1
|
Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E. Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2574-2586. [PMID: 38373129 DOI: 10.1109/tmi.2024.3367384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.
Collapse
|
2
|
Tan Y, Zhao SX, Yang KF, Li YJ. A lightweight network guided with differential matched filtering for retinal vessel segmentation. Comput Biol Med 2023; 160:106924. [PMID: 37146492 DOI: 10.1016/j.compbiomed.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The geometric morphology of retinal vessels reflects the state of cardiovascular health, and fundus images are important reference materials for ophthalmologists. Great progress has been made in automated vessel segmentation, but few studies have focused on thin vessel breakage and false-positives in areas with lesions or low contrast. In this work, we propose a new network, differential matched filtering guided attention UNet (DMF-AU), to address these issues, incorporating a differential matched filtering layer, feature anisotropic attention, and a multiscale consistency constrained backbone to perform thin vessel segmentation. The differential matched filtering is used for the early identification of locally linear vessels, and the resulting rough vessel map guides the backbone to learn vascular details. Feature anisotropic attention reinforces the vessel features of spatial linearity at each stage of the model. Multiscale constraints reduce the loss of vessel information while pooling within large receptive fields. In tests on multiple classical datasets, the proposed model performed well compared with other algorithms on several specially designed criteria for vessel segmentation. DMF-AU is a high-performance, lightweight vessel segmentation model. The source code is at https://github.com/tyb311/DMF-AU.
Collapse
Affiliation(s)
- Yubo Tan
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Shi-Xuan Zhao
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Kai-Fu Yang
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Yong-Jie Li
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| |
Collapse
|
3
|
State-of-the-art retinal vessel segmentation with minimalistic models. Sci Rep 2022; 12:6174. [PMID: 35418576 PMCID: PMC9007957 DOI: 10.1038/s41598-022-09675-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. We first compile and review the performance of 20 different techniques on some popular databases, and we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. We then show that a cascaded extension (W-Net) reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published work. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that enables moderate enhancement of cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we test our approach on Artery/Vein and vessel segmentation from OCTA imaging problems, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity available in recent literature. Code to reproduce the results in this paper is released.
Collapse
|
4
|
Yang B, Liu M, Wang Y, Zhang K, Meijering E. Structure-Guided Segmentation for 3D Neuron Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:903-914. [PMID: 34748483 DOI: 10.1109/tmi.2021.3125777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital reconstruction of neuronal morphologies in 3D microscopy images is critical in the field of neuroscience. However, most existing automatic tracing algorithms cannot obtain accurate neuron reconstruction when processing 3D neuron images contaminated by strong background noises or containing weak filament signals. In this paper, we present a 3D neuron segmentation network named Structure-Guided Segmentation Network (SGSNet) to enhance weak neuronal structures and remove background noises. The network contains a shared encoding path but utilizes two decoding paths called Main Segmentation Branch (MSB) and Structure-Detection Branch (SDB), respectively. MSB is trained on binary labels to acquire the 3D neuron image segmentation maps. However, the segmentation results in challenging datasets often contain structural errors, such as discontinued segments of the weak-signal neuronal structures and missing filaments due to low signal-to-noise ratio (SNR). Therefore, SDB is presented to detect the neuronal structures by regressing neuron distance transform maps. Furthermore, a Structure Attention Module (SAM) is designed to integrate the multi-scale feature maps of the two decoding paths, and provide contextual guidance of structural features from SDB to MSB to improve the final segmentation performance. In the experiments, we evaluate our model in two challenging 3D neuron image datasets, the BigNeuron dataset and the Extended Whole Mouse Brain Sub-image (EWMBS) dataset. When using different tracing methods on the segmented images produced by our method rather than other state-of-the-art segmentation methods, the distance scores gain 42.48% and 35.83% improvement in the BigNeuron dataset and 37.75% and 23.13% in the EWMBS dataset.
Collapse
|
5
|
Chen X, Zhang C, Zhao J, Xiong Z, Zha ZJ, Wu F. Weakly Supervised Neuron Reconstruction From Optical Microscopy Images With Morphological Priors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3205-3216. [PMID: 33999814 DOI: 10.1109/tmi.2021.3080695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manually labeling neurons from high-resolution but noisy and low-contrast optical microscopy (OM) images is tedious. As a result, the lack of annotated data poses a key challenge when applying deep learning techniques for reconstructing neurons from noisy and low-contrast OM images. While traditional tracing methods provide a possible way to efficiently generate labels for supervised network training, the generated pseudo-labels contain many noisy and incorrect labels, which lead to severe performance degradation. On the other hand, the publicly available dataset, BigNeuron, provides a large number of single 3D neurons that are reconstructed using various imaging paradigms and tracing methods. Though the raw OM images are not fully available for these neurons, they convey essential morphological priors for complex 3D neuron structures. In this paper, we propose a new approach to exploit morphological priors from neurons that have been reconstructed for training a deep neural network to extract neuron signals from OM images. We integrate a deep segmentation network in a generative adversarial network (GAN), expecting the segmentation network to be weakly supervised by pseudo-labels at the pixel level while utilizing the supervision of previously reconstructed neurons at the morphology level. In our morphological-prior-guided neuron reconstruction GAN, named MP-NRGAN, the segmentation network extracts neuron signals from raw images, and the discriminator network encourages the extracted neurons to follow the morphology distribution of reconstructed neurons. Comprehensive experiments on the public VISoR-40 dataset and BigNeuron dataset demonstrate that our proposed MP-NRGAN outperforms state-of-the-art approaches with less training effort.
Collapse
|
6
|
Li D, Rahardja S. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106070. [PMID: 33857703 DOI: 10.1016/j.cmpb.2021.106070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Retinal vessels are a major feature used for the physician to diagnose many retinal diseases, such as cardiovascular disease and Glaucoma. Therefore, the designing of an auto-segmentation algorithm for retinal vessel draw great attention in medical field. Recently, deep learning methods, especially convolutional neural networks (CNNs) show extraordinary potential for the task of vessel segmentation. However, most of the deep learning methods only take advantage of the shallow networks with a traditional cross-entropy objective, which becomes the main obstacle to further improve the performance on a task that is imbalanced. We therefore propose a new type of residual U-Net called Before-activation Squeeze-and-Excitation ResU-Net (BSEResu-Net) to tackle the aforementioned issues. METHODS Our BSEResU-Net can be viewed as an encoder/decoder framework that constructed by Before-activation Squeeze-and-Excitation blocks (BSE Blocks). In comparison to the current existing CNN structures, we utilize a new type of residual block structure, namely BSE block, in which the attention mechanism is combined with skip connection to boost the performance. What's more, the network could consistently gain accuracy from the increasing depth as we incorporate more residual blocks, attributing to the dropblock mechanism used in BSE blocks. A joint loss function which is based on the dice and cross-entropy loss functions is also introduced to achieve more balanced segmentation between the vessel and non-vessel pixels. RESULTS The proposed BSEResU-Net is evaluated on the publicly available DRIVE, STARE and HRF datasets. It achieves the F1-score of 0.8324, 0.8368 and 0.8237 on DRIVE, STARE and HRF dataset, respectively. Experimental results show that the proposed BSEResU-Net outperforms current state-of-the-art algorithms. CONCLUSIONS The proposed algorithm utilizes a new type of residual blocks called BSE residual blocks for vessel segmentation. Together with a joint loss function, it shows outstanding performance both on low and high-resolution fundus images.
Collapse
Affiliation(s)
- Di Li
- Centre of Intelligent Acoustics and Immersive Communications, School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China.
| | - Susanto Rahardja
- Centre of Intelligent Acoustics and Immersive Communications, School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China.
| |
Collapse
|
7
|
Yang B, Chen W, Luo H, Tan Y, Liu M, Wang Y. Neuron Image Segmentation via Learning Deep Features and Enhancing Weak Neuronal Structures. IEEE J Biomed Health Inform 2021; 25:1634-1645. [PMID: 32809948 DOI: 10.1109/jbhi.2020.3017540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuron morphology reconstruction (tracing) in 3D volumetric images is critical for neuronal research. However, most existing neuron tracing methods are not applicable in challenging datasets where the neuron images are contaminated by noises or containing weak filament signals. In this paper, we present a two-stage 3D neuron segmentation approach via learning deep features and enhancing weak neuronal structures, to reduce the impact of image noise in the data and enhance the weak-signal neuronal structures. In the first stage, we train a voxel-wise multi-level fully convolutional network (FCN), which specializes in learning deep features, to obtain the 3D neuron image segmentation maps in an end-to-end manner. In the second stage, a ray-shooting model is employed to detect the discontinued segments in segmentation results of the first-stage, and the local neuron diameter of the broken point is estimated and direction of the filamentary fragment is detected by rayburst sampling algorithm. Then, a Hessian-repair model is built to repair the broken structures, by enhancing weak neuronal structures in a fibrous structure determined by the estimated local neuron diameter and the filamentary fragment direction. Experimental results demonstrate that our proposed segmentation approach achieves better segmentation performance than other state-of-the-art methods for 3D neuron segmentation. Compared with the neuron reconstruction results on the segmented images produced by other segmentation methods, the proposed approach gains 47.83% and 34.83% improvement in the average distance scores. The average Precision and Recall rates of the branch point detection with our proposed method are 38.74% and 22.53% higher than the detection results without segmentation.
Collapse
|
8
|
Jia D, Zhuang X. Learning-based algorithms for vessel tracking: A review. Comput Med Imaging Graph 2021; 89:101840. [PMID: 33548822 DOI: 10.1016/j.compmedimag.2020.101840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Developing efficient vessel-tracking algorithms is crucial for imaging-based diagnosis and treatment of vascular diseases. Vessel tracking aims to solve recognition problems such as key (seed) point detection, centerline extraction, and vascular segmentation. Extensive image-processing techniques have been developed to overcome the problems of vessel tracking that are mainly attributed to the complex morphologies of vessels and image characteristics of angiography. This paper presents a literature review on vessel-tracking methods, focusing on machine-learning-based methods. First, the conventional machine-learning-based algorithms are reviewed, and then, a general survey of deep-learning-based frameworks is provided. On the basis of the reviewed methods, the evaluation issues are introduced. The paper is concluded with discussions about the remaining exigencies and future research.
Collapse
Affiliation(s)
- Dengqiang Jia
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Chen W, Liu M, Zhan Q, Tan Y, Meijering E, Radojevic M, Wang Y. Spherical-Patches Extraction for Deep-Learning-Based Critical Points Detection in 3D Neuron Microscopy Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:527-538. [PMID: 33055023 DOI: 10.1109/tmi.2020.3031289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital reconstruction of neuronal structures is very important to neuroscience research. Many existing reconstruction algorithms require a set of good seed points. 3D neuron critical points, including terminations, branch points and cross-over points, are good candidates for such seed points. However, a method that can simultaneously detect all types of critical points has barely been explored. In this work, we present a method to simultaneously detect all 3 types of 3D critical points in neuron microscopy images, based on a spherical-patches extraction (SPE) method and a 2D multi-stream convolutional neural network (CNN). SPE uses a set of concentric spherical surfaces centered at a given critical point candidate to extract intensity distribution features around the point. Then, a group of 2D spherical patches is generated by projecting the surfaces into 2D rectangular image patches according to the orders of the azimuth and the polar angles. Finally, a 2D multi-stream CNN, in which each stream receives one spherical patch as input, is designed to learn the intensity distribution features from those spherical patches and classify the given critical point candidate into one of four classes: termination, branch point, cross-over point or non-critical point. Experimental results confirm that the proposed method outperforms other state-of-the-art critical points detection methods. The critical points based neuron reconstruction results demonstrate the potential of the detected neuron critical points to be good seed points for neuron reconstruction. Additionally, we have established a public dataset dedicated for neuron critical points detection, which has been released along with this article.
Collapse
|
10
|
Jiang Y, Chen W, Liu M, Wang Y, Meijering E. 3D Neuron Microscopy Image Segmentation via the Ray-Shooting Model and a DC-BLSTM Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:26-37. [PMID: 32881683 DOI: 10.1109/tmi.2020.3021493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The morphology reconstruction (tracing) of neurons in 3D microscopy images is important to neuroscience research. However, this task remains very challenging because of the low signal-to-noise ratio (SNR) and the discontinued segments of neurite patterns in the images. In this paper, we present a neuronal structure segmentation method based on the ray-shooting model and the Long Short-Term Memory (LSTM)-based network to enhance the weak-signal neuronal structures and remove background noise in 3D neuron microscopy images. Specifically, the ray-shooting model is used to extract the intensity distribution features within a local region of the image. And we design a neural network based on the dual channel bidirectional LSTM (DC-BLSTM) to detect the foreground voxels according to the voxel-intensity features and boundary-response features extracted by multiple ray-shooting models that are generated in the whole image. This way, we transform the 3D image segmentation task into multiple 1D ray/sequence segmentation tasks, which makes it much easier to label the training samples than many existing Convolutional Neural Network (CNN) based 3D neuron image segmentation methods. In the experiments, we evaluate the performance of our method on the challenging 3D neuron images from two datasets, the BigNeuron dataset and the Whole Mouse Brain Sub-image (WMBS) dataset. Compared with the neuron tracing results on the segmented images produced by other state-of-the-art neuron segmentation methods, our method improves the distance scores by about 32% and 27% in the BigNeuron dataset, and about 38% and 27% in the WMBS dataset.
Collapse
|
11
|
Zhao J, Chen X, Xiong Z, Liu D, Zeng J, Xie C, Zhang Y, Zha ZJ, Bi G, Wu F. Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4034-4046. [PMID: 32746145 DOI: 10.1109/tmi.2020.3009148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reconstruction of neuronal populations from ultra-scale optical microscopy (OM) images is essential to investigate neuronal circuits and brain mechanisms. The noises, low contrast, huge memory requirement, and high computational cost pose significant challenges in the neuronal population reconstruction. Recently, many studies have been conducted to extract neuron signals using deep neural networks (DNNs). However, training such DNNs usually relies on a huge amount of voxel-wise annotations in OM images, which are expensive in terms of both finance and labor. In this paper, we propose a novel framework for dense neuronal population reconstruction from ultra-scale images. To solve the problem of high cost in obtaining manual annotations for training DNNs, we propose a progressive learning scheme for neuronal population reconstruction (PLNPR) which does not require any manual annotations. Our PLNPR scheme consists of a traditional neuron tracing module and a deep segmentation network that mutually complement and progressively promote each other. To reconstruct dense neuronal populations from a terabyte-sized ultra-scale image, we introduce an automatic framework which adaptively traces neurons block by block and fuses fragmented neurites in overlapped regions continuously and smoothly. We build a dataset "VISoR-40" which consists of 40 large-scale OM image blocks from cortical regions of a mouse. Extensive experimental results on our VISoR-40 dataset and the public BigNeuron dataset demonstrate the effectiveness and superiority of our method on neuronal population reconstruction and single neuron reconstruction. Furthermore, we successfully apply our method to reconstruct dense neuronal populations from an ultra-scale mouse brain slice. The proposed adaptive block propagation and fusion strategies greatly improve the completeness of neurites in dense neuronal population reconstruction.
Collapse
|
12
|
Gu L, Zhang X, You S, Zhao S, Liu Z, Harada T. Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest. Front Neuroinform 2020; 14:601829. [PMID: 33240071 PMCID: PMC7683389 DOI: 10.3389/fninf.2020.601829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022] Open
Abstract
One major challenge in medical imaging analysis is the lack of label and annotation which usually requires medical knowledge and training. This issue is particularly serious in the brain image analysis such as the analysis of retinal vasculature, which directly reflects the vascular condition of Central Nervous System (CNS). In this paper, we present a novel semi-supervised learning algorithm to boost the performance of random forest under limited labeled data by exploiting the local structure of unlabeled data. We identify the key bottleneck of random forest to be the information gain calculation and replace it with a graph-embedded entropy which is more reliable for insufficient labeled data scenario. By properly modifying the training process of standard random forest, our algorithm significantly improves the performance while preserving the virtue of random forest such as low computational burden and robustness over over-fitting. Our method has shown a superior performance on both medical imaging analysis and machine learning benchmarks.
Collapse
Affiliation(s)
- Lin Gu
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Xiaowei Zhang
- Bioinformatics Institute (BII), ASTAR, Singapore, Singapore
| | - Shaodi You
- Faculty of Science, Institute of Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Shen Zhao
- Department of Medical Physics, Western University, London, ON, Canada
| | - Zhenzhong Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Tatsuya Harada
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Gómez PA, Cencini M, Golbabaee M, Schulte RF, Pirkl C, Horvath I, Fallo G, Peretti L, Tosetti M, Menze BH, Buonincontri G. Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging. Sci Rep 2020; 10:13769. [PMID: 32792618 PMCID: PMC7427097 DOI: 10.1038/s41598-020-70789-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.
Collapse
Affiliation(s)
- Pedro A Gómez
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| | - Matteo Cencini
- Imago7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| | | | | | - Carolin Pirkl
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- GE Healthcare, Munich, Germany
| | - Izabela Horvath
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- GE Healthcare, Munich, Germany
| | - Giada Fallo
- University of Pisa, Pisa, Italy
- Imago7 Foundation, Pisa, Italy
| | - Luca Peretti
- University of Pisa, Pisa, Italy
- Imago7 Foundation, Pisa, Italy
| | - Michela Tosetti
- Imago7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| | - Bjoern H Menze
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
14
|
Shao W, Huang SJ, Liu M, Zhang D. Querying Representative and Informative Super-Pixels for Filament Segmentation in Bioimages. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1394-1405. [PMID: 30640624 DOI: 10.1109/tcbb.2019.2892741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Segmenting bioimage based filaments is a critical step in a wide range of applications, including neuron reconstruction and blood vessel tracing. To achieve an acceptable segmentation performance, most of the existing methods need to annotate amounts of filamentary images in the training stage. Hence, these methods have to face the common challenge that the annotation cost is usually high. To address this problem, we propose an interactive segmentation method to actively select a few super-pixels for annotation, which can alleviate the burden of annotators. Specifically, we first apply a Simple Linear Iterative Clustering (i.e., SLIC) algorithm to segment filamentary images into compact and consistent super-pixels, and then propose a novel batch-mode based active learning method to select the most representative and informative (i.e., BMRI) super-pixels for pixel-level annotation. We then use a bagging strategy to extract several sets of pixels from the annotated super-pixels, and further use them to build different Laplacian Regularized Gaussian Mixture Models (Lap-GMM) for pixel-level segmentation. Finally, we perform the classifier ensemble by combining multiple Lap-GMM models based on a majority voting strategy. We evaluate our method on three public available filamentary image datasets. Experimental results show that, to achieve comparable performance with the existing methods, the proposed algorithm can save 40 percent annotation efforts for experts.
Collapse
|
15
|
Li S, Quan T, Zhou H, Huang Q, Guan T, Chen Y, Xu C, Kang H, Li A, Fu L, Luo Q, Gong H, Zeng S. Brain-Wide Shape Reconstruction of a Traced Neuron Using the Convex Image Segmentation Method. Neuroinformatics 2019; 18:199-218. [PMID: 31396858 DOI: 10.1007/s12021-019-09434-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal shape reconstruction is a helpful technique for establishing neuron identity, inferring neuronal connections, mapping neuronal circuits, and so on. Advances in optical imaging techniques have enabled data collection that includes the shape of a neuron across the whole brain, considerably extending the scope of neuronal anatomy. However, such datasets often include many fuzzy neurites and many crossover regions that neurites are closely attached, which make neuronal shape reconstruction more challenging. In this study, we proposed a convex image segmentation model for neuronal shape reconstruction that segments a neurite into cross sections along its traced skeleton. Both the sparse nature of gradient images and the rule that fuzzy neurites usually have a small radius are utilized to improve neuronal shape reconstruction in regions with fuzzy neurites. Because the model is closely related to the traced skeleton point, we can use this relationship for identifying neurite with crossover regions. We demonstrated the performance of our model on various datasets, including those with fuzzy neurites and neurites with crossover regions, and we verified that our model could robustly reconstruct the neuron shape on a brain-wide scale.
Collapse
Affiliation(s)
- Shiwei Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China. .,School of Mathematics and Economics, Hubei University of Education, Wuhan, 430205, Hubei, China.
| | - Hang Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qing Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Tao Guan
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Cheng Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hongtao Kang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
16
|
Liu M, Chen W, Wang C, Peng H. A Multiscale Ray-Shooting Model for Termination Detection of Tree-Like Structures in Biomedical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1923-1934. [PMID: 30668496 DOI: 10.1109/tmi.2019.2893117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Digital reconstruction (tracing) of tree-like structures, such as neurons, retinal blood vessels, and bronchi, from volumetric images and 2D images is very important to biomedical research. Many existing reconstruction algorithms rely on a set of good seed points. The 2D or 3D terminations are good candidates for such seed points. In this paper, we propose an automatic method to detect terminations for tree-like structures based on a multiscale ray-shooting model and a termination visual prior. The multiscale ray-shooting model detects 2D terminations by extracting and analyzing the multiscale intensity distribution features around a termination candidate. The range of scale is adaptively determined according to the local neurite diameter estimated by the Rayburst sampling algorithm in combination with the gray-weighted distance transform. The termination visual prior is based on a key observation-when observing a 3D termination from three orthogonal directions without occlusion, we can recognize it in at least two views. Using this prior with the multiscale ray-shooting model, we can detect 3D terminations with high accuracies. Experiments on 3D neuron image stacks, 2D neuron images, 3D bronchus image stacks, and 2D retinal blood vessel images exhibit average precision and recall rates of 87.50% and 90.54%. The experimental results confirm that the proposed method outperforms other the state-of-the-art termination detection methods.
Collapse
|
17
|
Li S, Quan T, Xu C, Huang Q, Kang H, Chen Y, Li A, Fu L, Luo Q, Gong H, Zeng S. Optimization of Traced Neuron Skeleton Using Lasso-Based Model. Front Neuroanat 2019; 13:18. [PMID: 30846931 PMCID: PMC6393391 DOI: 10.3389/fnana.2019.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
Reconstruction of neuronal morphology from images involves mainly the extraction of neuronal skeleton points. It is an indispensable step in the quantitative analysis of neurons. Due to the complex morphology of neurons, many widely used tracing methods have difficulties in accurately acquiring skeleton points near branch points or in structures with tortuosity. Here, we propose two models to solve these problems. One is based on an L1-norm minimization model, which can better identify tortuous structure, namely, a local structure with large curvature skeleton points; the other detects an optimized branch point by considering the combination patterns of all neurites that link to this point. We combined these two models to achieve optimized skeleton detection for a neuron. We validate our models in various datasets including MOST and BigNeuron. In addition, we demonstrate that our method can optimize the traced skeletons from large-scale images. These characteristics of our approach indicate that it can reduce manual editing of traced skeletons and help to accelerate the accurate reconstruction of neuronal morphology.
Collapse
Affiliation(s)
- Shiwei Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China.,School of Mathematics and Economics, Hubei University of Education, Hubei, China
| | - Cheng Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Qing Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Hongtao Kang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Yijun Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
18
|
Li S, Quan T, Zhou H, Yin F, Li A, Fu L, Luo Q, Gong H, Zeng S. Identifying Weak Signals in Inhomogeneous Neuronal Images for Large-Scale Tracing of Sparsely Distributed Neurites. Neuroinformatics 2019; 17:497-514. [PMID: 30635864 PMCID: PMC6841657 DOI: 10.1007/s12021-018-9414-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tracing neurites constitutes the core of neuronal morphology reconstruction, a key step toward neuronal circuit mapping. Modern optical-imaging techniques allow observation of nearly complete mouse neuron morphologies across brain regions or even the whole brain. However, high-level automation reconstruction of neurons, i.e., the reconstruction with a few of manual edits requires discrimination of weak foreground points from the inhomogeneous background. We constructed an identification model, where empirical observations made from neuronal images were summarized into rules for designing feature vectors that to classify foreground and background, and a support vector machine (SVM) was used to learn these feature vectors. We embedded this constructed SVM classifier into a previously developed tool, SparseTracer, to obtain SparseTracer-Learned Feature Vector (ST-LFV). ST-LFV can trace sparsely distributed neurites with weak signals (contrast-to-noise ratio < 1.5) against an inhomogeneous background in datasets imaged by widely used light-microscopy techniques like confocal microscopy and two-photon microscopy. Moreover, 12 sub-blocks were extracted from different brain regions. The average recall and precision rates were 99% and 97%, respectively. These results indicated that ST-LFV is well suited for weak signal identification with varying image characteristics. We also applied ST-LFV to trace long-range neurites from images where neurites are sparsely distributed but their image intensities are weak in some cases. When tracing this long-range neurites, manual edit was required once to obtain results equivalent to the ground truth, compared with 20 times of manual edits required by SparseTracer. This improvement in the level of automatic reconstruction indicates that ST-LFV has the potential to rapidly reconstruct sparsely distributed neurons at the large scale.
Collapse
Affiliation(s)
- Shiwei Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China. .,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China. .,School of Mathematics and Economics, Hubei University of Education, Wuhan, 430205, Hubei, China.
| | - Hang Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - FangFang Yin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
19
|
Zhao H, Li H, Maurer-Stroh S, Guo Y, Deng Q, Cheng L. Supervised Segmentation of Un-Annotated Retinal Fundus Images by Synthesis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:46-56. [PMID: 30047872 DOI: 10.1109/tmi.2018.2854886] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We focus on the practical challenge of segmenting new retinal fundus images that are dissimilar to existing well-annotated data sets. It is addressed in this paper by a supervised learning pipeline, with its core being the construction of a synthetic fundus image data set using the proposed R-sGAN technique. The resulting synthetic images are realistic-looking in terms of the query images while maintaining the annotated vessel structures from the existing data set. This helps to bridge the mismatch between the query images and the existing well-annotated data set. As a consequence, any known supervised fundus segmentation technique can be directly utilized on the query images, after training on this synthetic data set. Extensive experiments on different fundus image data sets demonstrate the competitiveness of the proposed approach in dealing with a diverse range of mismatch settings.
Collapse
|
20
|
Synthesizing retinal and neuronal images with generative adversarial nets. Med Image Anal 2018; 49:14-26. [DOI: 10.1016/j.media.2018.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022]
|