1
|
Zhou J, Dong X, Liu Q. Clustering-Guided Twin Contrastive Learning for Endomicroscopy Image Classification. IEEE J Biomed Health Inform 2024; 28:2879-2890. [PMID: 38358859 DOI: 10.1109/jbhi.2024.3366223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Learning better representations is essential in medical image analysis for computer-aided diagnosis. However, learning discriminative semantic features is a major challenge due to the lack of large-scale well-annotated datasets. Thus, how can we learn a well-structured categorizable embedding space in limited-scale and unlabeled datasets? In this paper, we proposed a novel clustering-guided twin-contrastive learning framework (CTCL) that learns the discriminative representations of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. Compared with traditional contrastive learning, in which only two randomly augmented views of the same instance are considered, the proposed CTCL aligns more semantically related and class-consistent samples by clustering, which improved intra-class tightness and inter-class variability to produce more informative representations. Furthermore, based on the inherent properties of CLE (geometric invariance and intrinsic noise), we proposed to regard CLE images with any angle rotation and CLE images with different noises as the same instance, respectively, for increased variability and diversity of samples. By optimizing CTCL in an end-to-end expectation-maximization framework, comprehensive experimental results demonstrated that CTCL-based visual representations achieved competitive performance on each downstream task as well as more robustness and transferability compared with existing state-of-the-art SSL and supervised methods. Notably, CTCL achieved 75.60%/78.45% and 64.12%/77.37% top-1 accuracy on the linear evaluation protocol and few-shot classification downstream tasks, respectively, which outperformed the previous best results by 1.27%/1.63% and 0.5%/3%, respectively. The proposed method holds great potential to assist pathologists in achieving an automated, fast, and high-precision diagnosis of GI tumors and accurately determining different stages of tumor development based on CLE images.
Collapse
|
2
|
Tao R, Zou X, Zheng G. LAST: LAtent Space-Constrained Transformers for Automatic Surgical Phase Recognition and Tool Presence Detection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3256-3268. [PMID: 37227905 DOI: 10.1109/tmi.2023.3279838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
When developing context-aware systems, automatic surgical phase recognition and tool presence detection are two essential tasks. There exist previous attempts to develop methods for both tasks but majority of the existing methods utilize a frame-level loss function (e.g., cross-entropy) which does not fully leverage the underlying semantic structure of a surgery, leading to sub-optimal results. In this paper, we propose multi-task learning-based, LAtent Space-constrained Transformers, referred as LAST, for automatic surgical phase recognition and tool presence detection. Our design features a two-branch transformer architecture with a novel and generic way to leverage video-level semantic information during network training. This is done by learning a non-linear compact presentation of the underlying semantic structure information of surgical videos through a transformer variational autoencoder (VAE) and by encouraging models to follow the learned statistical distributions. In other words, LAST is of structure-aware and favors predictions that lie on the extracted low dimensional data manifold. Validated on two public datasets of the cholecystectomy surgery, i.e., the Cholec80 dataset and the M2cai16 dataset, our method achieves better results than other state-of-the-art methods. Specifically, on the Cholec80 dataset, our method achieves an average accuracy of 93.12±4.71%, an average precision of 89.25±5.49%, an average recall of 90.10±5.45% and an average Jaccard of 81.11 ±7.62% for phase recognition, and an average mAP of 95.15±3.87% for tool presence detection. Similar superior performance is also observed when LAST is applied to the M2cai16 dataset.
Collapse
|
3
|
Yi K, Li H, Xu C, Zhong G, Ding Z, Zhang G, Guan X, Zhong M, Li G, Jiang N, Zhang Y. Morphological feature recognition of different differentiation stages of induced ADSCs based on deep learning. Comput Biol Med 2023; 159:106906. [PMID: 37084638 DOI: 10.1016/j.compbiomed.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
In order to accurately identify the morphological features of different differentiation stages of induced Adipose Derived Stem Cells (ADSCs) and judge the differentiation types of induced ADSCs, a morphological feature recognition method of different differentiation stages of induced ADSCs based on deep learning is proposed. Using the super-resolution image acquisition method of ADSCs differentiation based on stimulated emission depletion imaging, after obtaining the super-resolution images at different stages of inducing ADSCs differentiation, the noise of the obtained image is removed and the image quality is optimized through the ADSCs differentiation image denoising model based on low rank nonlocal sparse representation; The denoised image is taken as the recognition target of the morphological feature recognition method for ADSCs differentiation image based on the improved Visual Geometry Group (VGG-19) convolutional neural network. Through the improved VGG-19 convolutional neural network and class activation mapping method, the morphological feature recognition and visual display of the recognition results at different stages of inducing ADSCs differentiation are realized. After testing, this method can accurately identify the morphological features of different differentiation stages of induced ADSCs, and is available.
Collapse
Affiliation(s)
- Ke Yi
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Han Li
- Meta Platforms, Inc., Menlo Park, CA 94025, USA
| | - Cheng Xu
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Guoqing Zhong
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Zhiquan Ding
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Guolong Zhang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Xiaohui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Nan Jiang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Yuejin Zhang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Bai B, Yang X, Li Y, Zhang Y, Pillar N, Ozcan A. Deep learning-enabled virtual histological staining of biological samples. LIGHT, SCIENCE & APPLICATIONS 2023; 12:57. [PMID: 36864032 PMCID: PMC9981740 DOI: 10.1038/s41377-023-01104-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Histological staining is the gold standard for tissue examination in clinical pathology and life-science research, which visualizes the tissue and cellular structures using chromatic dyes or fluorescence labels to aid the microscopic assessment of tissue. However, the current histological staining workflow requires tedious sample preparation steps, specialized laboratory infrastructure, and trained histotechnologists, making it expensive, time-consuming, and not accessible in resource-limited settings. Deep learning techniques created new opportunities to revolutionize staining methods by digitally generating histological stains using trained neural networks, providing rapid, cost-effective, and accurate alternatives to standard chemical staining methods. These techniques, broadly referred to as virtual staining, were extensively explored by multiple research groups and demonstrated to be successful in generating various types of histological stains from label-free microscopic images of unstained samples; similar approaches were also used for transforming images of an already stained tissue sample into another type of stain, performing virtual stain-to-stain transformations. In this Review, we provide a comprehensive overview of the recent research advances in deep learning-enabled virtual histological staining techniques. The basic concepts and the typical workflow of virtual staining are introduced, followed by a discussion of representative works and their technical innovations. We also share our perspectives on the future of this emerging field, aiming to inspire readers from diverse scientific fields to further expand the scope of deep learning-enabled virtual histological staining techniques and their applications.
Collapse
Affiliation(s)
- Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Xilin Yang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Nir Pillar
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Zhou J, Dong X, Liu Q. Boosting few-shot confocal endomicroscopy image recognition with feature-level MixSiam. BIOMEDICAL OPTICS EXPRESS 2023; 14:1054-1070. [PMID: 36950231 PMCID: PMC10026589 DOI: 10.1364/boe.478832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As an emerging early diagnostic technology for gastrointestinal diseases, confocal laser endomicroscopy lacks large-scale perfect annotated data, leading to a major challenge in learning discriminative semantic features. So, how should we learn representations without labels or a few labels? In this paper, we proposed a feature-level MixSiam method based on the traditional Siamese network that learns the discriminative features of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. The proposed method is divided into two stages: self-supervised learning (SSL) and few-shot learning (FS). First, in the self-supervised learning stage, the novel feature-level-based feature mixing approach introduced more task-relevant information via regularization, facilitating the traditional Siamese structure can adapt to the large intra-class variance of the pCLE dataset. Then, in the few-shot learning stage, we adopted the pre-trained model obtained through self-supervised learning as the base learner in the few-shot learning pipeline, enabling the feature extractor to learn richer and more transferable visual representations for rapid generalization to other pCLE classification tasks when labeled data are limited. On two disjoint pCLE gastrointestinal image datasets, the proposed method is evaluated. With the linear evaluation protocol, feature-level MixSiam outperforms the baseline by 6% (Top-1) and the supervised model by 2% (Top1), which demonstrates the effectiveness of the proposed feature-level-based feature mixing method. Furthermore, the proposed method outperforms the previous baseline method for the few-shot classification task, which can help improve the classification of pCLE images lacking large-scale annotated data for different stages of tumor development.
Collapse
Affiliation(s)
- Jingjun Zhou
- School of Biomedical Engineering, Hainan University, 570228 Haikou, China
| | - Xiangjiang Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, 570228 Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, 570228 Haikou, China
| |
Collapse
|
6
|
Wu H, Pang KKY, Pang GKH, Au-Yeung RKH. A soft-computing based approach to overlapped cells analysis in histopathology images with genetic algorithm. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Li X, Jiang Y, Rodriguez-Andina JJ, Luo H, Yin S, Kaynak O. When medical images meet generative adversarial network: recent development and research opportunities. DISCOVER ARTIFICIAL INTELLIGENCE 2021; 1:5. [DOI: 10.1007/s44163-021-00006-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.
Collapse
|
8
|
Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep Learning in Biomedical Optics. Lasers Surg Med 2021; 53:748-775. [PMID: 34015146 PMCID: PMC8273152 DOI: 10.1002/lsm.23414] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
This article reviews deep learning applications in biomedical optics with a particular emphasis on image formation. The review is organized by imaging domains within biomedical optics and includes microscopy, fluorescence lifetime imaging, in vivo microscopy, widefield endoscopy, optical coherence tomography, photoacoustic imaging, diffuse tomography, and functional optical brain imaging. For each of these domains, we summarize how deep learning has been applied and highlight methods by which deep learning can enable new capabilities for optics in medicine. Challenges and opportunities to improve translation and adoption of deep learning in biomedical optics are also summarized. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- L. Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - B. Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - M. A. L. Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - J. Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - J. T. Smith
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - M. Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - X. Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - N. J. Durr
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Izadyyazdanabadi M, Belykh E, Zhao X, Moreira LB, Gandhi S, Cavallo C, Eschbacher J, Nakaji P, Preul MC, Yang Y. Fluorescence Image Histology Pattern Transformation Using Image Style Transfer. Front Oncol 2019; 9:519. [PMID: 31293966 PMCID: PMC6603166 DOI: 10.3389/fonc.2019.00519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
Confocal laser endomicroscopy (CLE) allow on-the-fly in vivo intraoperative imaging in a discreet field of view, especially for brain tumors, rather than extracting tissue for examination ex vivo with conventional light microscopy. Fluorescein sodium-driven CLE imaging is more interactive, rapid, and portable than conventional hematoxylin and eosin (H&E)-staining. However, it has several limitations: CLE images may be contaminated with artifacts (motion, red blood cells, noise), and neuropathologists are mainly trained on colorful stained histology slides like H&E while the CLE images are gray. To improve the diagnostic quality of CLE, we used a micrograph of an H&E slide from a glioma tumor biopsy and image style transfer, a neural network method for integrating the content and style of two images. This was done through minimizing the deviation of the target image from both the content (CLE) and style (H&E) images. The style transferred images were assessed and compared to conventional H&E histology by neurosurgeons and a neuropathologist who then validated the quality enhancement in 100 pairs of original and transformed images. Average reviewers' score on test images showed 84 out of 100 transformed images had fewer artifacts and more noticeable critical structures compared to their original CLE form. By providing images that are more interpretable than the original CLE images and more rapidly acquired than H&E slides, the style transfer method allows a real-time, cellular-level tissue examination using CLE technology that closely resembles the conventional appearance of H&E staining and may yield better diagnostic recognition than original CLE grayscale images.
Collapse
Affiliation(s)
- Mohammadhassan Izadyyazdanabadi
- School of Computing, Informatics, and Decision System Engineering, Arizona State University, Tempe, AZ, United States.,The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Leandro Borba Moreira
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sirin Gandhi
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Claudio Cavallo
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Jennifer Eschbacher
- Department of Neuropathology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neuropathology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Yezhou Yang
- School of Computing, Informatics, and Decision System Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|