1
|
Jang BK, Kim S, Yu JY, Hong J, Cho HW, Lee HS, Park J, Woo J, Lee YH, Park YR. Classification models for arthropathy grades of multiple joints based on hierarchical continual learning. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01974-4. [PMID: 40126794 DOI: 10.1007/s11547-025-01974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025]
Abstract
PURPOSE To develop a hierarchical continual arthropathy classification model for multiple joints that can be updated continuously for large-scale studies of various anatomical structures. MATERIALS AND METHODS This study included a total of 1371 radiographs of knee, elbow, ankle, shoulder, and hip joints from three tertiary hospitals. For model development, 934 radiographs of the knee, elbow, ankle, and shoulder were gathered from Sinchon Severance Hospital between July 1 and December 31, 2022. For external validation, 125 hip radiographs were collected from Yongin Severance Hospital between January 1 and December 31, 2022, and 312 knee cases were gathered from Gangnam Severance Hospital between January 1 and June 31, 2023. The Hierarchical Dynamically Expandable Representation (Hi-DER) model was trained stepwise on four joints using five-fold cross-validation. Arthropathy classification was evaluated at three hierarchical levels: abnormal classification (L1), low-grade or high-grade classification (L2), and specific grade classification (L3). The model's performance was compared with the grading predictions of two other AI models and three radiologists. For model explainability, gradient-weighted class activation mapping (Grad-CAM) and progressive erasing plus progressive restoration (PEPPR) were employed. RESULTS The model achieved a weighted average AUC of 0.994 (95% CI: 0.985, 0.999) for L1, 0.980 (95% CI: 0.958, 0.996) for L2, and 0.973 (95% CI: 0.943, 0.993) for L3. The model maintained an AUC above 0.800 with 70% of the input regions erased. During external validation on hip joints, the model demonstrated a weighted average AUC of 0.978 (95% CI: 0.952, 0.996) for L1, 0.977 (95% CI: 0.946, 0.996) for L2, and 0.971 (95% CI: 0.934, 0.996) for L3. For external knee data, the model yielded a weighted average AUC of 0.934 (95%: CI 0.904, 0.958), 0.929 (95% CI: 0.900, 0.954), and 0.857 (95% CI: 0.816, 0.894) for L1, L2, and L3, respectively. CONCLUSION The Hi-DER may enhance the efficiency of arthropathy diagnosis through accurate classification of arthropathy grades across multiple joints, potentially enabling early treatment.
Collapse
Affiliation(s)
- Bong Kyung Jang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shiwon Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Digital Analytics, College of Computing, Yonsei University, Seoul, Republic of Korea
| | - Jae Yong Yu
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JaeSeong Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Woo Cho
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong Seon Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwoo Park
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeesoo Woo
- School of Medicine, CHA University Gyeonggi-do, Pocheon, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Digital Analytics, College of Computing, Yonsei University, Seoul, Republic of Korea.
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Tariq T, Suhail Z, Nawaz Z. A Review for automated classification of knee osteoarthritis using KL grading scheme for X-rays. Biomed Eng Lett 2025; 15:1-35. [PMID: 39781063 PMCID: PMC11704124 DOI: 10.1007/s13534-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/12/2025] Open
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder that affects weight-bearing joints like the hip, knee, spine, feet, and fingers. It is a chronic disorder that causes joint stiffness and leads to functional impairment. Knee osteoarthritis (KOA) is a degenerative knee joint disease that is a significant disability for over 60 years old, with the most prevalent symptom of knee pain. Radiography is the gold standard for the evaluation of KOA. These radiographs are evaluated using different classification systems. Kellgren and Lawrence's (KL) classification system is used to classify X-rays into five classes (Normal = 0 to Severe = 4) based on osteoarthritis severity levels. In recent years, with the advent of artificial intelligence, machine learning, and deep learning, more emphasis has been given to automated medical diagnostic systems or decision support systems. Computer-aided diagnosis is needed for the improvement of health-related information systems. This survey aims to review the latest advances in automated radiographic classification and detection of KOA using the KL system. A total of 85 articles are reviewed as original research or survey articles. This survey will benefit researchers, practitioners, and medical experts interested in X-rays-based KOA diagnosis and prediction.
Collapse
Affiliation(s)
- Tayyaba Tariq
- Department of Computer Science, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab 54000 Pakistan
| | - Zobia Suhail
- Department of Computer Science, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab 54000 Pakistan
| | - Zubair Nawaz
- Department of Data Science, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab 54000 Pakistan
| |
Collapse
|
3
|
Devarapaga S, Thumma R. Knee Osteoarthritis SCAENet: Adaptive Knee Osteoarthritis Severity Assessment Using Spatial Separable Convolution with Attention-Based Ensemble Networks with Hybrid Optimization Strategy. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01306-4. [PMID: 39438366 DOI: 10.1007/s10278-024-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) of the knee is a chronic state that significantly lowers the quality of life for its patients. Early detection and lifetime monitoring of the progression of OA are necessary for preventive therapy. In the course of therapy, the Kellgren and Lawrence (KL) assessment model categorizes the rigidity of OA. Deep techniques have recently been used to increase the precision and effectiveness of OA severity assessments. The training process is compromised by low-confidence samples, which are less accurate than normal ones. In this work, a deep learning-based knee osteoarthritis severity assessment model is recommended to accurately identify the condition in patients. The phases of the designed model are data collection, feature extraction, and prediction. At first, the images are generally gathered from online resources. The gathered images are given into the feature extraction phase. A new model is implemented to predict knee osteoarthritis named Spatial Separable Convolution with Attention-based Ensemble Networks (SCAENet), which includes feature extraction, stacked target-based feature pool generation, and knee osteoarthritis prediction. The feature extraction is done using ResNet, Visual Geometry Group (VGG16), and DenseNet. The stacked target-based feature pool is obtained from the SCAENet. Hence, the stacked target-based feature pool is obtained by the Hybridization of Equilibrium Slime Mould with Bald Eagle Search Optimization (HESM-BESO). Here, the knee osteoarthritis's severity prediction is performed using the dimensional convolutional neural network (1DCNN) technique. The designed SCAENet model is validated with other conventional methods to show high performance.
Collapse
Affiliation(s)
- Sriramulu Devarapaga
- Department of Electronics and Communication Engineering, Anurag University, Hyderabad, Telangana, 500088, India.
| | - Rajesh Thumma
- Department of Electronics and Communication Engineering, Anurag University, Hyderabad, Telangana, 500088, India
| |
Collapse
|
4
|
Ruitenbeek HC, Oei EHG, Visser JJ, Kijowski R. Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade. Skeletal Radiol 2024; 53:1849-1868. [PMID: 38902420 DOI: 10.1007/s00256-024-04684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, estimating pediatric bone age, calculating bone measurements such as lower extremity alignment and Cobb angle, and grading osteoarthritis on radiographs have been shown to have high diagnostic performance with many of these applications now commercially available for use in clinical practice. Many studies have also documented the feasibility of using DL methods for detecting joint pathology and characterizing bone tumors on magnetic resonance imaging (MRI). However, musculoskeletal disease detection on MRI is difficult as it requires multi-task, multi-class detection of complex abnormalities on multiple image slices with different tissue contrasts. The generalizability of DL methods for musculoskeletal disease detection on MRI is also challenging due to fluctuations in image quality caused by the wide variety of scanners and pulse sequences used in routine MRI protocols. The diagnostic performance of current DL methods for musculoskeletal disease detection must be further evaluated in well-designed prospective studies using large image datasets acquired at different institutions with different imaging parameters and imaging hardware before they can be fully implemented in clinical practice. Future studies must also investigate the true clinical benefits of current DL methods and determine whether they could enhance quality, reduce error rates, improve workflow, and decrease radiologist fatigue and burnout with all of this weighed against the costs.
Collapse
Affiliation(s)
- Huibert C Ruitenbeek
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jacob J Visser
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Richard Kijowski
- Department of Radiology, New York University Grossman School of Medicine, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Zhao Z, Zhao M, Yang T, Li J, Qin C, Wang B, Wang L, Li B, Liu J. Identifying significant structural factors associated with knee pain severity in patients with osteoarthritis using machine learning. Sci Rep 2024; 14:14705. [PMID: 38926487 PMCID: PMC11208546 DOI: 10.1038/s41598-024-65613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Our main objective was to use machine learning methods to identify significant structural factors associated with pain severity in knee osteoarthritis patients. Additionally, we assessed the potential of various classes of imaging data using machine learning techniques to gauge knee pain severity. The data of semi-quantitative assessments of knee radiographs, semi-quantitative assessments of knee magnetic resonance imaging (MRI), and MRI images from 567 individuals in the Osteoarthritis Initiative (OAI) were utilized to train a series of machine learning models. Models were constructed using five machine learning methods: random forests (RF), support vector machines (SVM), logistic regression (LR), decision tree (DT), and Bayesian (Bayes). Employing tenfold cross-validation, we selected the best-performing models based on the area under the curve (AUC). The study results indicate no significant difference in performance among models using different imaging data. Subsequently, we employed a convolutional neural network (CNN) to extract features from magnetic resonance imaging (MRI), and class activation mapping (CAM) was utilized to generate saliency maps, highlighting regions associated with knee pain severity. A radiologist reviewed the images, identifying specific lesions colocalized with the CAM. The review of 421 knees revealed that effusion/synovitis (30.9%) and cartilage loss (30.6%) were the most frequent abnormalities associated with pain severity. Our study suggests cartilage loss and synovitis/effusion lesions as significant structural factors affecting pain severity in patients with knee osteoarthritis. Furthermore, our study highlights the potential of machine learning for assessing knee pain severity using radiographs.
Collapse
Affiliation(s)
- Zhengkuan Zhao
- Department of Joint, Tianjin Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Mingkuan Zhao
- National Elite Institute of Engineering, Chongqing University, Chongqing, China
- School of Computer Science, Xi'an Jiaotong University, Xi'an, China
| | - Tao Yang
- Orthopedics Department, Tianjin Hospital, Tianjin, China
| | - Jie Li
- Tianjin Medical University, Tianjin, China
| | - Chao Qin
- Department of Joint, Tianjin Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ben Wang
- Tianjin Medical University, Tianjin, China
| | - Li Wang
- Tianjin Medical University, Tianjin, China
| | - Bing Li
- Department of Joint, Tianjin Hospital, Tianjin, China.
| | - Jun Liu
- Department of Joint, Tianjin Hospital, Tianjin, China.
| |
Collapse
|
6
|
Berrimi M, Hans D, Jennane R. A semi-supervised multiview-MRI network for the detection of Knee Osteoarthritis. Comput Med Imaging Graph 2024; 114:102371. [PMID: 38513397 DOI: 10.1016/j.compmedimag.2024.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Knee OsteoArthritis (OA) is a prevalent chronic condition, affecting a significant proportion of the global population. Detecting knee OA is crucial as the degeneration of the knee joint is irreversible. In this paper, we introduce a semi-supervised multi-view framework and a 3D CNN model for detecting knee OA using 3D Magnetic Resonance Imaging (MRI) scans. We introduce a semi-supervised learning approach combining labeled and unlabeled data to improve the performance and generalizability of the proposed model. Experimental results show the efficacy of our proposed approach in detecting knee OA from 3D MRI scans using a large cohort of 4297 subjects. An ablation study was conducted to investigate the contributions of various components of the proposed model, providing insights into the optimal design of the model. Our results indicate the potential of the proposed approach to improve the accuracy and efficiency of OA diagnosis. The proposed framework reported an AUC of 93.20% for the detection of knee OA.
Collapse
Affiliation(s)
- Mohamed Berrimi
- University of Orleans, Institut Denis Poisson, UMR CNRS 7013, Orleans, 45067, France
| | - Didier Hans
- Lausanne University Hospital, Center of Bone Diseases & University of Lausanne, Lausanne, Switzerland
| | - Rachid Jennane
- University of Orleans, Institut Denis Poisson, UMR CNRS 7013, Orleans, 45067, France.
| |
Collapse
|
7
|
Mohammadi S, Salehi MA, Jahanshahi A, Shahrabi Farahani M, Zakavi SS, Behrouzieh S, Gouravani M, Guermazi A. Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis. Osteoarthritis Cartilage 2024; 32:241-253. [PMID: 37863421 DOI: 10.1016/j.joca.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES As an increasing number of studies apply artificial intelligence (AI) algorithms in osteoarthritis (OA) detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI, and to compare them with clinicians' performance. MATERIALS AND METHODS A search in PubMed and Scopus was performed to find studies published up to April 2022 that evaluated and/or validated an AI algorithm for the detection or classification of OA. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the involved joint and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Prediction Model Study Risk of Bias Assessment Tool reporting guidelines. RESULTS Of the 61 studies included, 27 studies with 91 contingency tables provided sufficient data to enter the meta-analysis. The pooled sensitivities for AI algorithms and clinicians on internal validation test sets were 88% (95% confidence interval [CI]: 86,91) and 80% (95% CI: 68,88) and pooled specificities were 81% (95% CI: 75,85) and 79% (95% CI: 80,85), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 94% (95% CI: 90,97) and 91% (95% CI: 77,97), respectively. CONCLUSION Although the results of this meta-analysis should be interpreted with caution due to the potential pitfalls in the included studies, the promising role of AI as a diagnostic adjunct to radiologists is indisputable.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Ali Jahanshahi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | | | - Seyed Sina Zakavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadra Behrouzieh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Guermazi
- Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Farooq MU, Ullah Z, Khan A, Gwak J. DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs. Comput Biol Med 2023; 167:107570. [PMID: 37897960 DOI: 10.1016/j.compbiomed.2023.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Knee osteoarthritis (OA) is a frequent musculoskeletal disorder that leads to physical disability in older adults. Manual OA assessment is performed via visual inspection, which is highly subjective as it suffers from moderate to high inter-observer variability. Many deep learning-based techniques have been proposed to address this issue. However, owing to the limited amount of labelled data, all existing solutions have limitations in terms of performance or the number of classes. This paper proposes a novel fully automatic Kellgren and Lawrence (KL) grade classification scheme in knee radiographs. We developed a semi-supervised multi-task learning-based approach that enables the exploitation of additional unlabelled data in an unsupervised as well as supervised manner. Specifically, we propose a dual-channel adversarial autoencoder, which is first trained in an unsupervised manner for reconstruction tasks only. To exploit the additional data in a supervised way, we propose a multi-task learning framework by introducing an auxiliary task. In particular, we use leg side identification as an auxiliary task, which allows the use of more datasets, e.g., CHECK dataset. The work demonstrates that the utilization of additional data can improve the primary task of KL-grade classification for which only limited labelled data is available. This semi-supervised learning essentially helps to improve the feature learning ability of our framework, which leads to improved performance for KL-grade classification. We rigorously evaluated our proposed model on the two largest publicly available datasets for various aspects, i.e., overall performance, the effect of additional unlabelled samples and auxiliary tasks, robustness analysis, and ablation study. The proposed model achieved the accuracy, precision, recall, and F1 score of 75.53%, 74.1%, 78.51%, and 75.34%, respectively. Furthermore, the experimental results show that the suggested model not only achieves state-of-the-art performance on two publicly available datasets but also exhibits remarkable robustness.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Department of IT, Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea
| | - Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea
| | - Asifullah Khan
- Pattern Recognition Lab, DCIS, PIEAS, Nilore, Islamabad 45650, Pakistan
| | - Jeonghwan Gwak
- Department of IT, Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea; Department of Software, Korea National University of Transportation, Chungju 27469, South Korea; Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, South Korea; Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, South Korea.
| |
Collapse
|
9
|
Zhang J, Santos C, Park C, Mazurowski MA, Colglazier R. Improving Image Classification of Knee Radiographs: An Automated Image Labeling Approach. J Digit Imaging 2023; 36:2402-2410. [PMID: 37620710 PMCID: PMC10584746 DOI: 10.1007/s10278-023-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Large numbers of radiographic images are available in musculoskeletal radiology practices which could be used for training of deep learning models for diagnosis of knee abnormalities. However, those images do not typically contain readily available labels due to limitations of human annotations. The purpose of our study was to develop an automated labeling approach that improves the image classification model to distinguish normal knee images from those with abnormalities or prior arthroplasty. The automated labeler was trained on a small set of labeled data to automatically label a much larger set of unlabeled data, further improving the image classification performance for knee radiographic diagnosis. We used BioBERT and EfficientNet as the feature extraction backbone of the labeler and imaging model, respectively. We developed our approach using 7382 patients and validated it on a separate set of 637 patients. The final image classification model, trained using both manually labeled and pseudo-labeled data, had the higher weighted average AUC (WA-AUC 0.903) value and higher AUC values among all classes (normal AUC 0.894; abnormal AUC 0.896, arthroplasty AUC 0.990) compared to the baseline model (WA-AUC = 0.857; normal AUC 0.842; abnormal AUC 0.848, arthroplasty AUC 0.987), trained using only manually labeled data. Statistical tests show that the improvement is significant on normal (p value < 0.002), abnormal (p value < 0.001), and WA-AUC (p value = 0.001). Our findings demonstrated that the proposed automated labeling approach significantly improves the performance of image classification for radiographic knee diagnosis, allowing for facilitating patient care and curation of large knee datasets.
Collapse
Affiliation(s)
- Jikai Zhang
- Department of Electrical and Computer Engineering, Duke University, Room 10070, 2424 Erwin Road, Durham, NC, 27705, USA.
| | - Carlos Santos
- Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Christine Park
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Maciej A Mazurowski
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Electrical and Computer Engineering, Department of Biostatistics and Bioinformatics, Department of Computer Science, Duke University, Durham, NC, USA
| | - Roy Colglazier
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Ullah Z, Usman M, Latif S, Khan A, Gwak J. SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation. Sci Rep 2023; 13:9087. [PMID: 37277554 PMCID: PMC10240139 DOI: 10.1038/s41598-023-36311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a diabetes complication that can cause vision loss among patients due to damage to blood vessels in the retina. Early retinal screening can avoid the severe consequences of DR and enable timely treatment. Nowadays, researchers are trying to develop automated deep learning-based DR segmentation tools using retinal fundus images to help Ophthalmologists with DR screening and early diagnosis. However, recent studies are unable to design accurate models due to the unavailability of larger training data with consistent and fine-grained annotations. To address this problem, we propose a semi-supervised multitask learning approach that exploits widely available unlabelled data (i.e., Kaggle-EyePACS) to improve DR segmentation performance. The proposed model consists of novel multi-decoder architecture and involves both unsupervised and supervised learning phases. The model is trained for the unsupervised auxiliary task to effectively learn from additional unlabelled data and improve the performance of the primary task of DR segmentation. The proposed technique is rigorously evaluated on two publicly available datasets (i.e., FGADR and IDRiD) and results show that the proposed technique not only outperforms existing state-of-the-art techniques but also exhibits improved generalisation and robustness for cross-data evaluation.
Collapse
Affiliation(s)
- Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea
| | - Muhammad Usman
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Siddique Latif
- Faculty of Health and Computing, University of Southern Queensland, Toowoomba, QL, 4300, Australia
| | - Asifullah Khan
- Pattern Recognition Lab, DCIS, PIEAS, Nilore, Islamabad, 45650, Pakistan
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea.
| |
Collapse
|
11
|
Nasser Y, El Hassouni M, Hans D, Jennane R. A discriminative shape-texture convolutional neural network for early diagnosis of knee osteoarthritis from X-ray images. Phys Eng Sci Med 2023; 46:827-837. [PMID: 37142813 DOI: 10.1007/s13246-023-01256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Knee Osteoarthritis (OA) is one of the most common causes of physical disability worldwide associated with a significant personal and socioeconomic burden. Deep Learning approaches based on Convolutional Neural Networks (CNNs) achieved remarkable improvements in knee OA detection. Despite this success, the problem of early knee OA diagnosis from plain radiographs remains a challenging task. This is due to the high similarity between the X-ray images of OA and non-OA subjects and the disappearance of texture information regarding bone microarchitecture changes in the top layers during the learning process of the CNN models. To address these issues, we propose a Discriminative Shape-Texture Convolutional Neural Network (DST-CNN), which automatically diagnoses early knee OA from X-ray images. The proposed model incorporates a discriminative loss to improve class separability and deal with high inter-class similarities. In addition, a new Gram Matrix Descriptor (GMD) block is embedded in the CNN architecture to compute texture features from several intermediate layers and combine them with the shape features in the top layers. We show that merging texture features with deep ones leads to better prediction of the early stages of OA. Comprehensive experimental results on two large public databases, Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) demonstrate the potential of the proposed network. Ablation studies and visualizations are provided for a detailed understanding of our proposed approach.
Collapse
Affiliation(s)
- Yassine Nasser
- Mohammed V University in Rabat, Rabat, Morocco
- IDP Institute, UMR CNRS 7013, University of Orleans, Orléans, France
| | | | - Didier Hans
- Center of Bone Diseases, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Rachid Jennane
- IDP Institute, UMR CNRS 7013, University of Orleans, Orléans, France.
| |
Collapse
|
12
|
Bhakar S, Sinwar D, Pradhan N, Dhaka VS, Cherrez-Ojeda I, Parveen A, Hassan MU. Computational Intelligence-Based Disease Severity Identification: A Review of Multidisciplinary Domains. Diagnostics (Basel) 2023; 13:diagnostics13071212. [PMID: 37046431 PMCID: PMC10093052 DOI: 10.3390/diagnostics13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Disease severity identification using computational intelligence-based approaches is gaining popularity nowadays. Artificial intelligence and deep-learning-assisted approaches are proving to be significant in the rapid and accurate diagnosis of several diseases. In addition to disease identification, these approaches have the potential to identify the severity of a disease. The problem of disease severity identification can be considered multi-class classification, where the class labels are the severity levels of the disease. Plenty of computational intelligence-based solutions have been presented by researchers for severity identification. This paper presents a comprehensive review of recent approaches for identifying disease severity levels using computational intelligence-based approaches. We followed the PRISMA guidelines and compiled several works related to the severity identification of multidisciplinary diseases of the last decade from well-known publishers, such as MDPI, Springer, IEEE, Elsevier, etc. This article is devoted toward the severity identification of two main diseases, viz. Parkinson's Disease and Diabetic Retinopathy. However, severity identification of a few other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis, sepsis, sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis, and Alzheimer's disease, was also briefly covered. Each work has been carefully examined against its methodology, dataset used, and the type of disease on several performance metrics, accuracy, specificity, etc. In addition to this, we also presented a few public repositories that can be utilized to conduct research on disease severity identification. We hope that this review not only acts as a compendium but also provides insights to the researchers working on disease severity identification using computational intelligence-based approaches.
Collapse
Affiliation(s)
- Suman Bhakar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Nitesh Pradhan
- Department of Computer Science and Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Ivan Cherrez-Ojeda
- Allergy and Pulmonology, Espíritu Santo University, Samborondón 0901-952, Ecuador
| | - Amna Parveen
- College of Pharmacy, Gachon University, Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Muhammad Umair Hassan
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway
| |
Collapse
|
13
|
Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Wu X, Li P. Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative. Front Bioeng Biotechnol 2023; 11:1164655. [PMID: 37122858 PMCID: PMC10136763 DOI: 10.3389/fbioe.2023.1164655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Knee osteoarthritis is one of the most common musculoskeletal diseases and is usually diagnosed with medical imaging techniques. Conventionally, case identification using plain radiography is practiced. However, we acknowledge that knee osteoarthritis is a 3D complexity; hence, magnetic resonance imaging will be the ideal modality to reveal the hidden osteoarthritis features from a three-dimensional view. In this work, the feasibility of well-known convolutional neural network (CNN) structures (ResNet, DenseNet, VGG, and AlexNet) to distinguish knees with and without osteoarthritis (OA) is investigated. Using 3D convolutional layers, we demonstrated the potential of 3D convolutional neural networks of 13 different architectures in knee osteoarthritis diagnosis. We used transfer learning by transforming 2D pre-trained weights into 3D as initial weights for the training of the 3D models. The performance of the models was compared and evaluated based on the performance metrics [balanced accuracy, precision, F1 score, and area under receiver operating characteristic (AUC) curve]. This study suggested that transfer learning indeed enhanced the performance of the models, especially for ResNet and DenseNet models. Transfer learning-based models presented promising results, with ResNet34 achieving the best overall accuracy of 0.875 and an F1 score of 0.871. The results also showed that shallow networks yielded better performance than deeper neural networks, demonstrated by ResNet18, DenseNet121, and VGG11 with AUC values of 0.945, 0.914, and 0.928, respectively. This encourages the application of clinical diagnostic aid for knee osteoarthritis using 3DCNN even in limited hardware conditions.
Collapse
Affiliation(s)
| | - Khin Wee Lai
- Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Khin Wee Lai, ; Pei Li,
| | - Siew Li Goh
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Xiang Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Pei Li
- Information Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Khin Wee Lai, ; Pei Li,
| |
Collapse
|
14
|
Liu Y, He Q, Duan H, Shi H, Han A, He Y. Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:6053. [PMID: 36015814 PMCID: PMC9414209 DOI: 10.3390/s22166053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Tumor segmentation is a fundamental task in histopathological image analysis. Creating accurate pixel-wise annotations for such segmentation tasks in a fully-supervised training framework requires significant effort. To reduce the burden of manual annotation, we propose a novel weakly supervised segmentation framework based on sparse patch annotation, i.e., only small portions of patches in an image are labeled as 'tumor' or 'normal'. The framework consists of a patch-wise segmentation model called PSeger, and an innovative semi-supervised algorithm. PSeger has two branches for patch classification and image classification, respectively. This two-branch structure enables the model to learn more general features and thus reduce the risk of overfitting when learning sparsely annotated data. We incorporate the idea of consistency learning and self-training into the semi-supervised training strategy to take advantage of the unlabeled images. Trained on the BCSS dataset with only 25% of the images labeled (five patches for each labeled image), our proposed method achieved competitive performance compared to the fully supervised pixel-wise segmentation models. Experiments demonstrate that the proposed solution has the potential to reduce the burden of labeling histopathological images.
Collapse
Affiliation(s)
- Yiqing Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qiming He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Hufei Duan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yonghong He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
15
|
Huo J, Ouyang X, Si L, Xuan K, Wang S, Yao W, Liu Y, Xu J, Qian D, Xue Z, Wang Q, Shen D, Zhang L. Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency. Med Image Anal 2022; 80:102508. [PMID: 35759870 DOI: 10.1016/j.media.2022.102508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
Collapse
Affiliation(s)
- Jiayu Huo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xi Ouyang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Liping Si
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Xuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dahong Qian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xue
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Dinggang Shen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
A Novel Focal Ordinal Loss for Assessment of Knee Osteoarthritis Severity. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yick HTV, Chan PK, Wen C, Fung WC, Yan CH, Chiu KY. Artificial intelligence reshapes current understanding and management of osteoarthritis: A narrative review. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2022. [DOI: 10.1177/22104917221082315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current practice of osteoarthritis has its insufficiencies which researchers are tackling with artificial intelligence (AI). This article discusses three kinds of AI models, namely diagnostic models, prediction models and morphological models. Diagnostic models enhance efficiency in diagnosis by providing an automated algorithm in knee images processing. Prediction models utilize behavioral and radiological data to assess the risk of osteoarthritis before symptom onset and needs to perform surgery. Morphological models detect biomechanical changes to facilitate understanding of pathophysiology and provide personalized intervention. Through reviewing present evidence, we demonstrate that AI could assist doctors in diagnosis, predict osteoarthritis and guide future research.
Collapse
Affiliation(s)
- Hin Ting Victor Yick
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ping Keung Chan
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Wing Chiu Fung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chun Hoi Yan
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwong Yuen Chiu
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
18
|
Binvignat M, Pedoia V, Butte AJ, Louati K, Klatzmann D, Berenbaum F, Mariotti-Ferrandiz E, Sellam J. Use of machine learning in osteoarthritis research: a systematic literature review. RMD Open 2022; 8:e001998. [PMID: 35296530 PMCID: PMC8928401 DOI: 10.1136/rmdopen-2021-001998] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The aim of this systematic literature review was to provide a comprehensive and exhaustive overview of the use of machine learning (ML) in the clinical care of osteoarthritis (OA). METHODS A systematic literature review was performed in July 2021 using MEDLINE PubMed with key words and MeSH terms. For each selected article, the number of patients, ML algorithms used, type of data analysed, validation methods and data availability were collected. RESULTS From 1148 screened articles, 46 were selected and analysed; most were published after 2017. Twelve articles were related to diagnosis, 7 to prediction, 4 to phenotyping, 12 to severity and 11 to progression. The number of patients included ranged from 18 to 5749. Overall, 35% of the articles described the use of deep learning And 74% imaging analyses. A total of 85% of the articles involved knee OA and 15% hip OA. No study investigated hand OA. Most of the studies involved the same cohort, with data from the OA initiative described in 46% of the articles and the MOST and Cohort Hip and Cohort Knee cohorts in 11% and 7%. Data and source codes were described as publicly available respectively in 54% and 22% of the articles. External validation was provided in only 7% of the articles. CONCLUSION This review proposes an up-to-date overview of ML approaches used in clinical OA research and will help to enhance its application in this field.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Saint-Antoine, Inserm UMRS_938, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Universite, Paris, France
- Bakar Computational Health Science Institute, University of California, San Francisco, California, USA
- Immunology Immunopathology Immunotherapy UMRS_959, Sorbonne Universite, Paris, France
| | - Valentina Pedoia
- Center for Intelligent Imaging (CI2), Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Atul J Butte
- Bakar Computational Health Science Institute, University of California, San Francisco, California, USA
| | - Karine Louati
- Department of Rheumatology, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Saint-Antoine, Inserm UMRS_938, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Universite, Paris, France
| | - David Klatzmann
- Immunology Immunopathology Immunotherapy UMRS_959, Sorbonne Universite, Paris, France
- Biotherapy (CIC-BTi) and Inflammation Immunopathology-Biotherapy Department (i2B), Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Saint-Antoine, Inserm UMRS_938, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Universite, Paris, France
| | | | - Jérémie Sellam
- Department of Rheumatology, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Saint-Antoine, Inserm UMRS_938, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Universite, Paris, France
| |
Collapse
|
19
|
Oei EHG, Hirvasniemi J, van Zadelhoff TA, van der Heijden RA. Osteoarthritis year in review 2021: imaging. Osteoarthritis Cartilage 2022; 30:226-236. [PMID: 34838670 DOI: 10.1016/j.joca.2021.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To provide a narrative review of original articles on imaging of osteoarthritis (OA) published between January 1, 2020 and March 31, 2021, with a special focus on imaging of inflammation, imaging of bone, cartilage and bone-cartilage interactions, imaging of peri-articular tissues, imaging scoring methods for OA, and artificial intelligence (AI) applied to OA imaging. METHODS The Embase, Pubmed, Medline, Cochrane databases were searched for original research articles in the English language on human, in vivo, imaging of OA published between January 1, 2020 and March 31, 2021. Search terms related to osteoarthritis combined with all imaging modalities and artificial intelligence were applied. A selection of articles reporting on one of the focus topics was discussed further. RESULTS The search resulted in 651 articles, of which 214 were deemed relevant to human OA imaging. Among the articles included, the knee joint (69%) and magnetic resonance imaging (MRI) (52%) were the predominant anatomical area and imaging modality studied. There were also a substantial number of papers (n = 46) reporting on AI applications in the field of OA imaging. CONCLUSION Imaging continues to play an important role in the assessment of OA. Recent advances in OA imaging include quantitative, non-contrast, and hybrid imaging techniques for improved characterization of multiple tissue processes in OA. In addition, an increasing effort in AI techniques is undertaken to enhance OA imaging acquisition and analysis.
Collapse
Affiliation(s)
- E H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - J Hirvasniemi
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - T A van Zadelhoff
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - R A van der Heijden
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Hum YC, Tee YK, Dhanalakshmi S. Emergence of Deep Learning in Knee Osteoarthritis Diagnosis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:4931437. [PMID: 34804143 PMCID: PMC8598325 DOI: 10.1155/2021/4931437] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in clinical practices, although they are tedious and greatly subject to user variation. Therefore, to overcome the limitations of the commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-dimensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and discussed the various state-of-the-art deep learning approaches proposed. We highlighted the potential and possibility of 3D CNN in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in adopting 3D CNNs in this field.
Collapse
Affiliation(s)
- Pauline Shan Qing Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Li Goh
- Sports Medicine Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics & Biomedical Engineering, Universiti Tunku Abdul Rahman, Sungai Long 43000, Malaysia
| | - Yee Kai Tee
- Department of Mechatronics & Biomedical Engineering, Universiti Tunku Abdul Rahman, Sungai Long 43000, Malaysia
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| |
Collapse
|
21
|
Tack A, Ambellan F, Zachow S. Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative. PLoS One 2021; 16:e0258855. [PMID: 34673842 PMCID: PMC8530341 DOI: 10.1371/journal.pone.0258855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies' shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA. Six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are segmented in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73, 0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR within one year, respectively. Quantitative features from automated segmentations provide novel biomarkers for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication.
Collapse
Affiliation(s)
| | | | - Stefan Zachow
- Zuse Institute Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Tso S, Saha A, Cusimano MD. The Traumatic Brain Injury Model Systems National Database: A Review of Published Research. Neurotrauma Rep 2021; 2:149-164. [PMID: 34223550 PMCID: PMC8240866 DOI: 10.1089/neur.2020.0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Traumatic Brain Injury Model Systems (TBIMS) is the largest longitudinal TBI data set in the world. Our study reviews the works using TBIMS data for analysis in the last 5 years. A search (2015–2020) was conducted across PubMed, EMBASE, and Google Scholar for studies that used the National Institute on Disability, Independent Living and Rehabilitation Research NIDILRR/VA-TBIMS data. Search terms were as follows: [“TBIMS” national database] within PubMed and Google Scholar, and [“TBIMS” AND national AND database] on EMBASE. Data sources, study foci (in terms of data processing and outcomes), study outcomes, and follow-up information usage were collected to categorize the studies included in this review. Variable usage in terms of TBIMS' form-based variable groups and limitations from each study were also noted. Assessment was made on how TBIMS' objectives were met by the studies. Of the 74 articles reviewed, 23 used TBIMS along with other data sets. Fifty-four studies focused on specific outcome measures only, 6 assessed data aspects as a major focus, and 13 explored both. Sample sizes of the included studies ranged from 11 to 15,835. Forty-two of the 60 longitudinal studies assessed follow-up from 1 to 5 years, and 15 studies used 10 to 25 years of the same. Prominent variable groups as outcome measures were “Employment,” “FIM,” “DRS,” “PART-O,” “Satisfaction with Life,” “PHQ-9,” and “GOS-E.” Limited numbers of studies were published regarding tobacco consumption, the Brief Test of Adult Cognition by Telephone (BTACT), the Supervision Rating Scale (SRS), general health, and comorbidities as variables of interest. Generalizability was the most significant limitation mentioned by the studies. The TBIMS is a rich resource for large-sample longitudinal analyses of various TBI outcomes. Future efforts should focus on under-utilized variables and improving generalizability by validation of results across large-scale TBI data sets to better understand the heterogeneity of TBI.
Collapse
Affiliation(s)
- Samantha Tso
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ashirbani Saha
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|