1
|
Luo Y, Chen Q, Li F, Yi L, Xu P, Zhang Y. Hierarchical feature extraction on functional brain networks for autism spectrum disorder identification with resting-state fMRI data. Neural Netw 2025; 188:107450. [PMID: 40233539 DOI: 10.1016/j.neunet.2025.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Autism Spectrum Disorder (ASD) is a pervasive developmental disorder of the central nervous system, primarily manifesting in childhood. It is characterized by atypical and repetitive behaviors. Conventional diagnostic methods mainly rely on questionnaire surveys and behavioral observations, which are prone to misdiagnosis due to their subjective nature. With advancements in medical imaging, MR imaging-based diagnostics have emerged as a more objective alternative. In this paper, we propose a Hierarchical Neural Network model for ASD identification, termed ASD-HNet, which hierarchically extracts features from functional brain networks based on resting-state functional magnetic resonance imaging (rs-fMRI) data. This hierarchical approach enhances the extraction of brain representations, improving diagnostic accuracy and aiding in the identification of brain regions associated with ASD. Specifically, features are extracted at three levels, i.e., the local region of interest (ROI) scale, the community scale, and the global representation scale. At the ROI scale, graph convolution is employed to transfer features between ROIs. At the community scale, functional gradients are introduced, and a K-Means clustering algorithm is applied to group ROIs with similar functional gradients into communities. Features from ROIs within the same community are then extracted to characterize the communities. At the global representation scale, we extract global features from the whole community-scale brain networks to represent the entire brain. We validate the effectiveness of the ASD-HNet model using the publicly available Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, ADHD-200,dataset and ABIDE-II dataset. Extensive experimental results demonstrate that ASD-HNet outperforms existing baseline methods. The code is available at https://github.com/LYQbyte/ASD-HNet.
Collapse
Affiliation(s)
- Yiqian Luo
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Qiurong Chen
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Fali Li
- MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yi
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Peng Xu
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yangsong Zhang
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Li W, Wang M, Liu M, Liu Q. Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis. Neural Netw 2025; 183:106945. [PMID: 39642641 DOI: 10.1016/j.neunet.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qingshan Liu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhang Y, Zhou Q, Gao L, Li J, Li H, Ji G, Yang H, Wang E, Wang K, Li D. Abnormal Functional Connectivity of the Primary Sensory Network in Autism Spectrum Disorder: Sex Differences, Early Overdevelopment, and Clinical Significance. Brain Behav 2025; 15:e70363. [PMID: 40123151 PMCID: PMC11930894 DOI: 10.1002/brb3.70363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025] Open
Abstract
INTRODUCTION Primary sensory processing is atypical in patients with autism spectrum disorder (ASD) and affects daily functioning. However, the functional connectivity (FC) patterns of primary networks in ASD have not been systematically investigated. METHODS Primary networks were defined as four regions of interest (ROIs) in each brain hemisphere. We analyzed ROI-wise FC in 105 individuals with ASD and 132 typically developing (TD) participants from Autism Brain Imaging Data Exchange I. We calculated the correlation between abnormal FC and clinical scores. Additionally, data from 53 individuals with ASD from our laboratory's two-site dataset were used to validate the results and assess the effects of sex and age on FC consistency. RESULTS Regarding the ROI-wise connectivity, significant group differences in FC emerged in several regional pairs, particularly in the primary auditory and somatosensory regions. Abnormal brain regions correlated with clinical symptoms. As age increased, abnormal FC had an initial fast and then slowing development trend, and the abnormal FC in females was higher than that in males. The two-site dataset results were consistent with those of the multisite dataset in assessing the influence of age and sex on FC. CONCLUSION Abnormal FC exists in the primary sensory cortex of patients with ASD, which correlates with clinical outcomes and may cause impairments in advanced cognitive functions. In addition, the primary sensory cortex of patients with ASD may undergo excessive growth in the early stages and demonstrate imbalanced development according to sex. These findings may help identify new biomarkers for ASD.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
| | - Quan Zhou
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Limei Gao
- School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
| | - Jingwen Li
- School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
| | - Hong Li
- Anhui Hospital Affiliated to the Pediatric Hospital of Fudan University (Anhui Provincial Children's Hospital)HefeiChina
| | - Gong‐Jun Ji
- School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiChina
| | - Hua Yang
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Enze Wang
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Kai Wang
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiChina
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Dandan Li
- School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Research Center for Translational MedicineThe Second Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Mahajan P, Patil D, Nair N, Musmade N, Apte P. Mapping the Landscape of Autism Research: A Scientometric Review (2011-2023). Int J Dev Neurosci 2025; 85:e10406. [PMID: 39723621 DOI: 10.1002/jdn.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
This scientometric analysis maps the landscape of autism spectrum disorder (ASD) research between 2011 and 2023. By exploring patterns in publication growth, geographic distribution and institutional involvement, this study highlights evolving research themes, key contributors and collaborative networks. Our findings reveal a marked rise in ASD publications, particularly from 2020 onwards, with the United States, United Kingdom and China leading in contributions and collaborations. Scientometric analysis identifies a shift towards advanced machine learning techniques and neuroimaging in ASD studies, reflecting technological integration in research. Institutional analysis uncovers Vanderbilt University and Yale University as major contributors, with significant citation impacts across their publications. Furthermore, prominent funding sources, including the National Institutes of Health, underscore the critical role of funding in shaping research priorities. This comprehensive scientometric overview not only consolidates current knowledge but also serves as a resource to inform future research directions, enhancing interdisciplinary approaches to ASD understanding and intervention.
Collapse
Affiliation(s)
- Pratibha Mahajan
- Department of Artificial Intelligence, Vishwakarma University, Pune, India
| | - Deven Patil
- Department of Artificial Intelligence, Vishwakarma University, Pune, India
| | - Nidhi Nair
- Department of Artificial Intelligence, Vishwakarma University, Pune, India
| | - Nishant Musmade
- Department of Artificial Intelligence, Vishwakarma University, Pune, India
| | - Preet Apte
- Department of Artificial Intelligence, Vishwakarma University, Pune, India
| |
Collapse
|
5
|
Su J, Wang B, Fan Z, Zhang Y, Zeng LL, Shen H, Hu D. M₂DC: A Meta-Learning Framework for Generalizable Diagnostic Classification of Major Depressive Disorder. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:855-867. [PMID: 39283781 DOI: 10.1109/tmi.2024.3461312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Psychiatric diseases are bringing heavy burdens for both individual health and social stability. The accurate and timely diagnosis of the diseases is essential for effective treatment and intervention. Thanks to the rapid development of brain imaging technology and machine learning algorithms, diagnostic classification of psychiatric diseases can be achieved based on brain images. However, due to divergences in scanning machines or parameters, the generalization capability of diagnostic classification models has always been an issue. We propose Meta-learning with Meta batch normalization and Distance Constraint (M2DC) for training diagnostic classification models. The framework can simulate the train-test domain shift situation and promote intra-class cohesion, as well as inter-class separation, which can lead to clearer classification margins and more generalizable models. To better encode dynamic brain graphs, we propose a concatenated spatiotemporal attention graph isomorphism network (CSTAGIN) as the backbone. The network is trained for the diagnostic classification of major depressive disorder (MDD) based on multi-site brain graphs. Extensive experiments on brain images from over 3261 subjects show that models trained by M2DC achieve the best performance on cross-site diagnostic classification tasks compared to various contemporary domain generalization methods and SOTA studies. The proposed M2DC is by far the first framework for multi-source closed-set domain generalizable training of diagnostic classification models for MDD and the trained models can be applied to reliable auxiliary diagnosis on novel data.
Collapse
|
6
|
Dun J, Wang J, Li J, Yang Q, Hang W, Lu X, Ying S, Shi J. A Trustworthy Curriculum Learning Guided Multi-Target Domain Adaptation Network for Autism Spectrum Disorder Classification. IEEE J Biomed Health Inform 2025; 29:310-323. [PMID: 39378247 DOI: 10.1109/jbhi.2024.3476076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Domain adaptation has demonstrated success in classification of multi-center autism spectrum disorder (ASD). However, current domain adaptation methods primarily focus on classifying data in a single target domain with the assistance of one or multiple source domains, lacking the capability to address the clinical scenario of identifying ASD in multiple target domains. In response to this limitation, we propose a Trustworthy Curriculum Learning Guided Multi-Target Domain Adaptation (TCL-MTDA) network for identifying ASD in multiple target domains. To effectively handle varying degrees of data shift in multiple target domains, we propose a trustworthy curriculum learning procedure based on the Dempster-Shafer (D-S) Theory of Evidence. Additionally, a domain-contrastive adaptation method is integrated into the TCL-MTDA process to align data distributions between source and target domains, facilitating the learning of domain-invariant features. The proposed TCL-MTDA method is evaluated on 437 subjects (including 220 ASD patients and 217 NCs) from the Autism Brain Imaging Data Exchange (ABIDE). Experimental results validate the effectiveness of our proposed method in multi-target ASD classification, achieving an average accuracy of 71.46% (95% CI: 68.85% - 74.06%) across four target domains, significantly outperforming most baseline methods (p<0.05).
Collapse
|
7
|
Fang Y, Wu J, Wang Q, Qiu S, Bozoki A, Liu M. Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis. PATTERN RECOGNITION 2025; 157:110912. [PMID: 39246820 PMCID: PMC11378862 DOI: 10.1016/j.patcog.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Resting-state functional MRI (rs-fMRI) is increasingly employed in multi-site research to analyze neurological disorders, but there exists cross-site/domain data heterogeneity caused by site effects such as differences in scanners/protocols. Existing domain adaptation methods that reduce fMRI heterogeneity generally require accessing source domain data, which is challenging due to privacy concerns and/or data storage burdens. To this end, we propose a source-free collaborative domain adaptation (SCDA) framework using only a pretrained source model and unlabeled target data. Specifically, a multi-perspective feature enrichment method (MFE) is developed to dynamically exploit target fMRIs from multiple views. To facilitate efficient source-to-target knowledge transfer without accessing source data, we initialize MFE using parameters of a pretrained source model. We also introduce an unsupervised pretraining strategy using 3,806 unlabeled fMRIs from three large-scale auxiliary databases. Experimental results on three public and one private datasets show the efficacy of our method in cross-scanner and cross-study prediction.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinjian Wu
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510130, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shijun Qiu
- Department of Radiology, The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Orouji S, Liu MC, Korem T, Peters MAK. Domain adaptation in small-scale and heterogeneous biological datasets. SCIENCE ADVANCES 2024; 10:eadp6040. [PMID: 39705361 DOI: 10.1126/sciadv.adp6040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Machine-learning models are key to modern biology, yet models trained on one dataset are often not generalizable to other datasets from different cohorts or laboratories due to both technical and biological differences. Domain adaptation, a type of transfer learning, alleviates this problem by aligning different datasets so that models can be applied across them. However, most state-of-the-art domain adaptation methods were designed for large-scale data such as images, whereas biological datasets are smaller and have more features, and these are also complex and heterogeneous. This Review discusses domain adaptation methods in the context of such biological data to inform biologists and guide future domain adaptation research. We describe the benefits and challenges of domain adaptation in biological research and critically explore some of its objectives, strengths, and weaknesses. We argue for the incorporation of domain adaptation techniques to the computational biologist's toolkit, with further development of customized approaches.
Collapse
Affiliation(s)
- Seyedmehdi Orouji
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
| | - Martin C Liu
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| | - Megan A K Peters
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
- CIFAR Fellow, Program in Brain, Mind, & Consciousness, CIFAR, Toronto, Canada
| |
Collapse
|
9
|
González C, Miraoui Y, Fan Y, Adeli E, Pohl KM. SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis. MACHINE LEARNING IN CLINICAL NEUROIMAGING : 7TH INTERNATIONAL WORKSHOP, MLCN 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 10, 2024, PROCEEDINGS. MLCN (WORKSHOP) (7TH : 2024 : MARRAKESH, MOROCCO) 2024; 15266:46-56. [PMID: 39758707 PMCID: PMC11694515 DOI: 10.1007/978-3-031-78761-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rs-fMRI) associated with psychiatric disorders and personal traits. Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses, as the data is sensitive to scanning effects and inherently difficult to visualize. We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision. Instead of extracting post-hoc feature attributions to uncover functional connections that are important to the target task, we identify a small subset of highly informative connections during training and occlude the rest. To this end, we jointly train a (1) sparse input mask, (2) variational autoencoder (VAE), and (3) downstream classifier in an end-to-end fashion. While we need a portion of labeled samples to train the classifier, we optimize the sparse mask and VAE with unlabeled data from additional acquisition sites, retaining only the input features that generalize well. We evaluate our method - Sparsely Reconstructed Graphs (SpaRG) - on the public ABIDE dataset for the task of sex classification, training with labeled cases from 18 sites and adapting the model to two additional out-of-distribution sites with a portion of unlabeled samples. For a relatively coarse parcellation (64 regions), SpaRG utilizes only 1% of the original connections while improving the classification accuracy across domains. Our code can be found at www.github.com/yanismiraoui/SpaRG.
Collapse
Affiliation(s)
| | | | - Yiran Fan
- Stanford University, Stanford, CA 94305, USA
| | - Ehsan Adeli
- Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
10
|
Lee J, Kang E, Heo DW, Suk HI. Site-Invariant Meta-Modulation Learning for Multisite Autism Spectrum Disorders Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18062-18075. [PMID: 37708014 DOI: 10.1109/tnnls.2023.3311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Large amounts of fMRI data are essential to building generalized predictive models for brain disease diagnosis. In order to conduct extensive data analysis, it is often necessary to gather data from multiple organizations. However, the site variation inherent in multisite resting-state functional magnetic resonance imaging (rs-fMRI) leads to unfavorable heterogeneity in data distribution, negatively impacting the identification of biomarkers and the diagnostic decision. Several existing methods have alleviated this shift of domain distribution (i.e., multisite problem). Statistical tuning schemes directly regress out site disparity factors from the data prior to model training. Such methods have a limitation in processing data each time through variance estimation according to the added site. In the model adjustment approaches, domain adaptation (DA) methods adjust the features or models of the source domain according to the target domain during model training. Thus, it is inevitable that it needs updating model parameters according to the samples of a target site, causing great limitations in practical applicability. Meanwhile, the approach of domain generalization (DG) aims to create a universal model that can be quickly adapted to multiple domains. In this study, we propose a novel framework for disease diagnosis that alleviates the multisite problem by adaptively calibrating site-specific features into site-invariant features. Specifically, it applies directly to samples from unseen sites without the need for fine-tuning. With a learning-to-learn strategy that learns how to calibrate the features under the various domain shift environments, our novel modulation mechanism extracts site-invariant features. In our experiments over the Autism Brain Imaging Data Exchange (ABIDE I and II) dataset, we validated the generalization ability of the proposed network by improving diagnostic accuracy in both seen and unseen multisite samples.
Collapse
|
11
|
Kim Y, Fisher ZF, Pipiras V. Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity. Biom J 2024; 66:e202300370. [PMID: 39470131 DOI: 10.1002/bimj.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 10/30/2024]
Abstract
This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
Collapse
Affiliation(s)
| | - Zachary F Fisher
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vladas Pipiras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Jha RR, Muralie A, Daroch M, Bhavsar A, Nigam A. Enhancing Autism Spectrum Disorder identification in multi-site MRI imaging: A multi-head cross-attention and multi-context approach for addressing variability in un-harmonized data. Artif Intell Med 2024; 157:102998. [PMID: 39442245 DOI: 10.1016/j.artmed.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Multi-site MRI imaging poses a significant challenge due to the potential variations in images across different scanners at different sites. This variability can introduce ambiguity in further image analysis. Consequently, the image analysis techniques become site-dependent and scanner-dependent, implying that adjustments in the analysis methodologies are necessary for each scanner configuration. Further, implementing real-time modifications becomes intricate, particularly when incorporating a new type of scanner, as it requires adapting the analysis methods accordingly. Taking into account the aforementioned challenge, we have considered its implications for an Autism spectrum disorder (ASD) application. Our objective is to minimize the impact of site and scanner variability in the analysis, aiming to develop a model that remains effective across different scanners and sites. This entails devising a methodology that allows the same model to function seamlessly across multiple scanner configurations and sites. ASD, a behavioral disorder affecting child development, requires early detection. Clinical observation is time-consuming, prompting the use of fMRI with machine/deep learning for expedited diagnosis. Previous methods leverage fMRI's functional connectivity but often rely on less generalized feature extractors and classifiers. Hence, there is significant room for improvement in the generalizability of detection methods across multi-site data, which is acquired from multiple scanners with different settings. In this study, we propose a Cross-Combination Multi-Scale Multi-Context Framework (CCMSMCF) capable of performing neuroimaging-based diagnostic classification of mental disorders for a multi-site dataset. Thus, this framework attains a degree of internal data harmonization, rendering it to some extent site and scanner-agnostic. Our proposed network, CCMSMCF, is constructed by integrating two sub-modules: the Multi-Head Attention Cross-Scale Module (MHACSM) and the Residual Multi-Context Module (RMCN). We also employ multiple loss functions in a novel manner for training the model, which includes Binary Cross Entropy, Dice loss, and Embedding Coupling loss. The model is validated on the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, which includes data from multiple scanners across different sites, and achieves promising results.
Collapse
Affiliation(s)
- Ranjeet Ranjan Jha
- Mathematics Department, Indian Institute of Technology (IIT) Patna, India.
| | - Arvind Muralie
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Munish Daroch
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Arnav Bhavsar
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Aditya Nigam
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| |
Collapse
|
13
|
Sha Q, Sun K, Jiang C, Xu M, Xue Z, Cao X, Shen D. Detail-preserving image warping by enforcing smooth image sampling. Neural Netw 2024; 178:106426. [PMID: 38878640 DOI: 10.1016/j.neunet.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 06/01/2024] [Indexed: 08/13/2024]
Abstract
Multi-phase dynamic contrast-enhanced magnetic resonance imaging image registration makes a substantial contribution to medical image analysis. However, existing methods (e.g., VoxelMorph, CycleMorph) often encounter the problem of image information misalignment in deformable registration tasks, posing challenges to the practical application. To address this issue, we propose a novel smooth image sampling method to align full organic information to realize detail-preserving image warping. In this paper, we clarify that the phenomenon about image information mismatch is attributed to imbalanced sampling. Then, a sampling frequency map constructed by sampling frequency estimators is utilized to instruct smooth sampling by reducing the spatial gradient and discrepancy between all-ones matrix and sampling frequency map. In addition, our estimator determines the sampling frequency of a grid voxel in the moving image by aggregating the sum of interpolation weights from warped non-grid sampling points in its vicinity and vectorially constructs sampling frequency map through projection and scatteration. We evaluate the effectiveness of our approach through experiments on two in-house datasets. The results showcase that our method preserves nearly complete details with ideal registration accuracy compared with several state-of-the-art registration methods. Additionally, our method exhibits a statistically significant difference in the regularity of the registration field compared to other methods, at a significance level of p < 0.05. Our code will be released at https://github.com/QingRui-Sha/SFM.
Collapse
Affiliation(s)
- Qingrui Sha
- School of Biomedical Engineering, ShanghaiTech, Shanghai, China.
| | - Kaicong Sun
- School of Biomedical Engineering, ShanghaiTech, Shanghai, China.
| | - Caiwen Jiang
- School of Biomedical Engineering, ShanghaiTech, Shanghai, China.
| | - Mingze Xu
- School of Science and Engineering, Chinese University of Hong Kong-Shenzhen, Guangdong, China.
| | - Zhong Xue
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| | - Xiaohuan Cao
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
14
|
Wang S, Zhao Z, Ouyang X, Liu T, Wang Q, Shen D. Interactive computer-aided diagnosis on medical image using large language models. COMMUNICATIONS ENGINEERING 2024; 3:133. [PMID: 39284899 PMCID: PMC11405679 DOI: 10.1038/s44172-024-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Computer-aided diagnosis (CAD) has advanced medical image analysis, while large language models (LLMs) have shown potential in clinical applications. However, LLMs struggle to interpret medical images, which are critical for decision-making. Here we show a strategy integrating LLMs with CAD networks. The framework uses LLMs' medical knowledge and reasoning to enhance CAD network outputs, such as diagnosis, lesion segmentation, and report generation, by summarizing information in natural language. The generated reports are of higher quality and can improve the performance of vision-based CAD models. In chest X-rays, an LLM using ChatGPT improved diagnosis performance by 16.42 percentage points compared to state-of-the-art models, while GPT-3 provided a 15.00 percentage point F1-score improvement. Our strategy allows accurate report generation and creates a patient-friendly interactive system, unlike conventional CAD systems only understood by professionals. This approach has the potential to revolutionize clinical decision-making and patient communication.
Collapse
Affiliation(s)
- Sheng Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Zihao Zhao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xi Ouyang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, GA, USA
| | - Qian Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Dinggang Shen
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
15
|
Ji Y, Silva RF, Adali T, Wen X, Zhu Q, Jiang R, Zhang D, Qi S, Calhoun VD. Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders. Neuroimage Clin 2024; 43:103663. [PMID: 39226701 PMCID: PMC11639356 DOI: 10.1016/j.nicl.2024.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification. In this paper, brain functional and structural networks (BFNs/BSNs) from multiple sites were constructed to establish a joint multi-site multi-modality framework for psychiatric diagnosis. To do this we developed a hypergraph based multi-source domain adaptation (HMSDA) which allowed us to transform source domain subjects into a target domain. A local ordinal structure based multi-task feature selection (LOSMFS) approach was developed by integrating the transformed functional and structural connections (FCs/SCs). The effectiveness of our method was validated by evaluating diagnosis of both schizophrenia (SZ) and autism spectrum disorder (ASD). The proposed method obtained accuracies of 92.2 %±2.22 % and 84.8 %±2.68 % for the diagnosis of SZ and ASD, respectively. We also compared with 6 DA, 10 multi-modality feature selection, and 8 multi-site and multi-modality methods. Results showed the proposed HMSDA+LOSMFS effectively integrated multi-site and multi-modality data to enhance psychiatric diagnosis and identify disorder-specific diagnostic brain connections.
Collapse
Affiliation(s)
- Yixin Ji
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rogers F Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Tülay Adali
- Department of CSEE, University of Maryland, USA
| | - Xuyun Wen
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Qi Zhu
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rongtao Jiang
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daoqiang Zhang
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Shile Qi
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Wang Z, Shen L, Yang Y, Ma Y, Man Wong C, Liu Z, Lin C, Tin Hon C, Qian T, Wan F. A Least-Square Unified Framework for Spatial Filtering in SSVEP-Based BCIs. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2470-2481. [PMID: 38976469 DOI: 10.1109/tnsre.2024.3424410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The steady-state visual evoked potential (SSVEP) has become one of the most prominent BCI paradigms with high information transfer rate, and has been widely applied in rehabilitation and assistive applications. This paper proposes a least-square (LS) unified framework to summarize the correlation analysis (CA)-based SSVEP spatial filtering methods from a machine learning perspective. Within this framework, the commonalities and differences between various spatial filtering methods appear apparent, the interpretation of computational factors becomes intuitive, and spatial filters can be determined by solving a generalized optimization problem with non-linear and regularization items. Moreover, the proposed LS framework provides the foundation of utilizing the knowledge behind these spatial filtering methods in further classification/regression model designs. Through a comparative analysis of existing representative spatial filtering methods, recommendations are made for the superior and robust design strategies. These recommended strategies are further integrated to fill the research gaps and demonstrate the ability of the proposed LS framework to promote algorithmic improvements, resulting in five new spatial filtering methods. This study could offer significant insights in understanding the relationships between various design strategies in the spatial filtering methods from the machine learning perspective, and would also contribute to the development of the SSVEP recognition methods with high performance.
Collapse
|
17
|
Qiu B, Wang Q, Li X, Li W, Shao W, Wang M. Adaptive spatial-temporal neural network for ADHD identification using functional fMRI. Front Neurosci 2024; 18:1394234. [PMID: 38872940 PMCID: PMC11169645 DOI: 10.3389/fnins.2024.1394234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Computer aided diagnosis methods play an important role in Attention Deficit Hyperactivity Disorder (ADHD) identification. Dynamic functional connectivity (dFC) analysis has been widely used for ADHD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), which can help capture abnormalities of brain activity. However, most existing dFC-based methods only focus on dependencies between two adjacent timestamps, ignoring global dynamic evolution patterns. Furthermore, the majority of these methods fail to adaptively learn dFCs. In this paper, we propose an adaptive spatial-temporal neural network (ASTNet) comprising three modules for ADHD identification based on rs-fMRI time series. Specifically, we first partition rs-fMRI time series into multiple segments using non-overlapping sliding windows. Then, adaptive functional connectivity generation (AFCG) is used to model spatial relationships among regions-of-interest (ROIs) with adaptive dFCs as input. Finally, we employ a temporal dependency mining (TDM) module which combines local and global branches to capture global temporal dependencies from the spatially-dependent pattern sequences. Experimental results on the ADHD-200 dataset demonstrate the superiority of the proposed ASTNet over competing approaches in automated ADHD classification.
Collapse
Affiliation(s)
- Bo Qiu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xizhi Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
- Nanjing Xinda Institute of Safety and Emergency Management, Nanjing, China
| |
Collapse
|
18
|
Xie X, Zhou R, Fang Z, Zhang Y, Wang Q, Liu X. Seeing beyond words: Visualizing autism spectrum disorder biomarker insights. Heliyon 2024; 10:e30420. [PMID: 38694128 PMCID: PMC11061761 DOI: 10.1016/j.heliyon.2024.e30420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Objective This study employs bibliometric and visual analysis to elucidate global research trends in Autism Spectrum Disorder (ASD) biomarkers, identify critical research focal points, and discuss the potential integration of diverse biomarker modalities for precise ASD assessment. Methods A comprehensive bibliometric analysis was conducted using data from the Web of Science Core Collection database until December 31, 2022. Visualization tools, including R, VOSviewer, CiteSpace, and gCLUTO, were utilized to examine collaborative networks, co-citation patterns, and keyword associations among countries, institutions, authors, journals, documents, and keywords. Results ASD biomarker research emerged in 2004, accumulating a corpus of 4348 documents by December 31, 2022. The United States, with 1574 publications and an H-index of 213, emerged as the most prolific and influential country. The University of California, Davis, contributed significantly with 346 publications and an H-index of 69, making it the leading institution. Concerning journals, the Journal of Autism and Developmental Disorders, Autism Research, and PLOS ONE were the top three publishers of ASD biomarker-related articles among a total of 1140 academic journals. Co-citation and keyword analyses revealed research hotspots in genetics, imaging, oxidative stress, neuroinflammation, gut microbiota, and eye tracking. Emerging topics included "DNA methylation," "eye tracking," "metabolomics," and "resting-state fMRI." Conclusion The field of ASD biomarker research is dynamically evolving. Future endeavors should prioritize individual stratification, methodological standardization, the harmonious integration of biomarker modalities, and longitudinal studies to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyue Xie
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Zihan Fang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Yongting Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Qirong Wang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Xiaomian Liu
- Henan University of Chinese Medicine, School of Medicine, Zhengzhou, Henan, 450046, China
| |
Collapse
|
19
|
Wang Y, Long H, Bo T, Zheng J. Residual graph transformer for autism spectrum disorder prediction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108065. [PMID: 38428249 DOI: 10.1016/j.cmpb.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Brain functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) has been in vogue to predict Autism Spectrum Disorder (ASD), which is a neuropsychiatric disease up the plight of locating latent biomarkers for clinical diagnosis. Albeit massive endeavors have been made, most studies are fed up with several chronic issues, such as the intractability of harnessing the interaction flourishing within brain regions, the astriction of representation due to vanishing gradient within deeper network architecture, and the poor interpretability leading to unpersuasive diagnosis. To ameliorate these issues, a FC-learned Residual Graph Transformer Network, namely RGTNet, is proposed. Specifically, we design a Graph Encoder to extract temporal-related features with long-range dependencies, from which interpretable FC matrices would be modeled. Besides, the residual trick is introduced to deepen the GCN architecture, thereby learning the higher-level information. Moreover, a novel Graph Sparse Fitting followed by weighted aggregation is proposed to ease dimensionality explosion. Empirically, the results on two types of ABIDE data sets demonstrate the meliority of RGTNet. Notably, the achieved ACC metric reaches 73.4%, overwhelming most competitors with merely 70.9% on the AAL atlas using a five-fold cross-validation policy. Moreover, the investigated biomarkers concord closely with the authoritative medical knowledge, paving a viable way for ASD-clinical diagnosis. Our code is available at https://github.com/CodeGoat24/RGTNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
20
|
Zhang Y, Gao Y, Xu J, Zhao G, Shi L, Kong L. Unsupervised Joint Domain Adaptation for Decoding Brain Cognitive States From tfMRI Images. IEEE J Biomed Health Inform 2024; 28:1494-1503. [PMID: 38157464 DOI: 10.1109/jbhi.2023.3348130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recent advances in large model and neuroscience have enabled exploration of the mechanism of brain activity by using neuroimaging data. Brain decoding is one of the most promising researches to further understand the human cognitive function. However, current methods excessively depends on high-quality labeled data, which brings enormous expense of collection and annotation of neural images by experts. Besides, the performance of cross-individual decoding suffers from inconsistency in data distribution caused by individual variation and different collection equipments. To address mentioned above issues, a Join Domain Adapative Decoding (JDAD) framework is proposed for unsupervised decoding specific brain cognitive state related to behavioral task. Based on the volumetric feature extraction from task-based functional Magnetic Resonance Imaging (tfMRI) data, a novel objective loss function is designed by the combination of joint distribution regularizer, which aims to restrict the distance of both the conditional and marginal probability distribution of labeled and unlabeled samples. Experimental results on the public Human Connectome Project (HCP) S1200 dataset show that JDAD achieves superior performance than other prevalent methods, especially for fine-grained task with 11.5%-21.6% improvements of decoding accuracy. The learned 3D features are visualized by Grad-CAM to build a combination with brain functional regions, which provides a novel path to learn the function of brain cortex regions related to specific cognitive task in group level.
Collapse
|
21
|
Ji Y, Pearlson G, Bustillo J, Kochunov P, Turner JA, Jiang R, Shao W, Zhang X, Fu Z, Li K, Liu Z, Xu X, Zhang D, Qi S, Calhoun VD. Identifying psychosis subtypes use individualized covariance structural differential networks and multi-site clustering. Schizophr Res 2024; 264:130-139. [PMID: 38128344 DOI: 10.1016/j.schres.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.
Collapse
Affiliation(s)
- Yixin Ji
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Juan Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Rongtao Jiang
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaowen Liu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Electrical and Computer Engineering, Georgia Tech University, Atlanta, GA, USA
| |
Collapse
|
22
|
Alfakih A, Xia Z, Ali B, Mamoon S, Lu J. Deep Causality Variational Autoencoder Network for Identifying the Potential Biomarkers of Brain Disorders. IEEE Trans Neural Syst Rehabil Eng 2024; 32:112-121. [PMID: 38113163 DOI: 10.1109/tnsre.2023.3344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs that characterize the causal relationship between brain regions based on time series data. To address this issue, we designed a novel model named deep causal variational autoencoder (CVAE) to estimate the causal relationship between brain regions. This network contains a causal layer that can estimate the causal relationship between different brain regions directly. Compared with previous approaches, our method relaxes many constraints on the structure of underlying causal graph. Our proposed method achieves excellent performance on both the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Autism Brain Imaging Data Exchange 1 (ABIDE1) databases. Moreover, the experimental results show that deep CVAE has promising applications in the field of brain disease identification.
Collapse
|
23
|
Wang M, Zhu L, Li X, Pan Y, Li L. Dynamic functional connectivity analysis with temporal convolutional network for attention deficit/hyperactivity disorder identification. Front Neurosci 2023; 17:1322967. [PMID: 38148943 PMCID: PMC10750397 DOI: 10.3389/fnins.2023.1322967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Dynamic functional connectivity (dFC), which can capture the abnormality of brain activity over time in resting-state functional magnetic resonance imaging (rs-fMRI) data, has a natural advantage in revealing the abnormal mechanism of brain activity in patients with Attention Deficit/Hyperactivity Disorder (ADHD). Several deep learning methods have been proposed to learn dynamic changes from rs-fMRI for FC analysis, and achieved superior performance than those using static FC. However, most existing methods only consider dependencies of two adjacent timestamps, which is limited when the change is related to the course of many timestamps. Methods In this paper, we propose a novel Temporal Dependence neural Network (TDNet) for FC representation learning and temporal-dependence relationship tracking from rs-fMRI time series for automated ADHD identification. Specifically, we first partition rs-fMRI time series into a sequence of consecutive and non-overlapping segments. For each segment, we design an FC generation module to learn more discriminative representations to construct dynamic FCs. Then, we employ the Temporal Convolutional Network (TCN) to efficiently capture long-range temporal patterns with dilated convolutions, followed by three fully connected layers for disease prediction. Results As the results, we found that considering the dynamic characteristics of rs-fMRI time series data is beneficial to obtain better diagnostic performance. In addition, dynamic FC networks generated in a data-driven manner are more informative than those constructed by Pearson correlation coefficients. Discussion We validate the effectiveness of the proposed approach through extensive experiments on the public ADHD-200 database, and the results demonstrate the superiority of the proposed model over state-of-the-art methods in ADHD identification.
Collapse
Affiliation(s)
- Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
- Nanjing Xinda Institute of Safety and Emergency Management, Nanjing, China
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lingyao Zhu
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xizhi Li
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yong Pan
- School of Accounting, Nanjing University of Finance and Economics, Nanjing, China
| | - Long Li
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| |
Collapse
|
24
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Hu Y, Huang ZA, Liu R, Xue X, Sun X, Song L, Tan KC. Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:13778-13795. [PMID: 37486851 DOI: 10.1109/tpami.2023.3298332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.
Collapse
|
26
|
Ma Y, Wang Q, Cao L, Li L, Zhang C, Qiao L, Liu M. Multi-Scale Dynamic Graph Learning for Brain Disorder Detection With Functional MRI. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3501-3512. [PMID: 37643109 DOI: 10.1109/tnsre.2023.3309847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the detection of brain disorders such as autism spectrum disorder based on various machine/deep learning techniques. Learning-based methods typically rely on functional connectivity networks (FCNs) derived from blood-oxygen-level-dependent time series of rs-fMRI data to capture interactions between brain regions-of-interest (ROIs). Graph neural networks have been recently used to extract fMRI features from graph-structured FCNs, but cannot effectively characterize spatiotemporal dynamics of FCNs, e.g., the functional connectivity of brain ROIs is dynamically changing in a short period of time. Also, many studies usually focus on single-scale topology of FCN, thereby ignoring the potential complementary topological information of FCN at different spatial resolutions. To this end, in this paper, we propose a multi-scale dynamic graph learning (MDGL) framework to capture multi-scale spatiotemporal dynamic representations of rs-fMRI data for automated brain disorder diagnosis. The MDGL framework consists of three major components: 1) multi-scale dynamic FCN construction using multiple brain atlases to model multi-scale topological information, 2) multi-scale dynamic graph representation learning to capture spatiotemporal information conveyed in fMRI data, and 3) multi-scale feature fusion and classification. Experimental results on two datasets show that MDGL outperforms several state-of-the-art methods.
Collapse
|
27
|
Tang Y, Tong G, Xiong X, Zhang C, Zhang H, Yang Y. Multi-site diagnostic classification of Autism spectrum disorder using adversarial deep learning on resting-state fMRI. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
28
|
Fang Y, Potter GG, Wu D, Zhu H, Liu M. Addressing multi-site functional MRI heterogeneity through dual-expert collaborative learning for brain disease identification. Hum Brain Mapp 2023; 44:4256-4271. [PMID: 37227019 PMCID: PMC10318248 DOI: 10.1002/hbm.26343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Several studies employ multi-site rs-fMRI data for major depressive disorder (MDD) identification, with a specific site as the to-be-analyzed target domain and other site(s) as the source domain. But they usually suffer from significant inter-site heterogeneity caused by the use of different scanners and/or scanning protocols and fail to build generalizable models that can well adapt to multiple target domains. In this article, we propose a dual-expert fMRI harmonization (DFH) framework for automated MDD diagnosis. Our DFH is designed to simultaneously exploit data from a single labeled source domain/site and two unlabeled target domains for mitigating data distribution differences across domains. Specifically, the DFH consists of a domain-generic student model and two domain-specific teacher/expert models that are jointly trained to perform knowledge distillation through a deep collaborative learning module. A student model with strong generalizability is finally derived, which can be well adapted to unseen target domains and analysis of other brain diseases. To the best of our knowledge, this is among the first attempts to investigate multi-target fMRI harmonization for MDD diagnosis. Comprehensive experiments on 836 subjects with rs-fMRI data from 3 different sites show the superiority of our method. The discriminative brain functional connectivities identified by our method could be regarded as potential biomarkers for fMRI-related MDD diagnosis.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Guy G. Potter
- Departments of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Di Wu
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Hongtu Zhu
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mingxia Liu
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
29
|
Cui W, Du J, Sun M, Zhu S, Zhao S, Peng Z, Tan L, Li Y. Dynamic multi-site graph convolutional network for autism spectrum disorder identification. Comput Biol Med 2023; 157:106749. [PMID: 36921455 DOI: 10.1016/j.compbiomed.2023.106749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Multi-site learning has attracted increasing interests in autism spectrum disorder (ASD) identification tasks by its efficacy on capturing data heterogeneity of neuroimaging taken from different medical sites. However, existing multi-site graph convolutional network (MSGCN) often ignores the correlations between different sites, and may obtain suboptimal identification results. Moreover, current feature extraction methods characterizing temporal variations of functional magnetic resonance imaging (fMRI) signals require the time series to be of the same length and cannot be directly applied to multi-site fMRI datasets. To address these problems, we propose a dual graph based dynamic multi-site graph convolutional network (DG-DMSGCN) for multi-site ASD identification. First, a sliding-window dual-graph convolutional network (SW-DGCN) is introduced for feature extraction, simultaneously capturing temporal and spatial features of fMRI data with different series lengths. Then we aggregate the features extracted from multiple medical sites through a novel dynamic multi-site graph convolutional network (DMSGCN), which effectively considers the correlations between different sites and is beneficial to improve identification performance. We evaluate the proposed DG-DMSGCN on public ABIDE I dataset containing data from 17 medical sites. The promising results obtained by our framework outperforms the state-of-the-art methods with increase in identification accuracy, indicating that it has a potential clinical prospect for practical ASD diagnosis. Our codes are available on https://github.com/Junling-Du/DG-DMSGCN.
Collapse
Affiliation(s)
- Weigang Cui
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Junling Du
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Mingyi Sun
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Shimao Zhu
- South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518111, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Ziwen Peng
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, 518020, China.
| | - Li Tan
- School of Computer Science and Engineering, Beijing Technology and Business Universtiy, Beijing, 100048, China.
| | - Yang Li
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.
| |
Collapse
|
30
|
Wen G, Shim V, Holdsworth SJ, Fernandez J, Qiao M, Kasabov N, Wang A. Machine Learning for Brain MRI Data Harmonisation: A Systematic Review. Bioengineering (Basel) 2023; 10:bioengineering10040397. [PMID: 37106584 PMCID: PMC10135601 DOI: 10.3390/bioengineering10040397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) data collected from multiple centres can be heterogeneous due to factors such as the scanner used and the site location. To reduce this heterogeneity, the data needs to be harmonised. In recent years, machine learning (ML) has been used to solve different types of problems related to MRI data, showing great promise. OBJECTIVE This study explores how well various ML algorithms perform in harmonising MRI data, both implicitly and explicitly, by summarising the findings in relevant peer-reviewed articles. Furthermore, it provides guidelines for the use of current methods and identifies potential future research directions. METHOD This review covers articles published through PubMed, Web of Science, and IEEE databases through June 2022. Data from studies were analysed based on the criteria of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Quality assessment questions were derived to assess the quality of the included publications. RESULTS a total of 41 articles published between 2015 and 2022 were identified and analysed. In the review, MRI data has been found to be harmonised either in an implicit (n = 21) or an explicit (n = 20) way. Three MRI modalities were identified: structural MRI (n = 28), diffusion MRI (n = 7) and functional MRI (n = 6). CONCLUSION Various ML techniques have been employed to harmonise different types of MRI data. There is currently a lack of consistent evaluation methods and metrics used across studies, and it is recommended that the issue be addressed in future studies. Harmonisation of MRI data using ML shows promises in improving performance for ML downstream tasks, while caution should be exercised when using ML-harmonised data for direct interpretation.
Collapse
Affiliation(s)
- Grace Wen
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - Samantha Jane Holdsworth
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Miao Qiao
- Department of Computer Science, University of Auckland, Auckland 1142, New Zealand
| | - Nikola Kasabov
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand
- Intelligent Systems Research Centre, Ulster University, Londonderry BT52 1SA, UK
- Institute for Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
31
|
Liu X, Wu J, Li W, Liu Q, Tian L, Huang H. Domain Adaptation via Low Rank and Class Discriminative Representation for Autism Spectrum Disorder Identification: A Multi-Site fMRI Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:806-817. [PMID: 37018581 DOI: 10.1109/tnsre.2022.3233656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To construct a more effective model with good generalization performance for inter-site autism spectrum disorder (ASD) diagnosis, domain adaptation based ASD diagnostic models are proposed to alleviate the inter-site heterogeneity. However, most existing methods only reduce the marginal distribution difference without considering class discriminative information, and are difficult to achieve satisfactory results. In this paper, we propose a low rank and class discriminative representation (LRCDR) based multi-source unsupervised domain adaptation method to reduce the marginal and conditional distribution differences synchronously for improving ASD identification. Specifically, LRCDR adopts low rank representation to alleviate the marginal distribution difference between domains by aligning the global structure of the projected multi-site data. To reduce the conditional distribution difference of data from all sites, LRCDR learns the class discriminative representation of data from multiple source domains and the target domain to enhance the intra-class compactness and inter-class separability of the projected data. For inter-site prediction on all ABIDE I data (1102 subjects from 17 sites), LRCDR obtains the mean accuracy of 73.1%, superior to the results of the compared state-of-the-art domain adaptation methods and multi-site ASD identification methods. In addition, we locate some meaningful biomarkers: Most of the top important biomarkers are inter-network resting-state functional connectivities (RSFCs). The proposed LRCDR method can effectively improve the identification of ASD, and has great potential as a clinical diagnostic tool.
Collapse
|
32
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:354-367. [PMID: 35767511 DOI: 10.1109/tmi.2022.3187141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S.
Collapse
|
33
|
Fang Y, Wang M, Potter GG, Liu M. Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med Image Anal 2023; 84:102707. [PMID: 36512941 PMCID: PMC9850278 DOI: 10.1016/j.media.2022.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Peng L, Wang N, Xu J, Zhu X, Li X. GATE: Graph CCA for Temporal Self-Supervised Learning for Label-Efficient fMRI Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:391-402. [PMID: 36018878 DOI: 10.1109/tmi.2022.3201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we focus on the challenging task, neuro-disease classification, using functional magnetic resonance imaging (fMRI). In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success. However, these achievements are inseparable from abundant labeled data and sensitive to spurious signals. To improve fMRI representation learning and classification under a label-efficient setting, we propose a novel and theory-driven self-supervised learning (SSL) framework on GCNs, namely Graph CCA for Temporal sElf-supervised learning on fMRI analysis (GATE). Concretely, it is demanding to design a suitable and effective SSL strategy to extract formation and robust features for fMRI. To this end, we investigate several new graph augmentation strategies from fMRI dynamic functional connectives (FC) for SSL training. Further, we leverage canonical-correlation analysis (CCA) on different temporal embeddings and present the theoretical implications. Consequently, this yields a novel two-step GCN learning procedure comprised of (i) SSL on an unlabeled fMRI population graph and (ii) fine-tuning on a small labeled fMRI dataset for a classification task. Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis. Our code is available at https://github.com/LarryUESTC/GATE.
Collapse
|
35
|
Abbas SQ, Chi L, Chen YPP. DeepMNF: Deep Multimodal Neuroimaging Framework for Diagnosing Autism Spectrum Disorder. Artif Intell Med 2023; 136:102475. [PMID: 36710063 DOI: 10.1016/j.artmed.2022.102475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The growing prevalence of neurological disorders, e.g., Autism Spectrum Disorder (ASD), demands robust computer-aided diagnosis (CAD) due to the diverse symptoms which require early intervention, particularly in young children. The absence of a benchmark neuroimaging diagnostics paves the way to study transitions in the brain's anatomical structure and neurological patterns associated with ASD. The existing CADs take advantage of the large-scale baseline dataset from the Autism Brain Imaging Data Exchange (ABIDE) repository to improve diagnostic performance, but the involvement of multisite data also amplifies the variabilities and heterogeneities that hinder satisfactory results. To resolve this problem, we propose a Deep Multimodal Neuroimaging Framework (DeepMNF) that employs Functional Magnetic Resonance Imaging (fMRI) and Structural Magnetic Resonance Imaging (sMRI) to integrate cross-modality spatiotemporal information by exploiting 2-dimensional time-series data along with 3-dimensional images. The purpose is to fuse complementary information that increases group differences and homogeneities. To the best of our knowledge, our DeepMNF achieves superior validation performance than the best reported result on the ABIDE-1 repository involving datasets from all available screening sites. In this work, we also demonstrate the performance of the studied modalities in a single model as well as their possible combinations to develop the multimodal framework.
Collapse
Affiliation(s)
- S Qasim Abbas
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Lianhua Chi
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
36
|
Zhang X, Shams SP, Yu H, Wang Z, Zhang Q. A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13020218. [PMID: 36673028 PMCID: PMC9858445 DOI: 10.3390/diagnostics13020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurological disease, which seriously reduces the patients' life quality. Generally, an early diagnosis is beneficial to improve ASD children's life quality. Current methods based on samples from multiple sites for ASD diagnosis perform poorly in generalization due to the heterogeneity of the data from multiple sites. To address this problem, this paper presents a similarity measure-based approach for ASD diagnosis. Specifically, the few-shot learning strategy is used to measure potential similarities in the RS-fMRI data distributions, and, furthermore, a similarity function for samples from multiple sites is trained to enhance the generalization. On the ABIDE database, the presented approach is compared to some representative methods, such as SVM and random forest, in terms of accuracy, precision, and F1 score. The experimental results show that the experimental indicators of the proposed method are better than those of the comparison methods to varying degrees. For example, the accuracy on the TRINITY site is more than 5% higher than that of the comparison method, which clearly proves that the presented approach achieves a better generalization performance than the compared methods.
Collapse
Affiliation(s)
- Xiangfei Zhang
- School of Cyberspace Security, Hainan University, Haikou 570228, China
| | - Shayel Parvez Shams
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China
| | - Hang Yu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
37
|
Kunda M, Zhou S, Gong G, Lu H. Improving Multi-Site Autism Classification via Site-Dependence Minimization and Second-Order Functional Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:55-65. [PMID: 36054402 DOI: 10.1109/tmi.2022.3203899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Machine learning has been widely used to develop classification models for autism spectrum disorder (ASD) using neuroimaging data. Recently, studies have shifted towards using large multi-site neuroimaging datasets to boost the clinical applicability and statistical power of results. However, the classification performance is hindered by the heterogeneous nature of agglomerative datasets. In this paper, we propose new methods for multi-site autism classification using the Autism Brain Imaging Data Exchange (ABIDE) dataset. We firstly propose a new second-order measure of functional connectivity (FC) named as Tangent Pearson embedding to extract better features for classification. Then we assess the statistical dependence between acquisition sites and FC features, and take a domain adaptation approach to minimize the site dependence of FC features to improve classification. Our analysis shows that 1) statistical dependence between site and FC features is statistically significant at the 5% level, and 2) extracting second-order features from neuroimaging data and minimizing their site dependence can improve over state-of-the-art (SOTA) classification results, achieving a classification accuracy of 73%. The code is available at https://github.com/kundaMwiza/fMRI-site-adaptation.
Collapse
|
38
|
Hao X, An Q, Li J, Min H, Guo Y, Yu M, Qin J. Exploring high-order correlations with deep-broad learning for autism spectrum disorder diagnosis. Front Neurosci 2022; 16:1046268. [PMID: 36483179 PMCID: PMC9723136 DOI: 10.3389/fnins.2022.1046268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, a lot of research has been conducted on diagnosing neurological disorders, such as autism spectrum disorder (ASD). Functional magnetic resonance imaging (fMRI) is the commonly used technique to assist in the diagnosis of ASD. In the past years, some conventional methods have been proposed to extract the low-order functional connectivity network features for ASD diagnosis, which ignore the complexity and global features of the brain network. Most deep learning-based methods generally have a large number of parameters that need to be adjusted during the learning process. To overcome the limitations mentioned above, we propose a novel deep-broad learning method for learning the higher-order brain functional connectivity network features to assist in ASD diagnosis. Specifically, we first construct the high-order functional connectivity network that describes global correlations of the brain regions based on hypergraph, and then we use the deep-broad learning method to extract the high-dimensional feature representations for brain networks sequentially. The evaluation of the proposed method is conducted on Autism Brain Imaging Data Exchange (ABIDE) dataset. The results show that our proposed method can achieve 71.8% accuracy on the multi-center dataset and 70.6% average accuracy on 17 single-center datasets, which are the best results compared with the state-of-the-art methods. Experimental results demonstrate that our method can describe the global features of the brain regions and get rich discriminative information for the classification task.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Qijin An
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jiayang Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongjie Min
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yingchun Guo
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Ming Yu
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jing Qin
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Chu Y, Ren H, Qiao L, Liu M. Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification. Brain Sci 2022; 12:1413. [PMID: 36291346 PMCID: PMC9599902 DOI: 10.3390/brainsci12101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate learning-based approaches to train reliable models on more data. However, significant data heterogeneity between imaging sites, caused by different scanners or protocols, can negatively impact the generalization ability of learned models. In addition, previous studies have shown that graph convolution neural networks (GCNs) are effective in mining fMRI biomarkers. However, they generally ignore the potentially different contributions of brain regions- of-interest (ROIs) to automated disease diagnosis/prognosis. In this work, we propose a multi-site rs-fMRI adaptation framework with attention GCN (A2GCN) for brain disorder identification. Specifically, the proposed A2GCN consists of three major components: (1) a node representation learning module based on GCN to extract rs-fMRI features from functional connectivity networks, (2) a node attention mechanism module to capture the contributions of ROIs, and (3) a domain adaptation module to alleviate the differences in data distribution between sites through the constraint of mean absolute error and covariance. The A2GCN not only reduces data heterogeneity across sites, but also improves the interpretability of the learning algorithm by exploring important ROIs. Experimental results on the public ABIDE database demonstrate that our method achieves remarkable performance in fMRI-based recognition of autism spectrum disorders.
Collapse
Affiliation(s)
- Ying Chu
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Haonan Ren
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
41
|
Pan Y, Liu M, Xia Y, Shen D. Disease-Image-Specific Learning for Diagnosis-Oriented Neuroimage Synthesis With Incomplete Multi-Modality Data. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:6839-6853. [PMID: 34156939 PMCID: PMC9297233 DOI: 10.1109/tpami.2021.3091214] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Incomplete data problem is commonly existing in classification tasks with multi-source data, particularly the disease diagnosis with multi-modality neuroimages, to track which, some methods have been proposed to utilize all available subjects by imputing missing neuroimages. However, these methods usually treat image synthesis and disease diagnosis as two standalone tasks, thus ignoring the specificity conveyed in different modalities, i.e., different modalities may highlight different disease-relevant regions in the brain. To this end, we propose a disease-image-specific deep learning (DSDL) framework for joint neuroimage synthesis and disease diagnosis using incomplete multi-modality neuroimages. Specifically, with each whole-brain scan as input, we first design a Disease-image-Specific Network (DSNet) with a spatial cosine module to implicitly model the disease-image specificity. We then develop a Feature-consistency Generative Adversarial Network (FGAN) to impute missing neuroimages, where feature maps (generated by DSNet) of a synthetic image and its respective real image are encouraged to be consistent while preserving the disease-image-specific information. Since our FGAN is correlated with DSNet, missing neuroimages can be synthesized in a diagnosis-oriented manner. Experimental results on three datasets suggest that our method can not only generate reasonable neuroimages, but also achieve state-of-the-art performance in both tasks of Alzheimer's disease identification and mild cognitive impairment conversion prediction.
Collapse
|
42
|
Shi C, Xin X, Zhang J. A novel multigranularity feature-selection method based on neighborhood mutual information and its application in autistic patient identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Wang Z, Liu J, Zhang W, Nie W, Liu H. Diagnosis and Intervention for Children With Autism Spectrum Disorder: A Survey. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3093040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Liu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
44
|
Wang M, Zhang D, Huang J, Liu M, Liu Q. Consistent connectome landscape mining for cross-site brain disease identification using functional MRI. Med Image Anal 2022; 82:102591. [DOI: 10.1016/j.media.2022.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/08/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
45
|
Lin K, Jie B, Dong P, Ding X, Bian W, Liu M. Convolutional Recurrent Neural Network for Dynamic Functional MRI Analysis and Brain Disease Identification. Front Neurosci 2022; 16:933660. [PMID: 35873806 PMCID: PMC9298744 DOI: 10.3389/fnins.2022.933660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic functional connectivity (dFC) networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) help us understand fundamental dynamic characteristics of human brains, thereby providing an efficient solution for automated identification of brain diseases, such as Alzheimer's disease (AD) and its prodromal stage. Existing studies have applied deep learning methods to dFC network analysis and achieved good performance compared with traditional machine learning methods. However, they seldom take advantage of sequential information conveyed in dFC networks that could be informative to improve the diagnosis performance. In this paper, we propose a convolutional recurrent neural network (CRNN) for automated brain disease classification with rs-fMRI data. Specifically, we first construct dFC networks from rs-fMRI data using a sliding window strategy. Then, we employ three convolutional layers and long short-term memory (LSTM) layer to extract high-level features of dFC networks and also preserve the sequential information of extracted features, followed by three fully connected layers for brain disease classification. Experimental results on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) demonstrate the effectiveness of our proposed method in binary and multi-category classification tasks.
Collapse
Affiliation(s)
- Kai Lin
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Biao Jie
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Peng Dong
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Xintao Ding
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Weixin Bian
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
46
|
Zhao F, Li N, Pan H, Chen X, Li Y, Zhang H, Mao N, Cheng D. Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis. Front Hum Neurosci 2022; 16:918969. [PMID: 35911592 PMCID: PMC9334869 DOI: 10.3389/fnhum.2022.918969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Functional connectivity (FC) network based on resting-state functional magnetic resonance imaging (rs-fMRI) has become an important tool to explore and understand the brain, which can provide objective basis for the diagnosis of neurodegenerative diseases, such as autism spectrum disorder (ASD). However, most functional connectivity (FC) networks only consider the unilateral features of nodes or edges, and the interaction between them is ignored. In fact, their integration can provide more comprehensive and crucial information in the diagnosis. To address this issue, a new multi-view brain network feature enhancement method based on self-attention mechanism graph convolutional network (SA-GCN) is proposed in this article, which can enhance node features through the connection relationship among different nodes, and then extract deep-seated and more discriminative features. Specifically, we first plug the pooling operation of self-attention mechanism into graph convolutional network (GCN), which can consider the node features and topology of graph network at the same time and then capture more discriminative features. In addition, the sample size is augmented by a "sliding window" strategy, which is beneficial to avoid overfitting and enhance the generalization ability. Furthermore, to fully explore the complex connection relationship among brain regions, we constructed the low-order functional graph network (Lo-FGN) and the high-order functional graph network (Ho-FGN) and enhance the features of the two functional graph networks (FGNs) based on SA-GCN. The experimental results on benchmark datasets show that: (1) SA-GCN can play a role in feature enhancement and can effectively extract more discriminative features, and (2) the integration of Lo-FGN and Ho-FGN can achieve the best ASD classification accuracy (79.9%), which reveals the information complementarity between them.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Na Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Hongxin Pan
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yuan Li
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
47
|
Jiang W, Liu S, Zhang H, Sun X, Wang SH, Zhao J, Yan J. CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification. Front Aging Neurosci 2022; 14:948704. [PMID: 35865746 PMCID: PMC9294312 DOI: 10.3389/fnagi.2022.948704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
As a neurodevelopmental disorder, autism spectrum disorder (ASD) severely affects the living conditions of patients and their families. Early diagnosis of ASD can enable the disease to be effectively intervened in the early stage of development. In this paper, we present an ASD classification network defined as CNNG by combining of convolutional neural network (CNN) and gate recurrent unit (GRU). First, CNNG extracts the 3D spatial features of functional magnetic resonance imaging (fMRI) data by using the convolutional layer of the 3D CNN. Second, CNNG extracts the temporal features by using the GRU and finally classifies them by using the Sigmoid function. The performance of CNNG was validated on the international public data—autism brain imaging data exchange (ABIDE) dataset. According to the experiments, CNNG can be highly effective in extracting the spatio-temporal features of fMRI and achieving a classification accuracy of 72.46%.
Collapse
Affiliation(s)
- Wenjing Jiang
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Machine Vision Technological Innovation Center of Hebei, Baoding, China
| | - Shuaiqi Liu
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Machine Vision Technological Innovation Center of Hebei, Baoding, China
| | - Hong Zhang
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Machine Vision Technological Innovation Center of Hebei, Baoding, China
| | - Xiuming Sun
- School of Mathematics and Information Science, Zhangjiakou University, Zhangjiakou, China
- *Correspondence: Xiuming Sun,
| | - Shui-Hua Wang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Jie Zhao
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Machine Vision Technological Innovation Center of Hebei, Baoding, China
| | - Jingwen Yan
- School of Engineering, Shantou University, Shantou, China
| |
Collapse
|
48
|
Cao P, Wen G, Liu X, Yang J, Zaiane OR. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis. Med Biol Eng Comput 2022; 60:1897-1913. [DOI: 10.1007/s11517-022-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
49
|
Smucny J, Shi G, Davidson I. Deep Learning in Neuroimaging: Overcoming Challenges With Emerging Approaches. Front Psychiatry 2022; 13:912600. [PMID: 35722548 PMCID: PMC9200984 DOI: 10.3389/fpsyt.2022.912600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Deep learning (DL) is of great interest in psychiatry due its potential yet largely untapped ability to utilize multidimensional datasets (such as fMRI data) to predict clinical outcomes. Typical DL methods, however, have strong assumptions, such as large datasets and underlying model opaqueness, that are suitable for natural image prediction problems but not medical imaging. Here we describe three relatively novel DL approaches that may help accelerate its incorporation into mainstream psychiatry research and ultimately bring it into the clinic as a prognostic tool. We first introduce two methods that can reduce the amount of training data required to develop accurate models. These may prove invaluable for fMRI-based DL given the time and monetary expense required to acquire neuroimaging data. These methods are (1) transfer learning - the ability of deep learners to incorporate knowledge learned from one data source (e.g., fMRI data from one site) and apply it toward learning from a second data source (e.g., data from another site), and (2) data augmentation (via Mixup) - a self-supervised learning technique in which "virtual" instances are created. We then discuss explainable artificial intelligence (XAI), i.e., tools that reveal what features (and in what combinations) deep learners use to make decisions. XAI can be used to solve the "black box" criticism common in DL and reveal mechanisms that ultimately produce clinical outcomes. We expect these techniques to greatly enhance the applicability of DL in psychiatric research and help reveal novel mechanisms and potential pathways for therapeutic intervention in mental illness.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Ge Shi
- Department of Computer Sciences, University of California, Davis, Davis, CA, United States
| | - Ian Davidson
- Department of Computer Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
50
|
Wang Y, Fu Y, Luo X. Identification of Pathogenetic Brain Regions via Neuroimaging Data for Diagnosis of Autism Spectrum Disorders. Front Neurosci 2022; 16:900330. [PMID: 35655751 PMCID: PMC9152096 DOI: 10.3389/fnins.2022.900330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often occurs in children and has a hidden onset. Patients usually have lagged development of communication ability and social behavior and thus suffer an unhealthy physical and mental state. Evidence has indicated that diseases related to ASD have commonalities in brain imaging characteristics. This study aims to study the pathogenesis of ASD based on brain imaging data to locate the ASD-related brain regions. Specifically, we collected the functional magnetic resonance image data of 479 patients with ASD and 478 normal subjects matched in age and gender and used a machine-learning framework named random support vector machine cluster to extract distinctive brain regions from the preprocessed data. According to the experimental results, compared with other existing approaches, the method used in this study can more accurately distinguish patients from normal individuals based on brain imaging data. At the same time, this study found that the development of ASD was highly correlated with certain brain regions, e.g., lingual gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study explores the effectiveness of a novel machine-learning approach in the study of ASD brain imaging and provides a reference brain area for the medical research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Yu Wang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
- *Correspondence: Yu Fu
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| |
Collapse
|