1
|
Tang Y, Wang N, Dong Z, Lowerison M, Del Aguila A, Johnston N, Vu T, Ma C, Xu Y, Yang W, Song P, Yao J. Non-Invasive Deep-Brain Imaging With 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM). IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:994-1004. [PMID: 39383084 PMCID: PMC11892115 DOI: 10.1109/tmi.2024.3477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO , US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.
Collapse
|
2
|
Liu S, Tan Z, Shao P, Wang S, Tian C. Ultrafast filtered back-projection for photoacoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2025; 16:362-381. [PMID: 39958866 PMCID: PMC11828441 DOI: 10.1364/boe.540622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 02/18/2025]
Abstract
The filtered back-projection (FBP) algorithm is widely used in photoacoustic computed tomography (PACT) for image reconstruction due to its simplicity and efficiency. Yet, the real-time processing of high-speed PACT data remains challenging for regular FBP implementations. To enhance the reconstruction efficiency of the FBP algorithm, researchers have developed FBP implementations based on the graphics processing units (GPUs). However, existing GPU-accelerated FBP algorithms either sacrifice accuracy for efficiency or are still inefficient for high-speed, real-time PACT imaging. Herein, we report an ultrafast GPU acceleration-based FBP implementation for PACT image reconstruction without sacrificing accuracy. Firstly, the computation complexity of the filtering part of the FBP algorithm is significantly simplified with a pre-computed filtering matrix to enhance filtering efficiency. Secondly, the computation efficiency of the back-projection part of the FBP algorithm is dramatically increased through parallel programming and GPU acceleration. As a result, the proposed FBP implementation takes only 0.38 ms to reconstruct a two-dimensional image of 512 × 512 pixels, which is 439 times faster than regular FBP implementations. Numerical and experimental results show that the proposed FBP implementation outperforms existing GPU-based FBP implementations in reconstruction accuracy and computation efficiency. To the best of our knowledge, this is the fastest implementation of the FBP algorithm ever reported in PACT. This work is expected to provide an ultrafast and accurate image reconstruction solution for high-speed, real-time PACT imaging.
Collapse
Affiliation(s)
- Songde Liu
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei, Anhui 230026, China
| | - Zhijian Tan
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Pengfei Shao
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Wang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei, Anhui 230026, China
| | - Chao Tian
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei, Anhui 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230088, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Kalva SK, Özbek A, Reiss M, Deán-Ben XL, Razansky D. Spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography of mice. PHOTOACOUSTICS 2024; 40:100659. [PMID: 39553382 PMCID: PMC11568778 DOI: 10.1016/j.pacs.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Optoacoustic (OA) tomography is a powerful noninvasive preclinical imaging tool enabling high resolution whole-body visualization of biodistribution and dynamics of molecular agents. The technique yet lacks endogenous soft-tissue contrast, which often hampers anatomical navigation. Herein, we devise spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography for concurrent OA and pulse-echo ultrasound (US) imaging of whole mice. To this end, a spherical array transducer featuring a central curvilinear segment is employed. Full rotation of the array renders transverse US and OA views, while additional translation facilitates volumetric whole-body imaging with high spatial resolution down to 150 µm and 110 µm in the OA and US modes, respectively. OA imaging revealed blood-filled, vascular organs like heart, liver, spleen, kidneys, and surrounding vasculature, whilst complementary details of bones, lungs, and skin boundaries were provided by the US. The dual-modal capability of SVOPUS for label-free imaging of tissue morphology and function is poised to facilitate pharmacokinetic studies, disease monitoring, and image-guided therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ali Özbek
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
4
|
Wang C, Lam WS, Huang H, Zhao H, Zhang C, Sun D. Illumination-adjustable photoacoustic and harmonic ultrasound for tracking magnetically driven microrobots. BIOMEDICAL OPTICS EXPRESS 2024; 15:5790-5802. [PMID: 39421791 PMCID: PMC11482187 DOI: 10.1364/boe.535028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 10/19/2024]
Abstract
The development of microrobots for biomedical applications has enabled tasks such as targeted drug delivery, minimally invasive surgeries, and precise diagnostics. However, effective in vivo navigation and control remain challenging due to their small size and complex body environment. Photoacoustic (PA) and ultrasound (US) imaging techniques, which offer high contrast, high resolution, and deep tissue penetration, are integrated to enhance microrobot visualization and tracking. Traditional imaging systems have a narrow effective illumination area, suffer from severe reflection artifacts, and are affected by strong electromagnetic fields. To address this, we present an illumination-adjustable PA and harmonic US imaging system with a customized pushrod mechanism for real-time focus adjustment. Experiments demonstrate high-resolution imaging and accurate microrobot positioning, showcasing the potential for biomedical applications, especially in minimally invasive procedures.
Collapse
Affiliation(s)
- Chongyun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wah Shing Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Han Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chunqi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Center of Robotics and Automation, Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
5
|
Yang Z, Wang F, Peng W, Song L, Luo Y, Zhao Z, Huang L. Adaptive complementary neighboring sub-aperture beamforming for thermoacoustic imaging. Med Phys 2024; 51:7153-7170. [PMID: 39088754 DOI: 10.1002/mp.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND When applied to thermoacoustic imaging (TAI), the delay-and-sum (DAS) algorithm produces strong sidelobes due to its disadvantages of uniform aperture weighting. As a result, the quality of TAI images recovered by DAS is often severely degraded by strong non-coherent clutter, which restricts the development and application of TAI. PURPOSE To address this issue, we propose an adaptive complementary neighboring sub-aperture (NSA) beamforming algorithm for TAI. METHODS In NSA, we introduce a coordinate system transformation when calculating the normalized cross-correlation (NCC) matrix. This approach enables the computation of the NCC coefficient within the specified kernel without complex coordinate calculations. We first conducted the numerical simulation experiment to validate NSA using a tree branch phantom. In addition, we also conducted phantom (five sauce tubes), ex vivo (ablation needle in ex vivo porcine liver), and in vivo (human arm) TAI experiments using our TAI system with a center frequency of 3 GHz. RESULTS In the numerical simulation experiment, the structural similarity index (SSIM) value for NSA is increased from 0.37828 for DAS to 0.75492. In the point target phantom TAI experiment, the generalized contrast-to-noise ratio (gCNR) value for NSA is increased from 0.936 for DAS to 0.962. The experimental results show that NSA can recover clearer thermoacoustic images compared to DAS. In the ex vivo TAI experiment, the full width at half maxima (FWHM) of an ablation needle (diameter = 1.5 mm) for coherence factor (CF) weighted DAS and NSA are 0.9 and 1.3 mm, respectively. Furthermore, in the in vivo TAI experiment, CF reduces the signals within the arm compared to NSA. Therefore, compared with CF, NSA can maintain the integrity of target information in TAI while effectively suppressing non-coherent background clutter. CONCLUSIONS NSA can effectively reduce non-coherent background noise while ensuring the completeness of the target information. So, NSA offers the potential to provide high-quality thermoacoustic images and further advance their clinical application.
Collapse
Affiliation(s)
- Zeqi Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fuyong Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wanting Peng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ling Song
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqin Zhao
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Garrett DC, Xu J, Aborahama Y, Ku G, Maslov K, Wang LV. Whole-Body Human Ultrasound Tomography. RESEARCH SQUARE 2024:rs.3.rs-4714949. [PMID: 39070654 PMCID: PMC11275691 DOI: 10.21203/rs.3.rs-4714949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ultrasonography is a vital component of modern clinical care, with handheld probes routinely used for a variety of applications. However, handheld ultrasound imaging is limited by factors such as the partial-body field of view, operator dependency, contact-induced distortion, and lack of transmission contrast. Here, we demonstrate a new system enabling whole-body ultrasound tomography of humans in reflection and transmission modes. To generate 2D isotropically resolved images across the entire cross-section in vivo, we use a custom 512-element circular ultrasound receiver array with a rotating ultrasonic transmitter. We demonstrate this technique in regions such as the abdomen and legs in healthy volunteers. We also showcase two potential clinical extensions. First, we readily observe subcutaneous and preperitoneal abdominal adipose distributions in our images, enabling adipose thickness assessment over the body without ionizing radiation or mechanical deformation. Second, we demonstrate an approach for rapid (seven frame-per-second) biopsy needle localization with respect to internal tissue features. These capabilities make whole-body ultrasound tomography a potential practical tool for clinical needs currently unmet by other modalities.
Collapse
Affiliation(s)
| | | | - Yousuf Aborahama
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Geng Ku
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
7
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
8
|
Sun Y, Wang Y, Li W, Li C. Real-time dual-modal photoacoustic and fluorescence small animal imaging. PHOTOACOUSTICS 2024; 36:100593. [PMID: 38352643 PMCID: PMC10862394 DOI: 10.1016/j.pacs.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
By combining optical absorption contrast and acoustic resolution, photoacoustic imaging (PAI) has broken the barrier in depth for high-resolution optical imaging. Meanwhile, Fluorescence imaging (FLI), owing to advantages of high sensitivity and high specificity with abundant fluorescence agents and proteins, has always been playing a key role in live animal studies. Based on different optical contrast mechanisms, PAI and FLI can provide important complementary information to each other. In this work, we uniquely designed a Photoacoustic-Fluorescence (PA-FL) imaging system that provides real-time dual modality imaging, in which a half-ring ultrasonic array is employed for high quality PA tomography and a specially designed optical window allows simultaneous whole-body fluorescence imaging. The performance of this dual modality system was demonstrated in live animal studies, including real-time monitoring of perfusion and metabolic processes of fluorescent dyes. Our study indicates that the PA-FL imaging system has unique potential for live small animal research.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biomedical Engineering, School of Future Technology, Peking University, Beijing 100871, China
| | - Yibing Wang
- Department of Biomedical Engineering, School of Future Technology, Peking University, Beijing 100871, China
| | - Wenzhao Li
- Department of Biomedical Engineering, School of Future Technology, Peking University, Beijing 100871, China
| | - Changhui Li
- Department of Biomedical Engineering, School of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Chen J, Chen R, Chau CV, Sedgwick AC, Xue Q, Chen T, Zeng S, Chen N, Wong KKY, Song L, Ren Y, Yang J, Sessler JL, Liu C. Targeted Cyclo[8]pyrrole-Based NIR-II Photoacoustic Tomography Probe for Suppression of Orthotopic Pancreatic Tumor Growth and Intra-abdominal Metastases. J Am Chem Soc 2024; 146:4620-4631. [PMID: 38330912 DOI: 10.1021/jacs.3c11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvβ3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Calvin V Chau
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Adam C Sedgwick
- Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Qiang Xue
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Silue Zeng
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ningbo Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Yang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Wang R, Zhu J, Meng Y, Wang X, Chen R, Wang K, Li C, Shi J. Adaptive machine learning method for photoacoustic computed tomography based on sparse array sensor data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107822. [PMID: 37832425 DOI: 10.1016/j.cmpb.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Photoacoustic computed tomography (PACT) is a non-invasive biomedical imaging technology that has developed rapidly in recent decades, especially has shown potential for small animal studies and early diagnosis of human diseases. To obtain high-quality images, the photoacoustic imaging system needs a high-element-density detector array. However, in practical applications, due to the cost limitation, manufacturing technology, and the system requirement in miniaturization and robustness, it is challenging to achieve sufficient elements and high-quality reconstructed images, which may even suffer from artifacts. Different from the latest machine learning methods based on removing distortions and artifacts to recover high-quality images, this paper proposes an adaptive machine learning method to firstly predict and complement the photoacoustic sensor channel data from sparse array sampling and then reconstruct images through conventional reconstruction algorithms. METHODS We develop an adaptive machine learning method to predict and complement the photoacoustic sensor channel data. The model consists of XGBoost and a neural network named SS-net. To handle data sets of different sizes and improve the generalization, a tunable parameter is used to control the weights of XGBoost and SS-net outputs. RESULTS The proposed method achieved superior performance as demonstrated by simulation, phantom experiments, and in vivo experiment results. Compared with linear interpolation, XGBoost, CAE, and U-net, the simulation results show that the SSIM value is increased by 12.83%, 6.78%, 21.46%, and 12.33%. Moreover, the median R2 is increased by 34.4%, 8.1%, 28.6%, and 84.1% with the in vivo data. CONCLUSIONS This model provides a framework to predict the missed photoacoustic sensor data on a sparse ring-shaped array for PACT imaging and has achieved considerable improvements in reconstructing the objects. Compared with linear interpolation and other deep learning methods qualitatively and quantitatively, our proposed methods can effectively suppress artifacts and improve image quality. The advantage of our methods is that there is no need for preparing a large number of images as the training dataset, and the data for training is directly from the sensors. It has the potential to be applied to a wide range of photoacoustic imaging detector arrays for low-cost and user-friendly clinical applications.
Collapse
Affiliation(s)
| | - Jing Zhu
- Zhejiang Lab, Hangzhou 311100, China
| | | | | | | | | | - Chiye Li
- Zhejiang Lab, Hangzhou 311100, China; Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
| | - Junhui Shi
- Zhejiang Lab, Hangzhou 311100, China; Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
| |
Collapse
|
11
|
Zhang Y, Chen J, Zhang J, Zhu J, Liu C, Sun H, Wang L. Super-Low-Dose Functional and Molecular Photoacoustic Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302486. [PMID: 37310419 PMCID: PMC10427362 DOI: 10.1002/advs.202302486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Indexed: 06/14/2023]
Abstract
Photoacoustic microscopy can image many biological molecules and nano-agents in vivo via low-scattering ultrasonic sensing. Insufficient sensitivity is a long-standing obstacle for imaging low-absorbing chromophores with less photobleaching or toxicity, reduced perturbation to delicate organs, and more choices of low-power lasers. Here, the photoacoustic probe design is collaboratively optimized and a spectral-spatial filter is implemented. A multi-spectral super-low-dose photoacoustic microscopy (SLD-PAM) is presented that improves the sensitivity by ≈33 times. SLD-PAM can visualize microvessels and quantify oxygen saturation in vivo with ≈1% of the maximum permissible exposure, dramatically reducing potential phototoxicity or perturbation to normal tissue function, especially in imaging of delicate tissues, such as the eye and the brain. Capitalizing on the high sensitivity, direct imaging of deoxyhemoglobin concentration is achieved without spectral unmixing, avoiding wavelength-dependent errors and computational noises. With reduced laser power, SLD-PAM can reduce photobleaching by ≈85%. It is also demonstrated that SLD-PAM achieves similar molecular imaging quality using 80% fewer contrast agents. Therefore, SLD-PAM enables the use of a broader range of low-absorbing nano-agents, small molecules, and genetically encoded biomarkers, as well as more types of low-power light sources in wide spectra. It is believed that SLD-PAM offers a powerful tool for anatomical, functional, and molecular imaging.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jiangbo Chen
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Jingyi Zhu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Chao Liu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Lidai Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina518057
| |
Collapse
|
12
|
Zhu J, Chen J, Amjadian M, Liang S, Qu Z, Wang Y, Zhang Y, Wang L. Simultaneous dual-modal photoacoustic and harmonic ultrasound microscopy with an optimized acoustic combiner. BIOMEDICAL OPTICS EXPRESS 2023; 14:1626-1635. [PMID: 37078044 PMCID: PMC10110316 DOI: 10.1364/boe.484038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Simultaneous photoacoustic (PA) and ultrasound (US) imaging provides rich optical and acoustic contrasts with high sensitivity, specificity, and resolution, making it a promising tool for diagnosing and assessing various diseases. However, the resolution and penetration depth tend to be contradictory due to the increased attenuation of high-frequency ultrasound. To address this issue, we present simultaneous dual-modal PA/US microscopy with an optimized acoustic combiner that can maintain high resolution while improving the penetration of ultrasound imaging. A low-frequency ultrasound transducer is used for acoustic transmission, and a high-frequency transducer is used for PA and US detection. An acoustic beam combiner is utilized to merge the transmitting and receiving acoustic beams with a predetermined ratio. By combining the two different transducers, harmonic US imaging and high-frequency photoacoustic microscopy are implemented. In vivo experiments on the mouse brain demonstrate the simultaneous PA and US imaging ability. The harmonic US imaging of the mouse eye reveals finer iris and lens boundary structures than conventional US imaging, providing a high-resolution anatomical reference for co-registered PA imaging.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Mohammadreza Amjadian
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Siyi Liang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Zheng Qu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, China
| |
Collapse
|
13
|
Zhang Y, Wang L. Array-based high-intensity focused ultrasound therapy system integrated with real-time ultrasound and photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:1137-1145. [PMID: 36950235 PMCID: PMC10026570 DOI: 10.1364/boe.484986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic technique in clinical applications. Challenges in stimulation or ablation HIFU therapy are to accurately target the treatment spot, flexibly deliver or fast-move focus points in the treatment region, and monitor therapy progress in real-time. In this paper, we develop an array-based HIFU system integrated with real-time ultrasound (US) and photoacoustic (PA) imaging. The array-based HIFU transducer can be dynamically focused in a lateral range of ∼16 mm and an axial range of ∼40 mm via electronically adjusting the excitation phase map. To monitor the HIFU therapy progress in real-time, sequential HIFU transmission, PA imaging, PA thermometry, and US imaging are implemented to display the dual-modal images and record the local temperature changes. Co-registered dual-modal images show structural and functional information and thus can guide the HIFU therapy for precise positioning and dosage control. Besides therapy, the multi-element HIFU transducer can also be used to acquire US images to precisely align the imaging coordinates with the HIFU coordinates. Phantom experiments validate the precise and dynamic steering capability of HIFU ablation. We also show that dual-modal imaging can guide HIFU in the designated region and monitor the temperature in biological tissue in real-time.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shen Zhen, 518057, China
| |
Collapse
|
14
|
Jin G, Zhu H, Jiang D, Li J, Su L, Li J, Gao F, Cai X. A Signal-Domain Object Segmentation Method for Ultrasound and Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:253-265. [PMID: 37015663 DOI: 10.1109/tuffc.2022.3232174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Image segmentation is important in improving the diagnostic capability of ultrasound computed tomography (USCT) and photoacoustic computed tomography (PACT), as it can be included in the image reconstruction process to improve image quality and quantification abilities. Segmenting the imaged object out of the background using image domain methods is easily complicated by low contrast, noise, and artifacts in the reconstructed image. Here, we introduce a new signal domain object segmentation method for USCT and PACT which does not require image reconstruction beforehand and is automatic, robust, computationally efficient, accurate, and straightforward. We first establish the relationship between the time-of-flight (TOF) of the received first arrival waves and the object's boundary which is described by ellipse equations. Then, we show that the ellipses are tangent to the boundary. By looking for tangent points on the common tangent of neighboring ellipses, the boundary can be approximated with high fidelity. Imaging experiments of human fingers and mice cross sections showed that our method provided equivalent or better segmentations than the optimal ones by active contours. In summary, our method greatly reduces the overall complexity of object segmentation and shows great potential in eliminating user dependency without sacrificing segmentation accuracy. The method can be further seamlessly incorporated into algorithms for other processing purposes in USCT and PACT, such as high-quality image reconstruction.
Collapse
|
15
|
Tang Y, Tang S, Huang C, Klippel P, Ma C, Caso N, Chen S, Jing Y, Yao J. High-fidelity deep functional photoacoustic tomography enhanced by virtual point sources. PHOTOACOUSTICS 2023; 29:100450. [PMID: 36685991 PMCID: PMC9852650 DOI: 10.1016/j.pacs.2023.100450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Photoacoustic tomography (PAT), a hybrid imaging modality that acoustically detects the optical absorption contrast, is a promising technology for imaging hemodynamic functions in deep tissues far beyond the traditional optical microscopy. However, the most clinically compatible PAT often suffers from the poor image fidelity, mostly due to the limited detection view of the linear ultrasound transducer array. PAT can be improved by employing highly-absorbing contrast agents such as droplets and nanoparticles, which, however, have low clinical translation potential due to safety concerns and regulatory hurdles imposed by these agents. In this work, we have developed a new methodology that can fundamentally improve PAT's image fidelity without hampering any of its functional capability or clinical translation potential. By using clinically-approved microbubbles as virtual point sources that strongly and isotropically scatter the local pressure waves generated by surrounding hemoglobin, we can overcome the limited-detection-view problem and achieve high-fidelity functional PAT in deep tissues, a technology referred to as virtual-point-source PAT (VPS-PAT). We have thoroughly investigated the working principle of VPS-PAT by numerical simulations and in vitro phantom experiments, clearly showing the signal origin of VPSs and the resultant superior image fidelity over traditional PAT. We have also demonstrated in vivo applications of VPT-PAT for functional small-animal studies with physiological challenges. We expect that VPS-PAT can find broad applications in biomedical research and accelerated translation to clinical impact.
Collapse
Affiliation(s)
- Yuqi Tang
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| | - Shanshan Tang
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Chengwu Huang
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Paul Klippel
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Chenshuo Ma
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| | - Nathan Caso
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Shigao Chen
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Yun Jing
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| |
Collapse
|
16
|
Menozzi L, del Águila Á, Vu T, Ma C, Yang W, Yao J. Three-dimensional non-invasive brain imaging of ischemic stroke by integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT). PHOTOACOUSTICS 2023; 29:100444. [PMID: 36620854 PMCID: PMC9813577 DOI: 10.1016/j.pacs.2022.100444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
We present an ischemic stroke study using our newly-developed PAUSAT system that integrates photoacoustic computed tomography (PACT), high-frequency ultrasound imaging, and acoustic angiographic tomography. PAUSAT is capable of three-dimensional (3D) imaging of the brain morphology, blood perfusion, and blood oxygenation. Using PAUSAT, we studied the hemodynamic changes in the whole mouse brain induced by two common ischemic stroke models: the permanent middle cerebral artery occlusion (pMCAO) model and the photothrombotic (PT) model. We imaged the same mouse brains before and after stroke, and quantitatively compared the two stroke models. We observed clear hemodynamic changes after ischemic stroke, including reduced blood perfusion and oxygenation. Such changes were spatially heterogenous. We also quantified the tissue infarct volume in both stroke models. The PAUSAT measurements were validated by laser speckle imaging and histology. Our results have collectively demonstrated that PAUSAT can be a valuable tool for non-invasive longitudinal studies of neurological diseases at the whole-brain scale.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Ángela del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| |
Collapse
|
17
|
Ren M, Cheng Z, Wu L, Zhang H, Zhang S, Chen X, Xing D, Qin H. Portable Microwave-Acoustic Coaxial Thermoacoustic Probe With Miniaturized Vivaldi Antennas for Breast Tumor Screening. IEEE Trans Biomed Eng 2023; 70:175-181. [PMID: 35767494 DOI: 10.1109/tbme.2022.3187153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microwave-induced thermoacoustic (TA) imaging (MTAI), which exploits dielectric contrasts to provide images with high contrast and spatial resolution, holds the potential to serve as an additional means of clinical diagnosis and treatment. However, conventional MTAI usually uses large and heavy metal antennas to radiate pulsed microwaves, making it challenging to image different target areas flexibly. In this work, we presented the design and evaluation of a portable microwave-acoustic coaxial TA probe (51 mm × 63 mm × 138 mm) that can flexibly image the region of interest. The TA probe contains two miniaturized symmetrically distributed Vivaldi antennas (7.5 g) and a 128-element linear ultrasonic transducer. By adjusting the geometry of the antennas and the ultrasonic transducer, the TA probe's acoustic field and microwave field can be designed to be coaxial, which helps achieve homogeneous microwave illumination and high-sensitivity ultrasonic detection. The practical feasibility of the proposed probe was tested on an in vitro ewe breast and a healthy volunteer. The results demonstrate that the MTAI system with the proposed TA probe can visualize the anatomical structure of the breast tumor in ewe breast and a healthy volunteer breast with resolutions in hundreds of microns (transverse: 910 μm, axial: 780 μm) and an excellent signal-to-noise ratio can be obtained in deep adipose tissue (10 dB in 6 cm fat). The miniaturized portable TA probe takes a solid step forward in translating MTAI technology to clinical breast tumor diagnosis.
Collapse
|
18
|
Zhang S, Liu J, Liang Z, Ge J, Feng Y, Chen W, Qi L. Pixel-wise reconstruction of tissue absorption coefficients in photoacoustic tomography using a non-segmentation iterative method. PHOTOACOUSTICS 2022; 28:100390. [PMID: 36051488 PMCID: PMC9424605 DOI: 10.1016/j.pacs.2022.100390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In Photoacoustic Tomography (PAT), the acquired image represents a light energy deposition map of the imaging object. For quantitative imaging, the PAT image is converted into an absorption coefficient (μ a ) map by dividing the light fluence (LF). Previous methods usually assume a uniform tissueμ a distribution, and consequently degrade the LF correction results. Here, we propose a simple method to reconstruct the pixel-wiseμ a map. Our method is based on a non-segmentation-based iterative algorithm, which alternately optimizes the LF distribution and theμ a map. Using simulation data, as well as phantom and animal data, we implemented our algorithm and compared it to segmentation-based correction methods. The results show that our method can obtain accurate estimation of the LF distribution and therefore improve the image quality and feature visibility of theμ a map. Our method may facilitate efficient calculation of the concentration distributions of endogenous and exogenous agents in vivo.
Collapse
Affiliation(s)
- Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Ge
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
20
|
Wu Y, Zhang W, Shao X, Yang Y, Zhang T, Lei M, Wang Z, Gao B, Hu S. Research on the Multi-Element Synthetic Aperture Focusing Technique in Breast Ultrasound Imaging, Based on the Ring Array. MICROMACHINES 2022; 13:1753. [PMID: 36296106 PMCID: PMC9609697 DOI: 10.3390/mi13101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a widely clinical detection method, ultrasonography (US) has been applied to the diagnosis of breast cancer. In this paper, the multi-element synthetic aperture focusing (M-SAF) is applied to the ring array of breast ultrasonography (US) imaging, which addresses the problem of low imaging quality due to the single active element for each emission and the reception in the synthetic aperture focusing. In order to determine the optimal sub-aperture size, the formula is derived for calculating the internal sound pressure of the ring array with a 200 mm diameter, and the sound pressure distribution is analyzed. The ring array with 1024 elements (1024 ring array) is established in COMSOL Multiphysics 5.6, and the optimal sub-aperture size is 16 elements, according to the sound field beam simulation and the directivity research. Based on the existing experimental conditions, the ring array with 256 elements (256 ring array) is simulated and verified by experiments. The simulation has a spatial resolution evaluation in the k-Wave toolbox, and the experiment uses nylon rope and breast model imaging. The results show that if the sub-aperture size has four elements, the imaging quality is the highest. Specifically, the spatial resolution is the best, and the sound pressure amplitude and signal-to-noise ratio (SNR) are maintained at a high level in the reconstructed image. The optimal sub-aperture theory is verified by the two kinds of ring arrays, which also provide a theoretical basis for the application of the multi-element synthetic aperture focusing technology (M-SAF) in ring arrays.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Wendong Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Xingling Shao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Yuhua Yang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Tian Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Miao Lei
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Zhihao Wang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Bizhen Gao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Shumin Hu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| |
Collapse
|
21
|
Zhang Y, Wang L. Adaptive dual-speed ultrasound and photoacoustic computed tomography. PHOTOACOUSTICS 2022; 27:100380. [PMID: 35722271 PMCID: PMC9198371 DOI: 10.1016/j.pacs.2022.100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Full-ring dual-modal ultrasound and photoacoustic computed tomography has unique advantages of nearly isotropic spatial resolution, complementary contrast, deep penetration, and full-view detection. However, the imaging quality may be deteriorated by the inaccurate sound speed estimation. Automatic determining and compensation for sound speed has been a long-standing problem in image reconstruction. Here, we present new adaptive dual-speed ultrasound and photoacoustic computed tomography (ADS-USPACT) to address this challenge. The system features full-view coverage (360°), high-speed dual-modal imaging (10-Hz), automated dual sound speed correction, and synergistic high imaging quality. To correct the sound speed, we develop a two-compartment method that can automatically segment the sample boundary and search for the optimal sound speed based on the rich ultrasonic pulse-echo signals. The method does not require the operator's intervention. We validate this technique in numerical simulation, phantom study, and in vivo experiments. The ADS-USPACT represents significant progress in dual-modal imaging.
Collapse
Affiliation(s)
- Yachao Zhang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong SAR, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong SAR, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
22
|
Hakakzadeh S, Mozaffarzadeh M, Mostafavi SM, Kavehvash Z, Rajendran P, Verweij M, de Jong N, Pramanik M. Multi-angle data acquisition to compensate transducer finite size in photoacoustic tomography. PHOTOACOUSTICS 2022; 27:100373. [PMID: 35662895 PMCID: PMC9157198 DOI: 10.1016/j.pacs.2022.100373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 05/28/2023]
Abstract
In photoacoustic tomography (PAT) systems, the tangential resolution decreases due to the finite size of the transducer as the off-center distance increases. To address this problem, we propose a multi-angle detection approach in which the transducer used for data acquisition rotates around its center (with specific angles) as well as around the scanning center. The angles are calculated based on the central frequency and diameter of the transducer and the radius of the region-of-interest (ROI). Simulations with point-like absorbers (for point-spread-function evaluation) and a vasculature phantom (for quality assessment), and experiments with ten 0.5 mm-diameter pencil leads and a leaf skeleton phantom are used for evaluation of the proposed approach. The results show that a location-independent tangential resolution is achieved with 150 spatial sampling and central rotations with angles of ±8°/±16°. With further developments, the proposed detection strategy can replace the conventional detection (rotating a transducer around ROI) in PAT.
Collapse
Affiliation(s)
- Soheil Hakakzadeh
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | | | - Zahra Kavehvash
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore
| | - Martin Verweij
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nico de Jong
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore
| |
Collapse
|
23
|
Ahn J, Baik JW, Kim Y, Choi K, Park J, Kim H, Kim JY, Kim HH, Nam SH, Kim C. Fully integrated photoacoustic microscopy and photoplethysmography of human in vivo. PHOTOACOUSTICS 2022; 27:100374. [PMID: 35646590 PMCID: PMC9133750 DOI: 10.1016/j.pacs.2022.100374] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic microscopy (PAM) is used to visualize blood vessels and to monitor their time-dependent changes. Photoplethysmography (PPG) measures hemodynamic time-series changes such as heart rate. However, PPG's limited visual access to the dynamic changes of blood vessels has prohibited further understanding of hemodynamics. Here, we propose a novel, fully integrated PAM and photoplethysmography (PAM-PPG) system to understand hemodynamic features in detail. Using the PAM-PPG system, we simultaneously acquire vascular images (by PAM) and changes in the blood volume (by PPG) from human fingers. Next, we determine the heart rate from changes in the PA signals, which match well with the PPG signals. These changes can be measured if the blood flow is not blocked. From the results, we believe that PAM-PPG could be a useful clinical tool in various clinical fields such as cardiology and endocrinology.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Yeonggeon Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Karam Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jeongwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Sung Hyun Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
24
|
Qi S, Liu G, Chen J, Cao P, Lei X, Ding C, Chen G, Zhang Y, Wang L. Targeted Multifunctional Nanoplatform for Imaging-Guided Precision Diagnosis and Photothermal/Photodynamic Therapy of Orthotopic Hepatocellular Carcinoma. Int J Nanomedicine 2022; 17:3777-3792. [PMID: 36065288 PMCID: PMC9440712 DOI: 10.2147/ijn.s377080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Effective theranostic of hepatocellular carcinoma (HCC) in an early-stage is imminently demanded to improve its poor prognosis. Combination of the near-infrared (NIR) photoacoustic imaging (PAI) and fluorescence imaging (FLI) can provide high temporospatial resolution, outstanding optical contrast, and deep penetration and thus is promising for accurate and sensitive HCC diagnosis. Methods A versatile CXCR4-targeted Indocyanine green (ICG)/Platinum (Pt)-doped polydopamine melanin-mimic nanoparticle (designated ICG/Pt@PDA-CXCR4, referred to as IPP-c) is synthesized as an HCC-specific contrast agent for high-resolution precise diagnostic PAI/FLI and optical imaging-guided targeted photothermal therapy (PTT)/photodynamic therapy (PDT) of orthotopic small hepatocellular carcinoma (SHCC). Results The multifunctional targeted nanoparticle yields superior HCC specificity, high imaging contrast in both PAI and FLI, good stability, reliable biocompatibility, effective singlet oxygen generation and superior photothermal conversion efficiency (PCE, 58.7%) upon 808-nm laser irradiation. The targeting ability of IPP-c was validated in in vitro experiments on selectively killing the CXCR4-overexpressing HCC cells. Moreover, we test the efficient dual-modal optical precision diagnosis properties of IPP-c via in vivo experiments on targeted particle accumulation in an early-stage SHCC mouse model (tumor diameter about 1.2 mm). Then, under the guidance of real-time optical imaging, effective and mini-invasive PTT/PDT of orthotopic SHCCs were demonstrated without damaging adjacent liver tissues or other major organs. Conclusion This study presented a multifunctional CXCR4-targeted nanoparticle to conduct effective and mini-invasive phototherapeutics of orthotopic SHCCs via the real-time quantitative guidance by optical imaging, which provided a new perception for building a versatile targeted nanoplatform for phototheranostics of early-stage HCC.
Collapse
Affiliation(s)
- Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, Peoples’s Republic of China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| | - Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Xiaohua Lei
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
- Correspondence: Yachao Zhang; Lidai Wang, Email ;
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
25
|
Zhang Y, Wang L. Video-rate full-ring ultrasound and photoacoustic computed tomography with real-time sound speed optimization. BIOMEDICAL OPTICS EXPRESS 2022; 13:4398-4413. [PMID: 36032563 PMCID: PMC9408242 DOI: 10.1364/boe.464360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Full-ring dual-modal ultrasound and photoacoustic imaging provide complementary contrasts, high spatial resolution, full view angle and are more desirable in pre-clinical and clinical applications. However, two long-standing challenges exist in achieving high-quality video-rate dual-modal imaging. One is the increased data processing burden from the dense acquisition. Another one is the object-dependent speed of sound variation, which may cause blurry, splitting artifacts, and low imaging contrast. Here, we develop a video-rate full-ring ultrasound and photoacoustic computed tomography (VF-USPACT) with real-time optimization of the speed of sound. We improve the imaging speed by selective and parallel image reconstruction. We determine the optimal sound speed via co-registered ultrasound imaging. Equipped with a 256-channel ultrasound array, the dual-modal system can optimize the sound speed and reconstruct dual-modal images at 10 Hz in real-time. The optimized sound speed can effectively enhance the imaging quality under various sample sizes, types, or physiological states. In animal and human imaging, the system shows co-registered dual contrasts, high spatial resolution (140 µm), single-pulse photoacoustic imaging (< 50 µs), deep penetration (> 20 mm), full view, and adaptive sound speed correction. We believe VF-USPACT can advance many real-time biomedical imaging applications, such as vascular disease diagnosing, cancer screening, or neuroimaging.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shen Zhen, 518057, China
| |
Collapse
|
26
|
Suzuki D, Takida Y, Kawano Y, Minamide H, Terasaki N. Carbon nanotube-based, serially connected terahertz sensor with enhanced thermal and optical efficiencies. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:424-433. [PMID: 35811755 PMCID: PMC9258063 DOI: 10.1080/14686996.2022.2090855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2023]
Abstract
Owing to their high thermal and optical performances, carbon nanotube (CNT) films are used in various photo-thermo-electric (PTE) applications, such as terahertz (THz) sensing and energy harvesting. To improve the performance of PTE devices, a device structure should be designed based on a deep understanding of the thermal and optical responses of the CNT film. However, the optical properties of CNT films in the THz frequency region remain unclear because of the difficulties associated with device processing and measurements. Herein, we report our findings on the thermal and optical characteristics of CNT films. The shape of the CNT film that maximizes the product of the thermal and optical factors (optimal structure of the PTE sensor) depends on the frequency of the irradiating electromagnetic wave. The optimal film thickness and width values for THz irradiation range from 300-600 nm and 50-70 µm, respectively. Subsequently, we fabricated a serially connected, multi-element PTE sensor with an optimal device structure and enhanced the detection sensitivity by approximately 13 times compared with a single-element PTE sensor. In addition, we demonstrated the first THz spectroscopy application using a PTE sensor. The findings of this study, thermal/optical factor enhancement, and micro-sized CNT film processing technology can be used to improve the performance of all CNT-based photothermal devices, including PTE sensors and thermoelectric generators.
Collapse
Affiliation(s)
- Daichi Suzuki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| | - Yuma Takida
- RIKEN Center for Advanced Photonics, RIKEN, Miyagi, Japan
| | - Yukio Kawano
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- National Institute of Informatics, Tokyo, Japan
| | | | - Nao Terasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| |
Collapse
|
27
|
Dual-Wavelength Photoacoustic Computed Tomography with Piezoelectric Ring-Array Transducer for Imaging of Indocyanine Green Liposomes Aggregation in Tumors. MICROMACHINES 2022; 13:mi13060946. [PMID: 35744560 PMCID: PMC9227349 DOI: 10.3390/mi13060946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
Recently, indocyanine green (ICG), as an FDA-approved dye, has been widely used for phototherapy. It is essential to obtain information on the migration and aggregation of ICG in deep tissues. However, existing fluorescence imaging platforms are not able to obtain the structural information of the tissues. Here, we prepared ICG liposomes (ICG-Lips) and built a dual-wavelength photoacoustic computed tomography (PACT) system with piezoelectric ring-array transducer to image the aggregation of ICG-Lips in tumors to guide phototherapy. Visible 780 nm light excited the photoacoustic (PA) effects of the ICG-Lips and near-infrared 1064 nm light provided the imaging of the surrounding tissues. The aggregation of ICG-Lips within the tumor and the surrounding tissues was visualized by PACT in real time. This work indicates that PACT with piezoelectric ring-array transducer has great potential in the real-time monitoring of in vivo drug distribution.
Collapse
|
28
|
Pang Z, Wang Y, Qin W, Qi W, Xi L. Handheld volumetric photoacoustic/ultrasound imaging using an internal scanning mechanism. OPTICS LETTERS 2022; 47:2418-2421. [PMID: 35561365 DOI: 10.1364/ol.458274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic/ultrasound (PA/US) dual-modality imaging has been evolving rapidly for the last two decades. Handheld PA/US probes with different implementations have attracted particular attention due to their convenience and high applicability. However, developing a volumetric dual-modality PA/US imaging probe with a compact design remains a challenge. Here, we develop a handheld volumetric PA/US imaging probe with a special light-ultrasound coupling design and an internal scanning mechanism. A coaxial design for the excitation and detection paths in a customized 3D-printed housing with a size of 110 × 90 × 64 mm3 is proposed to optimize the signal-to-noise ratio (SNR) of the handheld probe for deep tissue imaging. Two parallel and synchronously rotational acoustic reflectors allow for volumetric imaging with an effective field of view (FOV) of more than 30 mm × 20 mm × 8 mm. In addition to simulation and phantom validations, in vivo human trials are successfully carried out, demonstrating the high imaging quality and stability of the system for potential clinical translations.
Collapse
|
29
|
Zhang J, Zhang Y, Guo Q, Wen G, Xiao H, Qi S, Wang Y, Zhang H, Wang L, Sun H. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. ACS Sens 2022; 7:1105-1112. [PMID: 35357825 DOI: 10.1021/acssensors.2c00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing probes to simultaneously detect and discriminate biothiols is important, yet challenging. Activatable photoacoustic (PA) probes for discriminating biothiols in vivo are still lacking, and this hinders the diagnosis of thiol-related diseases. Herein we present the first PA and fluorescence dual-modality probe MB-NBD for discriminating different biothiol species. The probe has the advantages of both fluorescence imaging and PA imaging (high sensitivity and deep penetration) with distinct signal patterns toward hydrogen sulfide (H2S), cysteine/homocysteine (Cys/Hcy), and glutathione (GSH) treatment. The biothiol-activated product of MB-NBD exhibits enhancements in near-infrared fluorescence (NIRF) at 690 nm and absorbance/PA at 664 nm upon fast reaction, allowing it to selectively detect biothiol species over other reactive species. On the other hand, MB-NBD displays characteristic absorbance enhancement at 547 nm toward H2S, rendering specific detection of H2S. In addition, the specific enhancements in absorbance/PA at 470 nm and fluorescence at 550 nm toward Cys/Hcy treatment endows the probe with the capability of selectively detecting Cys/Hcy. Furthermore, MB-NBD is able to discriminate Cys and GSH by fluorescent imaging in live-cell and ratiometric PA imaging in mice experiments. MB-NBD has been successfully used to diagnose tumors by dual-channel ratiometric PA imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hanyue Xiao
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421200, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
30
|
Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett 2022; 12:97-124. [PMID: 35529339 PMCID: PMC9046529 DOI: 10.1007/s13534-022-00220-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Functional blood imaging can reflect tissue metabolism and organ viability, which is important for life science and biomedical studies. However, conventional imaging modalities either cannot provide sufficient contrast or cannot support simultaneous multi-functional imaging for hemodynamics. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging. By using the optical-acoustic confocal alignment, photoacoustic imaging can even provide subcellular insight, referred as optical-resolution photoacoustic microscopy (OR-PAM). Based on a multi-wavelength laser source and developed the calculation methods, OR-PAM can provide multi-functional hemodynamic microscopic imaging of the total hemoglobin concentration (CHb), oxygen saturation (sO2), blood flow (BF), partial oxygen pressure (pO2), oxygen extraction fraction, and metabolic rate of oxygen (MRO2). This concise review aims to systematically introduce the principles and methods to acquire various functional parameters for hemodynamics by photoacoustic microscopy in recent studies, with characteristics and advantages comparison, typical biomedical applications introduction, and future outlook discussion.
Collapse
|
31
|
Zhang Y, Wang Y, Lai P, Wang L. Video-Rate Dual-Modal Wide-Beam Harmonic Ultrasound and Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:727-736. [PMID: 34694993 DOI: 10.1109/tmi.2021.3122240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-modal ultrasound (US) and photoacoustic (PA) imaging has tremendous advantages in biomedical applications, such as pharmacokinetics, cancer screening, and imaging-guided therapy. Compared with ring-shaped arrays, a linear piezoelectric transducer array applies to more anatomical sites and has been widely used in US/PA imaging. However, the linear array may limit the imaging quality due to narrow bandwidth, partial detection view, or sparse spatial sampling. To meet clinic demand of high-quality US/PA imaging with the linear transducer, we develop dual-modal wide-beam harmonic ultrasound (WBHUS) and photoacoustic computed tomography at video rate. The harmonic US imaging employs pulse phase inversion to reduce clutters and improve spatial resolution. Wide-beam US transmission can shorten the scanning times by 267% and enables a 20-Hz imaging rate, which can minimize motion artifacts in in vivo imaging. The harmonic US imaging does not only provide accurate anatomical references for locating PA features but also reduces artifacts in PA images. The improved image quality allows us to acquire high-resolution anatomical structures in deep tissue without labeling. The fast-imaging speed enables visualizing interventional procedures and monitoring the pulsations of the thoracic aorta and radial artery in real-time. The video-rate dual-modal harmonic US and single-shot PA computed tomography use a clinical-grade linear-array transducer and thus can be readily implemented in clinical US imaging.
Collapse
|
32
|
Rong Q, Lee Y, Tang Y, Vu T, Taboada C, Zheng W, Xia J, Czaplewski DA, Zhang HF, Sun C, Yao J. High-Frequency 3D Photoacoustic Computed Tomography Using an Optical Microring Resonator. BME FRONTIERS 2022; 2022:9891510. [PMID: 36818003 PMCID: PMC9933894 DOI: 10.34133/2022/9891510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3D photoacoustic computed tomography (3D-PACT) has made great advances in volumetric imaging of biological tissues, with high spatial-temporal resolutions and large penetration depth. The development of 3D-PACT requires high-performance acoustic sensors with a small size, large detection bandwidth, and high sensitivity. In this work, we present a new high-frequency 3D-PACT system that uses a micro-ring resonator (MRR) as the acoustic sensor. The MRR sensor has a size of 80 μm in diameter, and was fabricated using the nanoimprint lithography technology. Using the MRR sensor, we have developed a transmission-mode 3D-PACT system that has achieved a detection bandwidth of ~23 MHz, an imaging depth of ~8 mm, a lateral resolution of 114 μm, and an axial resolution of 57 μm. We have demonstrated the 3D PACT's performance on in vitro phantoms, ex vivo mouse brain, and in vivo mouse ear and tadpole. The MRR-based 3D-PACT system can be a promising tool for structural, functional, and molecular imaging of biological tissues at depths.
Collapse
Affiliation(s)
- Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuqi Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Carlos Taboada
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Wenhan Zheng
- Optical & Ultrasonic Imaging Laboratory, University at Buffalo, North Campus Buffalo, NY 14260, USA
| | - Jun Xia
- Optical & Ultrasonic Imaging Laboratory, University at Buffalo, North Campus Buffalo, NY 14260, USA
| | - David A. Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| |
Collapse
|
33
|
Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed Eng Lett 2021; 12:19-35. [DOI: 10.1007/s13534-021-00214-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
|
34
|
Cheng Z, Wu L, Qiu T, Duan Y, Qin H, Hu J, Yang S. An Excitation-Reception Collinear Probe for Ultrasonic, Photoacoustic, and Thermoacoustic Tri-Modal Volumetric Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3498-3506. [PMID: 34125673 DOI: 10.1109/tmi.2021.3089243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging systems that integrate multiple modalities can reveal complementary anatomic and functional information as they exploit different contrast mechanisms, which have shown great application potential and advantages in preclinical studies. A portable and easy-to-use imaging probe will be more conducive to transfer to clinical practice. Here, we present a tri-modal ultrasonic (US), photoacoustic (PA), and thermoacoustic (TA) imaging system with an excitation-reception collinear probe. The acoustic field, light field, and electric field of the probe were designed to be coaxial, realizing homogeneous illumination and high-sensitivity detection at the same detection position. US images can provide detailed information about structures, PA images can delineate the morphology of blood vessels in tissues, and TA images can reveal dielectric properties of the tissues. Moreover, phantoms and in vivo human finger experiments were performed by the tri-modal imaging system to demonstrate its performance. The results show that the tri-modal imaging system with the proposed probe has the ability to detect small breast tumors with a radius of only 2.5 mm and visualize the anatomical structure of the finger in three dimensions. Our work confirms that the tri-modal imaging system equipped with a collinear probe can be applied to a variety of different scenarios, which lays a solid foundation for the application of the tri-modality system in clinical trials.
Collapse
|
35
|
Zhu J, Liu C, Liu Y, Chen J, Zhang Y, Yao K, Wang L. Self-Fluence-Compensated Functional Photoacoustic Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3856-3866. [PMID: 34310295 DOI: 10.1109/tmi.2021.3099820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) can image blood oxygen saturation (sO2) in vivo with high resolution and excellent sensitivity and offers a great tool for neurovascular study and early cancer diagnosis. OR-PAM ignores the wavelength-dependent optical attenuation in superficial tissue, which cause errors in sO2 imaging. Monte Carlo simulation shows that variations in imaging depth, vessel diameter, and focal position can cause up to ∼ 60 % decrease in sO2 imaging. Here, we develop a self-fluence-compensated OR-PAM to compensate for the wavelength-dependent fluence attenuation. We propose a linearized model to estimate the fluence attenuations and use three optical wavelengths to compensate for them in sO2 calculation. We validate the model in both numerical and physical phantoms and show that the compensation method can effectively reduce the sO2 errors. In functional brain imaging, we demonstrate that the compensation method can effectively improve sO2 accuracy, especially in small vessels. Compared with uncompensated ones, the sO2 values are improved by 10~30% in the brain. We monitor ischemic-stroke-induced brain injury which demonstrates great potential for the pre-clinical study of vascular diseases.
Collapse
|
36
|
He L, Zhang Y, Chen J, Liu G, Zhu J, Li X, Li D, Yang Y, Lee CS, Shi J, Yin C, Lai P, Wang L, Fang C. A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. J Mater Chem B 2021; 9:8779-8792. [PMID: 34635903 DOI: 10.1039/d1tb01729b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Early diagnosis and effective treatment of hepatocellular carcinoma (HCC) is quite critical for improving patients' prognosis. The combination of second near-infrared window photoacoustic imaging (NIR-II PAI) and T2-magnetic resonance imaging (T2-MRI) is promising for achieving omnibearing information on HCC diagnosis due to the complementary advantages of outstanding optical contrast, high temporospatial resolution and soft-tissue resolution. Thus, the rational design of a multifunctional targeted nanoplatform with outstanding performance in dual-modal NIR-II PAI/T2-MRI is particularly valuable for precise diagnosis and imaging-guided non-invasive photothermal therapy (PTT) of early-stage HCC. Herein, a versatile targeted organic-inorganic hybrid nanoprobe was synthesized as a HCC-specific contrast agent for sensitive and efficient theranostics. The developed multifunctional targeted nanoprobe yielded superior HCC specificity, reliable stability and biocompatibility, high imaging contrast in both NIR-II PAI and T2-MRI, and an excellent photothermal conversion efficiency (74.6%). Furthermore, the theranostic efficiency of the targeted nanoprobe was systematically investigated using the orthotopic early HCC-bearing mice model. The NIR-II PAI exhibited sensitive detection of ultra-small HCCs (diameter less than 1.8 mm) and long-term real-time monitoring of the tumor and nanoprobe targeting process in deep tissues. The T2-MRI demonstrated clear imaging contrast and a spatial relationship between micro-HCC and adjacent structures for a comprehensive description of the tumor. Moreover, when using the targeted nanoprobe, the non-invasively targeted PTT of orthotopic early HCC was carried out under reliable dual-modal imaging guidance with remarkable anti-tumor efficiency and biosafety. This study provides an insight for constructing a multifunctional targeted nanoplatform for precise and comprehensive theranostics of early-stage HCC, which would greatly benefit the patients in the era of precision medicine.
Collapse
Affiliation(s)
- Linyun He
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou 510280, China.,Institute of Digital Intelligence of Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiaozhen Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China.,Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yuqi Yang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China.,Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiahai Shi
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou 510280, China.,Institute of Digital Intelligence of Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
37
|
Pang Z, Wang Y, Wang Y, Sun Z, Qi W, Xi L. Multi-modality photoacoustic/ultrasound imaging based on a commercial ultrasound platform. OPTICS LETTERS 2021; 46:4382-4385. [PMID: 34470021 DOI: 10.1364/ol.435989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Multimodal imaging takes advantage of each modality and has become a recent trend in the field of biomedical imaging. In this Letter, we develop and evaluate an integrated multi-modality imaging system combining photoacoustic computed tomography, optical resolution photoacoustic microscopy, brightness mode, and power Doppler ultrasound imaging on a commercial ultrasonographic platform. Using different imaging modalities enables the hybrid system to recover dense vascular networks and hemodynamic and morphological variations in both superficial and deep tissues. To evaluate the performance and illustrate the advantages of this system, we carried out both phantom and in vivo experiments. In addition to the complementary tissue information offered by different imaging modalities, the use of a commercial ultrasound platform shows the feasibility of the proposed method for future clinical translation.
Collapse
|
38
|
Degtyaruk O, Nozdriukhin D, Razansky D, Deán-Ben XL. In situ characterization of microparticulate optoacoustic contrast agents in an intracardiac perfusion mouse model. OPTICS LETTERS 2021; 46:4350-4353. [PMID: 34470012 DOI: 10.1364/ol.435360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Extrinsically administered light-absorbing agents may greatly enhance the sensitivity and imaging performance of optoacoustic tomography (OAT). Beyond the use of targeted contrast agents in functional and molecular imaging applications, tracking of highly absorbing microparticles has recently been shown to facilitate super-resolution volumetric angiography and mapping of blood flow. However, in vivo characterization of new types of microparticulate absorbing agents is often hindered due to their potential toxicity, incompatible dimensions, or sub-optimal extinction spectrum shadowed by strong background absorption of hemoglobin. Herein, we used an intracardiac perfusion mouse model to individually track the perfusion of absorbing particles through the cerebral vasculature by acquiring a sequence of high-frame-rate 3D OAT images. The particles were injected in the left ventricle of the heart after substitution of blood by an artificial cerebrospinal fluid post mortem, which has further contributed to minimizing the background OAT signals induced by hemoglobin absorption. The presented approach can greatly aid the development of new microparticulate contrast agents with optimized performance for various OAT imaging applications.
Collapse
|
39
|
Chen J, Zhang Y, Bai S, Zhu J, Chirarattananon P, Ni K, Zhou Q, Wang L. Dual-foci fast-scanning photoacoustic microscopy with 3.2-MHz A-line rate. PHOTOACOUSTICS 2021; 23:100292. [PMID: 34430201 PMCID: PMC8367837 DOI: 10.1016/j.pacs.2021.100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 05/02/2023]
Abstract
We report fiber-based dual-foci fast-scanning OR-PAM that can double the scanning rate without compromising the imaging resolution, the field of view, and the detection sensitivity. To achieve fast scanning speed, the OR-PAM system uses a single-axis water-immersible resonant scanning mirror that can confocally scan the optical and acoustic beams at 1018 Hz with a 3-mm range. Pulse energies of 45∼100-nJ are sufficient for acquiring vascular and oxygen-saturation images. The dual-foci method can double the B-scan rate to 2036 Hz. Using two lasers and stimulated Raman scattering, we achieve dual-wavelength excitation on both foci, and the total A-line rate is 3.2-MHz. In in vivo experiments, we inject epinephrine and monitor the hemodynamic and oxygen saturation response in the peripheral vessels at 1.7 Hz over 2.5 × 6.7 mm2. Dual-foci OR-PAM offers a new imaging tool for the study of fast physiological and pathological changes.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Songnan Bai
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Kai Ni
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Zhou
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong, 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong, 518057, China.
| |
Collapse
|
40
|
Qi S, Zhang Y, Liu G, Chen J, Li X, Zhu Q, Yang Y, Wang F, Shi J, Lee CS, Zhu G, Lai P, Wang L, Fang C. Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-II photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma. Acta Biomater 2021; 129:245-257. [PMID: 34082093 DOI: 10.1016/j.actbio.2021.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Effective and noninvasive diagnosis and prompt treatment of early-stage hepatocellular carcinoma (HCC) are urgently needed to reduce its mortality rate. Herein, the integration of high-resolution diagnostic second near-infrared (NIR-II) photoacoustic computed tomography (PACT) and imaging-guided targeted photothermal ablation of orthotopic small HCC (SHCC) is presented for the first time, which was enabled by a plasmonic platinum (Pt)-doped polydopamine melanin-mimic nanoagent. As designed, an antibody-modified nanoagent (designated Pt@PDA-c) with a plasmonic blackbody-like NIR absorption and superior photothermal conversion efficiency (71.3%) selectively targeted and killed CXCR4-overexpressing HCC (HepG2) cells, which was validated in in vitro experiments. The targeted accumulation properties of Pt@PDA-c in vivo were previously recognized by demonstrating effective NIR-II PA imaging and photothermal ablation in a subcutaneous HCC mouse model. Subsequently, with real-time quantitative guidance by PACT for the accurate diagnosis of intraabdominal SHCC (approximately 4 mm depth), the effective and noninvasive photothermal ablation of SHCCs was successfully demonstrated in an orthotopic tumor-bearing mouse model without damaging adjacent liver tissues. These results show a great potential of NIR-II PACT-guided noninvasive photothermal therapy as an innovative phototheranostic approach and expand the biomedical applications of melanin-mimic materials. STATEMENT OF SIGNIFICANCE: In this paper, we report the first diagnostic NIR-II photoacoustic computed tomography (PACT)-guided noninvasive photothermal ablation of small hepatocellular carcinoma (SHCC) located in deep tissues in orthotopic tumor-bearing mice; this process is empowered by a polydopamine-based melanin-mimic tumor-targeting nanoagent doped with plasmonic platinum that provides superior NIR-II (1064 nm) absorption and photothermal conversion efficiency of 71.3%. Following surface modification with anti-CXCR4 antibodies, the nanoagent (namely Pt@PDA-c) can selectively target CXCR4-overexpressed HepG2 carcinoma cells and tumor lesions, and serve as the theranostic agent for both NIR-II PACT-based diagnosis of orthotopic SHCC (diameter less than 5 mm) and efficient NIR-II PTT in vivo. This study may also extend the potential of melanin-derived blackbody materials for optical-biomedical and water distillation applications.
Collapse
|
41
|
Duan Y, Cheng Z, Qiu T, Wen L, Xiong K. Spherical-matching hyperbolic-array photoacoustic computed tomography. JOURNAL OF BIOPHOTONICS 2021; 14:e202100023. [PMID: 33729687 DOI: 10.1002/jbio.202100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Linear-array photoacoustic computed tomography (LA-PACT), for its flexibility and simplicity, has great potential in providing anatomical and functional information of tissues. However, the limited coverage view impedes the LA-PACT obtaining high-quality images. In this study, a photoacoustic tomographic system with a hyperbolic-array transducer was developed for stereoscopic PA imaging of carotid artery. The hyperbolic-array PACT increases the receiving sensitivity for PA signal detection due to its transducer's geometric structure matching with the spherical wave. The control phantom experiment shows that the proposed system can expand the angular coverage of ∼1/3 more than that of the LA-PACT system, and the volumetric PA images of rat's carotid artery demonstrates the potential of the system for carotid artery imaging. Furthermore, volumetric imaging of the human forearm verifies that the system has significant capability in human imaging, which indicates that it has bright prospect for assisting diagnosis in the vascular disease.
Collapse
Affiliation(s)
- Yihao Duan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tengsen Qiu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Liewei Wen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
42
|
Deán-Ben XL, Razansky D. Optoacoustic imaging of the skin. Exp Dermatol 2021; 30:1598-1609. [PMID: 33987867 DOI: 10.1111/exd.14386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|