849 DOI: 10.1002/nbm.4247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Multi-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.
Collapse
Affiliation(s)
- Emre Kopanoglu
- Cardiff University, Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- ASELSAN Research Center, Ankara, Turkey
| | - Alper Güngör
- ASELSAN Research Center, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Toygan Kilic
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | - Kader K Oguz
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Radiology, Hacettepe University, Ankara, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | | |
Collapse
|
29
|
Bredies K, Nuster R, Watschinger R. TGV-regularized inversion of the Radon transform for photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:994-1019. [PMID: 32133234 PMCID: PMC7041474 DOI: 10.1364/boe.379941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
We propose and study a reconstruction method for photoacoustic tomography (PAT) based on total generalized variation (TGV) regularization for the inversion of the slice-wise 2D-Radon transform in 3D. The latter problem occurs for recently-developed PAT imaging techniques with parallelized integrating ultrasound detection where projection data from various directions is sequentially acquired. As the imaging speed is presently limited to 20 seconds per 3D image, the reconstruction of temporally-resolved 3D sequences of, e.g., one heartbeat or breathing cycle, is very challenging and currently, the presence of motion artifacts in the reconstructions obstructs the applicability for biomedical research. In order to push these techniques forward towards real time, it thus becomes necessary to reconstruct from less measured data such as few-projection data and consequently, to employ sophisticated reconstruction methods in order to avoid typical artifacts. The proposed TGV-regularized Radon inversion is a variational method that is shown to be capable of such artifact-free inversion. It is validated by numerical simulations, compared to filtered back projection (FBP), and performance-tested on real data from phantom as well as in-vivo mouse experiments. The results indicate that a speed-up factor of four is possible without compromising reconstruction quality.
Collapse
Affiliation(s)
- Kristian Bredies
- Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
- NAWI Graz and BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Robert Nuster
- NAWI Graz and BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Department of Physics, University of Graz, Universitaetsplatz 5, 8010 Graz, Austria
| | - Raphael Watschinger
- Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
- Institute of Applied Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
| |
Collapse
|
30
|
Ehrhardt MJ, Markiewicz P, Schönlieb CB. Faster PET reconstruction with non-smooth priors by randomization and preconditioning. Phys Med Biol 2019; 64:225019. [PMID: 31430733 DOI: 10.1088/1361-6560/ab3d07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Uncompressed clinical data from modern positron emission tomography (PET) scanners are very large, exceeding 350 million data points (projection bins). The last decades have seen tremendous advancements in mathematical imaging tools many of which lead to non-smooth (i.e. non-differentiable) optimization problems which are much harder to solve than smooth optimization problems. Most of these tools have not been translated to clinical PET data, as the state-of-the-art algorithms for non-smooth problems do not scale well to large data. In this work, inspired by big data machine learning applications, we use advanced randomized optimization algorithms to solve the PET reconstruction problem for a very large class of non-smooth priors which includes for example total variation, total generalized variation, directional total variation and various different physical constraints. The proposed algorithm randomly uses subsets of the data and only updates the variables associated with these. While this idea often leads to divergent algorithms, we show that the proposed algorithm does indeed converge for any proper subset selection. Numerically, we show on real PET data (FDG and florbetapir) from a Siemens Biograph mMR that about ten projections and backprojections are sufficient to solve the MAP optimisation problem related to many popular non-smooth priors; thus showing that the proposed algorithm is fast enough to bring these models into routine clinical practice.
Collapse
Affiliation(s)
- Matthias J Ehrhardt
- Institute for Mathematical Innovation, University of Bath, Bath BA2 7JU, United Kingdom
| | | | | |
Collapse
|
31
|
Wech T, Kunze KP, Rischpler C, Stäb D, Speier P, Köstler H, Nekolla SG. A compressed sensing accelerated radial MS-CAIPIRINHA technique for extended anatomical coverage in myocardial perfusion studies on PET/MR systems. Phys Med 2019; 64:157-165. [PMID: 31515014 DOI: 10.1016/j.ejmp.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Simultaneous acquisition of myocardial first-pass perfusion MRI and 18F-FDG PET viability imaging on integrated whole-body PET/MR hybrid systems synergistically delivers both functional and metabolic information on the tissue state. While PET viability scans are inherently three-dimensional, conventional MR myocardial perfusion imaging is typically performed using only three short-axis slices with a temporal resolution of one RR-interval. To improve the integrated diagnostics, an acquisition and image reconstruction method based on "Multi-Slice Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration (MS-CAIPIRINHA)" was developed extending anatomical coverage for MR perfusion imaging to six short-axis slices per RR-interval. METHODS An ECG-gated radial TurboFLASH MR pulse sequence with dual band excitation was implemented on an integrated whole-body PET/MR system and a model-based reconstruction technique was developed to fully reconstruct the undersampled CAIPIRINHA acquisitions. An 18F-FDG viability PET scan was performed simultaneously to the MR protocol, additionally complemented by a late enhancement MRI acquisition (LGE). RESULTS AND CONCLUSION The developed imaging technique was tested in five patients with known collateralized coronary total occlusions, resulting in improved characterization of perfusion across areas of decreased tissue viability as indicated by the simultaneously determined 18F-FDG uptake. While conventional MR perfusion with only three slice positions was occasionally missing substantial parts of the viable area, the new approach achieved LV coverage only slightly inferior to LGE imaging and therefore better comparable to PET results. The quality of first-pass enhancement curves was comparable between conventional and radial MS-CAIPIRINHA-based acquisitions.
Collapse
Affiliation(s)
- Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany; Comprehensive Heart Failure Centre, University Hospital Würzburg, Germany.
| | - Karl P Kunze
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany
| | - Christoph Rischpler
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich Heart Alliance, Munich, Germany; Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Stäb
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Peter Speier
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany; Comprehensive Heart Failure Centre, University Hospital Würzburg, Germany
| | - Stephan G Nekolla
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
Kaggie JD, Deen S, Kessler DA, McLean MA, Buonincontri G, Schulte RF, Addley H, Sala E, Brenton J, Graves MJ, Gallagher FA. Feasibility of Quantitative Magnetic Resonance Fingerprinting in Ovarian Tumors for T 1 and T 2 Mapping in a PET/MR Setting. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:509-515. [PMID: 32066996 PMCID: PMC7025887 DOI: 10.1109/trpms.2019.2905366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiparametric magnetic resonance imaging (MRI) can be used to characterize many cancer subtypes including ovarian cancer. Quantitative mapping of MRI relaxation values, such as T 1 and T 2 mapping, is promising for improving tumor assessment beyond conventional qualitative T 1- and T 2-weighted images. However, quantitative MRI relaxation mapping methods often involve long scan times due to sequentially measuring many parameters. Magnetic resonance fingerprinting (MRF) is a new method that enables fast quantitative MRI by exploiting the transient signals caused by the variation of pseudorandom sequence parameters. These transient signals are then matched to a simulated dictionary of T 1 and T 2 values to create quantitative maps. The ability of MRF to simultaneously measure multiple parameters, could represent a new approach to characterizing cancer and assessing treatment response. This feasibility study investigates MRF for simultaneous T 1, T 2, and relative proton density (rPD) mapping using ovarian cancer as a model system.
Collapse
Affiliation(s)
- Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Dimitri A. Kessler
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Mary A. McLean
- Cancer Research U.K. Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | | | | | - Helen Addley
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K.; Cancer Research U.K. Cambridge Institute, Cambridge CB2 0RE, U.K
| | - James Brenton
- Cancer Research U.K. Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Martin J. Graves
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| |
Collapse
|
33
|
Bustin A, Lima da Cruz G, Jaubert O, Lopez K, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. Magn Reson Med 2019; 81:3705-3719. [PMID: 30834594 PMCID: PMC6646908 DOI: 10.1002/mrm.27694] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a new high-dimensionality undersampled patch-based reconstruction (HD-PROST) for highly accelerated 2D and 3D multi-contrast MRI. METHODS HD-PROST jointly reconstructs multi-contrast MR images by exploiting the highly redundant information, on a local and non-local scale, and the strong correlation shared between the multiple contrast images. This is achieved by enforcing multi-dimensional low-rank in the undersampled images. 2D magnetic resonance fingerprinting (MRF) phantom and in vivo brain acquisitions were performed to evaluate the performance of HD-PROST for highly accelerated simultaneous T1 and T2 mapping. Additional in vivo experiments for reconstructing multiple undersampled 3D magnetization transfer (MT)-weighted images were conducted to illustrate the impact of HD-PROST for high-resolution multi-contrast 3D imaging. RESULTS In the 2D MRF phantom study, HD-PROST provided accurate and precise estimation of the T1 and T2 values in comparison to gold standard spin echo acquisitions. HD-PROST achieved good quality maps for the in vivo 2D MRF experiments in comparison to conventional low-rank inversion reconstruction. T1 and T2 values of white matter and gray matter were in good agreement with those reported in the literature for MRF acquisitions with reduced number of time point images (500 time point images, ~2.5 s scan time). For in vivo MT-weighted 3D acquisitions (6 different contrasts), HD-PROST achieved similar image quality than the fully sampled reference image for an undersampling factor of 6.5-fold. CONCLUSION HD-PROST enables multi-contrast 2D and 3D MR images in a short acquisition time without compromising image quality. Ultimately, this technique may increase the potential of conventional parameter mapping.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Gastão Lima da Cruz
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Olivier Jaubert
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Karina Lopez
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - René M. Botnar
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
34
|
Huber R, Haberfehlner G, Holler M, Kothleitner G, Bredies K. Total generalized variation regularization for multi-modal electron tomography. NANOSCALE 2019; 11:5617-5632. [PMID: 30864603 DOI: 10.1039/c8nr09058k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies.
Collapse
Affiliation(s)
- Richard Huber
- Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, A-8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
35
|
Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, El Fakhri G, Qi J, Li Q. Iterative PET Image Reconstruction Using Convolutional Neural Network Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:675-685. [PMID: 30222554 PMCID: PMC6472985 DOI: 10.1109/tmi.2018.2869871] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently, the deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interests in medical imaging. In this paper, we trained a deep residual convolutional neural network to improve PET image quality by using the existing inter-patient information. An innovative feature of the proposed method is that we embed the neural network in the iterative reconstruction framework for image representation, rather than using it as a post-processing tool. We formulate the objective function as a constrained optimization problem and solve it using the alternating direction method of multipliers algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. Quantification results show that our proposed iterative neural network method can outperform the neural network denoising and conventional penalized maximum likelihood methods.
Collapse
Affiliation(s)
- Kuang Gong
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA, and with the Department of Biomedical Engineering, University of California, Davis CA 95616 USA
| | - Jiahui Guan
- Department of Statistics, University of California, Davis, CA 95616 USA
| | - Kyungsang Kim
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Xuezhu Zhang
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | - Jaewon Yang
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143 USA
| | - Youngho Seo
- Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143 USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA 95616 USA
| | - Quanzheng Li
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
36
|
Mehranian A, Belzunce MA, McGinnity CJ, Bustin A, Prieto C, Hammers A, Reader AJ. Multi-modal synergistic PET and MR reconstruction using mutually weighted quadratic priors. Magn Reson Med 2019; 81:2120-2134. [PMID: 30325053 PMCID: PMC6563465 DOI: 10.1002/mrm.27521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE To propose a framework for synergistic reconstruction of PET-MR and multi-contrast MR data to improve the image quality obtained from noisy PET data and from undersampled MR data. THEORY AND METHODS Weighted quadratic priors were devised to preserve common boundaries between PET-MR images while reducing noise, PET Gibbs ringing, and MR undersampling artifacts. These priors are iteratively reweighted using normalized multi-modal Gaussian similarity kernels. Synergistic PET-MR reconstructions were built on the PET maximum a posteriori expectation maximization algorithm and the MR regularized sensitivity encoding method. The proposed approach was compared to conventional methods, total variation, and prior-image weighted quadratic regularization methods. Comparisons were performed on a simulated [18 F]fluorodeoxyglucose-PET and T1 /T2 -weighted MR brain phantom, 2 in vivo T1 /T2 -weighted MR brain datasets, and an in vivo [18 F]fluorodeoxyglucose-PET and fluid-attenuated inversion recovery/T1 -weighted MR brain dataset. RESULTS Simulations showed that synergistic reconstructions achieve the lowest quantification errors for all image modalities compared to conventional, total variation, and weighted quadratic methods. Whereas total variation regularization preserved modality-unique features, this method failed to recover PET details and was not able to reduce MR artifacts compared to our proposed method. For in vivo MR data, our method maintained similar image quality for 3× and 14× accelerated data. Reconstruction of the PET-MR dataset also demonstrated improved performance of our method compared to the conventional independent methods in terms of reduced Gibbs and undersampling artifacts. CONCLUSION The proposed methodology offers a robust multi-modal synergistic image reconstruction framework that can be readily built on existing established algorithms.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonUnited Kingdom
| | - Martin A. Belzunce
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonUnited Kingdom
| | - Colm J. McGinnity
- King's College London & Guy's and St Thomas' PET Centre, St Thomas' HospitalLondonUnited Kingdom
| | - Aurelien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonUnited Kingdom
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonUnited Kingdom
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, St Thomas' HospitalLondonUnited Kingdom
| | - Andrew J. Reader
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonUnited Kingdom
| |
Collapse
|
37
|
Ropella-Panagis KM, Seiberlich N, Gulani V. Magnetic Resonance Fingerprinting: Implications and Opportunities for PET/MR. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:388-399. [PMID: 32864537 DOI: 10.1109/trpms.2019.2897425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic Resonance Imaging (MRI) can be used to assess anatomical structure, and its sensitivity to a variety of tissue properties enables superb contrast between tissues as well as the ability to characterize these tissues. However, despite vast potential for quantitative and functional evaluation, MRI is typically used qualitatively, in which the underlying tissue properties are not measured, and thus the brightness of each pixel is not quantitatively meaningful. Positron Emission Tomography (PET) is an inherently quantitative imaging modality that interrogates functional activity within a tissue, probed by a molecule of interest coupled with an appropriate tracer. These modalities can complement one another to provide clinical information regarding both structure and function, but there are still technical and practical hurdles in the way of the integrated use of both modalities. Recent advances in MRI have moved the field in an increasingly quantitative direction, which is complementary to PET, and could also potentially help solve some of the challenges in PET/MR. Magnetic Resonance Fingerprinting (MRF) is a recently described MRI-based technique which can efficiently and simultaneously quantitatively map several tissue properties in a single exam. Here, the basic principles behind the quantitative approach of MRF are laid out, and the potential implications for combined PET/MR are discussed.
Collapse
Affiliation(s)
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
38
|
Kolbitsch C, Neji R, Fenchel M, Schuh A, Mallia A, Marsden P, Schaeffter T. Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR. ACTA ACUST UNITED AC 2018; 64:015007. [DOI: 10.1088/1361-6560/aaf246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Deidda D, Karakatsanis N, Robson PM, Efthimiou N, Fayad ZA, Aykroyd RG, Tsoumpas C. Effect of PET-MR Inconsistency in the Kernel Image Reconstruction Method. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 3:400-409. [PMID: 33134651 DOI: 10.1109/trpms.2018.2884176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anatomically-driven image reconstruction algorithms have become very popular in positron emission tomography (PET) where they have demonstrated improved image resolution and quantification. This work, consider the effect of spatial inconsistency between MR and PET images in hot and cold regions of the PET image. We investigate these effects on the kernel method from machine learning, in particular, the hybrid kernelized expectation maximization (HKEM). These were applied to Jaszczak phantom and patient data acquired with the Biograph Siemens mMR. The results show that even a small shift can cause a significant change in activity concentration. In general, the PET-MR inconsistencies can induce the partial volume effect, more specifically the 'spill-in' of the affected cold regions and the 'spill-out' from the hot regions. The maximum change was about 100% for the cold region and 10% for the hot lesion using KEM, against the 37% and 8% obtained with HKEM. The findings of this work suggest that including PET information in the kernel enhances the flexibility of the reconstruction in case of spatial inconsistency. Nevertheless, accurate registration and choice of the appropriate MR image for the creation of the kernel is essential to avoid artifacts, blurring, and bias.
Collapse
Affiliation(s)
- Daniel Deidda
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, and the Department of Statistics, School of Mathematics, University of Leeds, UK
| | - Nicolas Karakatsanis
- Translational and Molecular Imaging Institute (TMII), Icahn School of Medicine at Mount Sinai, Department of Radiology, NY, USA; Division of Radio-pharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College of Cornell University, NY, USA
| | - Philip M Robson
- Translational and Molecular Imaging Institute (TMII), Icahn School of Medicine at Mount Sinai, Department of Radiology, NY, USA
| | - Nikos Efthimiou
- School of Life Sciences, Faculty of Health Sciences, University of Hull, UK
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute (TMII), Icahn School of Medicine at Mount Sinai, Department of Radiology, NY, USA
| | - Robert G Aykroyd
- Department of Statistics, School of Mathematics, University of Leeds, UK
| | - Charalampos Tsoumpas
- Translational and Molecular Imaging Institute (TMII), Icahn School of Medicine at Mount Sinai, Department of Radiology, NY, USA; Biomedical Imaging Science Department, School of Medicine, University of Leeds, UK and with Invicro Ltd., UK
| |
Collapse
|
40
|
Reci A, de Kort DW, Sederman AJ, Gladden LF. Accelerating the estimation of 3D spatially resolved T 2 distributions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:93-102. [PMID: 30236617 DOI: 10.1016/j.jmr.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Obtaining quantitative, 3D spatially-resolved T2 distributions (T2 maps) from magnetic resonance data is of importance in both medical and porous media applications. Due to the long acquisition time, there is considerable interest in accelerating the experiments by applying undersampling schemes during the acquisition and developing reconstruction techniques for obtaining the 3D T2 maps from the undersampled data. A multi-echo spin echo pulse sequence is used in this work to acquire the undersampled data according to two different sampling patterns: a conventional coherent sampling pattern where the same set of lines in k-space is sampled for all equally-spaced echoes in the echo train, and a proposed incoherent sampling pattern where an independent set of k-space lines is sampled for each echo. The conventional reconstruction technique of total variation regularization is compared to the more recent techniques of nuclear norm regularization and Nuclear Total Generalized Variation (NTGV) regularization. It is shown that best reconstructions are obtained when the data acquired using an incoherent sampling scheme are processed using NTGV regularization. Using an incoherent sampling pattern and NTGV regularization as the reconstruction technique, quantitative results are obtained at sampling percentages as low as 3.1% of k-space, corresponding to a 32-fold decrease in the acquisition time, compared to a fully sampled dataset.
Collapse
Affiliation(s)
- A Reci
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - D W de Kort
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - A J Sederman
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.
| | - L F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
41
|
Lesch A, Schlöegl M, Holler M, Bredies K, Stollberger R. Ultrafast 3D Bloch-Siegert B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -mapping using variational modeling. Magn Reson Med 2018; 81:881-892. [PMID: 30444294 PMCID: PMC6491998 DOI: 10.1002/mrm.27434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE Highly accelerated B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -mapping based on the Bloch-Siegert shift to allow 3D acquisitions even within a brief period of a single breath-hold. THEORY AND METHODS The B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> dependent Bloch-Siegert phase shift is measured within a highly subsampled 3D-volume and reconstructed using a two-step variational approach, exploiting the different spatial distribution of morphology and B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -field. By appropriate variable substitution the basic non-convex optimization problem is transformed in a sequential solution of two convex optimization problems with a total generalized variation (TGV) regularization for the morphology part and a smoothness constraint for the B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -field. The method is evaluated on 3D in vivo data with retro- and prospective subsampling. The reconstructed B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -maps are compared to a zero-padded low resolution reconstruction and a fully sampled reference. RESULTS The reconstructed B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow/> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:math> -field maps are in high accordance to the reference for all measurements with a mean error below 1% and a maximum of about 4% for acceleration factors up to 100. The minimal error for different sampling patterns was achieved by sampling a dense region in k-space center with acquisition times of around 10-12 s for 3D-acquistions. CONCLUSIONS The proposed variational approach enables highly accelerated 3D acquisitions of Bloch-Siegert data and thus full liver coverage in a single breath hold.
Collapse
Affiliation(s)
- Andreas Lesch
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Matthias Schlöegl
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Martin Holler
- BioTechMed-Graz, Graz, Austria.,Institute for Mathematics and Scientific Computing, Member of NAWI Graz, University of Graz, Graz, Austria
| | - Kristian Bredies
- BioTechMed-Graz, Graz, Austria.,Institute for Mathematics and Scientific Computing, Member of NAWI Graz, University of Graz, Graz, Austria
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
42
|
|
43
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Holler M, Huber R, Knoll F. Coupled regularization with multiple data discrepancies. INVERSE PROBLEMS 2018; 34:084003. [PMID: 30686851 PMCID: PMC6344056 DOI: 10.1088/1361-6420/aac539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We consider a class of regularization methods for inverse problems where a coupled regularization is employed for the simultaneous reconstruction of data from multiple sources. Applications for such a setting can be found in multi-spectral or multimodality inverse problems, but also in inverse problems with dynamic data. We consider this setting in a rather general framework and derive stability and convergence results, including convergence rates. In particular, we show how parameter choice strategies adapted to the interplay of different data channels allow to improve upon convergence rates that would be obtained by treating all channels equally. Motivated by concrete applications, our results are obtained under rather general assumptions that allow to include the Kullback-Leibler divergence as data discrepancy term. To simplify their application to concrete settings, we further elaborate several practically relevant special cases in detail. To complement the analytical results, we also provide an algorithmic framework and source code that allows to solve a class of jointly regularized inverse problems with any number of data discrepancies. As concrete applications, we show numerical results for multi-contrast MR and joint MR-PET reconstruction.
Collapse
|
45
|
Bilgic B, Kim TH, Liao C, Manhard MK, Wald LL, Haldar JP, Setsompop K. Improving parallel imaging by jointly reconstructing multi-contrast data. Magn Reson Med 2018; 80:619-632. [PMID: 29322551 PMCID: PMC5910232 DOI: 10.1002/mrm.27076] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. METHODS We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. RESULTS We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. CONCLUSION JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Tae Hyung Kim
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mary Kate Manhard
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Justin P. Haldar
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| |
Collapse
|
46
|
Ellis S, Reader AJ. Penalized maximum likelihood simultaneous longitudinal PET image reconstruction with difference-image priors. Med Phys 2018; 45:3001-3018. [PMID: 29697144 DOI: 10.1002/mp.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. METHODS We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. RESULTS Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. CONCLUSION Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels.
Collapse
Affiliation(s)
- Sam Ellis
- School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Andrew J Reader
- School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
47
|
Gong K, Cheng-Liao J, Wang G, Chen KT, Catana C, Qi J. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:955-965. [PMID: 29610074 PMCID: PMC5933939 DOI: 10.1109/tmi.2017.2776324] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
Collapse
|
48
|
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AM, Law I, Morris JC, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L, Beyer T. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20:4-20. [PMID: 28971346 PMCID: PMC5775351 DOI: 10.1007/s11307-017-1123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Z M Bhujwalla
- Division of Cancer Imaging Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S Biskup
- Praxis für Humangenetik Tübingen, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - S Biswal
- Molecular Imaging Program at Stanford (MIPS) and Bio-X, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - R Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - K Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - A Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Nuclear Medicine, Humanitas Research Hospital, Milan, Italy
| | - C la Fougère
- Department of Radiology, Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-Universität, Tübingen, Germany
| | - R Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33621, USA
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' Hospitals London, London, UK
| | - M Goyen
- GE Healthcare GmbH, Beethovenstrasse 239, Solingen, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - J Nuyts
- Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium
| | - A A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - K Riklund
- Department of Radiation Sciences, Umea University, Umea, Sweden
| | - O Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - E G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - M Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - L Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Schramm G, Holler M, Rezaei A, Vunckx K, Knoll F, Bredies K, Boada F, Nuyts J. Evaluation of Parallel Level Sets and Bowsher's Method as Segmentation-Free Anatomical Priors for Time-of-Flight PET Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:590-603. [PMID: 29408787 PMCID: PMC5821901 DOI: 10.1109/tmi.2017.2767940] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this article, we evaluate Parallel Level Sets (PLS) and Bowsher's method as segmentation-free anatomical priors for regularized brain positron emission tomography (PET) reconstruction. We derive the proximity operators for two PLS priors and use the EM-TV algorithm in combination with the first order primal-dual algorithm by Chambolle and Pock to solve the non-smooth optimization problem for PET reconstruction with PLS regularization. In addition, we compare the performance of two PLS versions against the symmetric and asymmetric Bowsher priors with quadratic and relative difference penalty function. For this aim, we first evaluate reconstructions of 30 noise realizations of simulated PET data derived from a real hybrid positron emission tomography/magnetic resonance imaging (PET/MR) acquisition in terms of regional bias and noise. Second, we evaluate reconstructions of a real brain PET/MR data set acquired on a GE Signa time-of-flight PET/MR in a similar way. The reconstructions of simulated and real 3D PET/MR data show that all priors were superior to post-smoothed maximum likelihood expectation maximization with ordered subsets (OSEM) in terms of bias-noise characteristics in different regions of interest where the PET uptake follows anatomical boundaries. Our implementation of the asymmetric Bowsher prior showed slightly superior performance compared with the two versions of PLS and the symmetric Bowsher prior. At very high regularization weights, all investigated anatomical priors suffer from the transfer of non-shared gradients.
Collapse
|
50
|
Mehranian A, Belzunce MA, Prieto C, Hammers A, Reader AJ. Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:20-34. [PMID: 28436851 DOI: 10.1109/tmi.2017.2691044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we propose a generalized joint sparsity regularization prior and reconstruction framework for the synergistic reconstruction of positron emission tomography (PET) and under sampled sensitivity encoded magnetic resonance imaging data with the aim of improving image quality beyond that obtained through conventional independent reconstructions. The proposed prior improves upon the joint total variation (TV) using a non-convex potential function that assigns a relatively lower penalty for the PET and MR gradients, whose magnitudes are jointly large, thus permitting the preservation and formation of common boundaries irrespective of their relative orientation. The alternating direction method of multipliers (ADMM) optimization framework was exploited for the joint PET-MR image reconstruction. In this framework, the joint maximum a posteriori objective function was effectively optimized by alternating between well-established regularized PET and MR image reconstructions. Moreover, the dependency of the joint prior on the PET and MR signal intensities was addressed by a novel alternating scaling of the distribution of the gradient vectors. The proposed prior was compared with the separate TV and joint TV regularization methods using extensive simulation and real clinical data. In addition, the proposed joint prior was compared with the recently proposed linear parallel level sets (PLSs) method using a benchmark simulation data set. Our simulation and clinical data results demonstrated the improved quality of the synergistically reconstructed PET-MR images compared with the unregularized and conventional separately regularized methods. It was also found that the proposed prior can outperform both the joint TV and linear PLS regularization methods in assisting edge preservation and recovery of details, which are otherwise impaired by noise and aliasing artifacts. In conclusion, the proposed joint sparsity regularization within the presented a ADMM reconstruction framework is a promising technique, nonetheless our clinical results showed that the clinical applicability of joint reconstruction might be limited in current PET-MR scanners, mainly due to the lower resolution of PET images.
Collapse
|