1
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2025; 10:e10698. [PMID: 39801760 PMCID: PMC11711218 DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
The tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross-linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Abdullah Al‐Danakh
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xinqing Zhu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Dan Feng
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Linlin Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haotian Wu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingying Li
- Department of Discipline ConstructionDalian Medical UniversityDalianChina
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
| | - Qiwei Chen
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Zhongda Hospital, Medical School Advanced Institute Life HealthSoutheast UniversityNanjingChina
| | - Deyong Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of SurgeryHealinghands ClinicDalianChina
| |
Collapse
|
2
|
Hernandez DS, Michelson KE, Romanovicz D, Ritschdorff ET, Shear JB. Laser-imprinting of micro-3D printed protein hydrogels enables real-time independent modification of substrate topography and elastic modulus. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2022; 28:e00250. [PMID: 37601117 PMCID: PMC10438846 DOI: 10.1016/j.bprint.2022.e00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Independent control over the Young's modulus and topography of a hydrogel cell culture substrate is necessary to characterize how attributes of its adherent surface affect cellular responses. Arbitrary, real-time manipulation of these parameters at the micron scale would further provide cellular biologists and bioengineers with the tools to study and control numerous highly dynamic behaviors including cellular adhesion, motility, metastasis, and differentiation. Although physical, chemical, thermal, and light-based strategies have been developed to influence Young's modulus and topography of hydrogel substrates, independent control of these physical attributes has remained elusive, spatial resolution is often limited, and features commonly must be pre-patterned. We recently reported a strategy in which biomaterials having specified three-dimensional (3D) morphologies are micro-3D printed in a two-step process: laser-scanning bioprinting of a protein-based hydrogel, followed by biocompatible hydrogel re-scanning to create microscale imprinted features at user-defined times. In this approach, a pulsed near-infrared laser beam is focused within the printed hydrogel to promote matrix contraction through multiphoton crosslinking, where scanning the laser focus projects a user-defined topographical pattern on the surface without subjecting the hydrogel-solution interface to damaging light intensities. Here, we extend this strategy, demonstrating the ability to decouple dynamic topographical changes from changes in hydrogel Young's modulus at the substrate surface by increasing the isolation distance between the surface and re-scanning planes. Using atomic force microscopy, we show that robust topographic changes can be imposed without altering the Young's modulus measured at the substrate surface by scanning at a depth of greater than ~6 μm. Transmission electron microscopy of hydrogel thin sections reveals changes to hydrogel porosity and density distribution within scanned regions, and that such changes to the hydrogel matrix are highly localized to regions of laser exposure. These results represent valuable new capabilities for deconvolving the effects of substrate dynamic physical attributes on the behavior of adherent cells.
Collapse
Affiliation(s)
| | | | - Dwight Romanovicz
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Eric T. Ritschdorff
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Jason B. Shear
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
3
|
Sun C, Yang X, Wang T, Cheng M, Han Y. Ovarian Biomechanics: From Health to Disease. Front Oncol 2022; 11:744257. [PMID: 35070963 PMCID: PMC8776636 DOI: 10.3389/fonc.2021.744257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Biomechanics is a physical phenomenon which mainly related with deformation and movement of life forms. As a mechanical signal, it participates in the growth and development of many tissues and organs, including ovary. Mechanical signals not only participate in multiple processes in the ovary but also play a critical role in ovarian growth and normal physiological functions. Additionally, the involvement of mechanical signals has been found in ovarian cancer and other ovarian diseases, prompting us to focus on the roles of mechanical signals in the process of ovarian health to disease. This review mainly discusses the effects and signal transduction of biomechanics (including elastic force, shear force, compressive stress and tensile stress) in ovarian development as a regulatory signal, as well as in the pathological process of normal ovarian diseases and cancer. This review also aims to provide new research ideas for the further research and treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xiaoxu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Tianxiao Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Benítez L, Barberis L, Vellón L, Condat CA. Understanding the influence of substrate when growing tumorspheres. BMC Cancer 2021; 21:276. [PMID: 33722191 PMCID: PMC7962376 DOI: 10.1186/s12885-021-07918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. The model also shows why substratum stiffness has a deep influence on the behavior of cancer stem cells, stiffer substrates leading to a larger proportion of asymmetric doublings. A specific condition for the growth of the cancer stem cell number is also obtained Supplementary Information The online version contains supplementary material available at (10.1186/s12885-021-07918-1).
Collapse
Affiliation(s)
- Lucía Benítez
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| | - Lucas Barberis
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina.
| | - Luciano Vellón
- Instituto de Biología y Medicina Experimental, CONICET., Buenos Aires, C1428 ADN, Argentina
| | - Carlos A Condat
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| |
Collapse
|
5
|
Jenkins TL, Little D. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. NPJ Regen Med 2019; 4:15. [PMID: 31263573 PMCID: PMC6597555 DOI: 10.1038/s41536-019-0076-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering often uses synthetic scaffolds to direct cell responses during engineered tissue development. Since cells reside within specific niches of the extracellular matrix, it is important to understand how the matrix guides cell response and then incorporate this knowledge into scaffold design. The goal of this review is to review elements of cell-matrix interactions that are critical to informing and evaluating cellular response on synthetic scaffolds. Therefore, this review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional (2D) and three dimensional (3D) synthetic scaffolds. Variations in fiber diameter, alignment, and scaffold porosity guide stem cells toward different lineages. Cells generally exhibit rounded morphology on nanofibers, randomly oriented fibers, and low-porosity scaffolds. Conversely, cells exhibit elongated, spindle-shaped morphology on microfibers, aligned fibers, and high-porosity scaffolds. Cells migrate with higher velocities on nanofibers, aligned fibers, and high-porosity scaffolds but migrate greater distances on microfibers, aligned fibers, and highly porous scaffolds. Incorporating relevant biomimetic factors into synthetic scaffolds destined for specific tissue application could take advantage of and further enhance these responses.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Dianne Little
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
6
|
Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat Commun 2019; 10:2797. [PMID: 31243273 PMCID: PMC6594963 DOI: 10.1038/s41467-019-10729-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Collective cell migration occurs in many patho-physiological states, including wound healing and invasive cancer growth. The integrity of the expanding epithelial sheets depends on extracellular cues, including cell-cell and cell-matrix interactions. We show that the nano-scale topography of the extracellular matrix underlying epithelial cell layers can strongly affect the speed and morphology of the fronts of the expanding sheet, triggering partial and complete epithelial-mesenchymal transitions (EMTs). We further demonstrate that this behavior depends on the mechano-sensitivity of the transcription regulator YAP and two new YAP-mediated cross-regulating feedback mechanisms: Wilms Tumor-1-YAP-mediated downregulation of E-cadherin, loosening cell-cell contacts, and YAP-TRIO-Merlin mediated regulation of Rho GTPase family proteins, enhancing cell migration. These YAP-dependent feedback loops result in a switch-like change in the signaling and the expression of EMT-related markers, leading to a robust enhancement in invasive cell spread, which may lead to a worsened clinical outcome in renal and other cancers. Reorganisation of the extracellular matrix (ECM) controls processes involving epithelial-mesenchymal transition (EMT). Here, the authors show that EMT occurring in epithelial cells on a fabricated nano-engineered cell adhesion surface is triggered by mechanical cues from the ECM.
Collapse
|
7
|
Paul CD, Hruska A, Staunton JR, Burr HA, Daly KM, Kim J, Jiang N, Tanner K. Probing cellular response to topography in three dimensions. Biomaterials 2019; 197:101-118. [PMID: 30641262 PMCID: PMC6390976 DOI: 10.1016/j.biomaterials.2019.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
Biophysical aspects of in vivo tissue microenvironments include microscale mechanical properties, fibrillar alignment, and architecture or topography of the extracellular matrix (ECM). These aspects act in concert with chemical signals from a myriad of diverse ECM proteins to provide cues that drive cellular responses. Here, we used a bottom-up approach to build fibrillar architecture into 3D amorphous hydrogels using magnetic-field driven assembly of paramagnetic colloidal particles functionalized with three types of human ECM proteins found in vivo. We investigated if cells cultured in matrices comprised of fibrils of the same size and arranged in similar geometries will show similar behavior for each of the ECM proteins tested. We were able to resolve spatial heterogeneities in microscale mechanical properties near aligned fibers that were not observed in bulk tissue mechanics. We then used this platform to examine factors contributing to cell alignment in response to topographical cues in 3D laminin-rich matrices. Multiple human cell lines extended protrusions preferentially in directions parallel or perpendicular to aligned fibers independently of the ECM coating. Focal adhesion proteins, as measured by paxillin localization, were mainly diffuse in the cytoplasm, with few puncta localized at the protrusions. Integrin β1 and fascin regulated protrusion extension but not protrusion alignment. Myosin II inhibition did not reduce observed protrusion length. Instead, cells with reduced myosin II activity generated protrusions in random orientations when cultured in hydrogels with aligned fibers. Similarly, myosin II dependence was observed in vivo, where cells no longer aligned along the abluminal surfaces of blood vessels upon treatment with blebbistatin. These data suggest that myosin II can regulate sensing of topography in 3D engineered matrices for both normal and transformed cells.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Alex Hruska
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Hannah A Burr
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kathryn M Daly
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jiyun Kim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Nancy Jiang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|
8
|
Chen S, Hourwitz MJ, Campanello L, Fourkas JT, Losert W, Parent CA. Actin Cytoskeleton and Focal Adhesions Regulate the Biased Migration of Breast Cancer Cells on Nanoscale Asymmetric Sawteeth. ACS NANO 2019; 13:1454-1468. [PMID: 30707556 PMCID: PMC7159974 DOI: 10.1021/acsnano.8b07140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical guidance from the underlying matrix is a key regulator of cancer invasion and metastasis. We explore the effects of surface topography on the migration phenotype of multiple breast cancer cell lines using aligned nanoscale ridges and asymmetric sawtooth structures. Both benign and metastatic breast cancer cells preferentially move parallel to nanoridges, with enhanced speeds compared to flat surfaces. In contrast, asymmetric sawtooth structures unidirectionally bias the movement of breast cancer cells in a cell-type-dependent manner. Quantitative analysis shows that the level of bias in cell migration increases when cells move with higher speeds or with higher directional persistence. Live-cell imaging studies further reveal that actin polymerization waves are unidirectionally guided by the sawteeth in the same direction as the cell motion. High-resolution fluorescence imaging and scanning electron microscopy studies reveal that two breast cancer cell lines with opposite migrational profiles exhibit profoundly different cell cortical plasticity and focal adhesion patterns. These results suggest that the overall migration response of cancer cells to surface topography is directly related to the underlying cytoskeletal architectures and dynamics, which are regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leonard Campanello
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Kim J, Leem J, Kim HN, Kang P, Choi J, Haque MF, Kang D, Nam S. Uniaxially crumpled graphene as a platform for guided myotube formation. MICROSYSTEMS & NANOENGINEERING 2019; 5:53. [PMID: 31700672 PMCID: PMC6826050 DOI: 10.1038/s41378-019-0098-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/05/2019] [Accepted: 08/19/2019] [Indexed: 05/23/2023]
Abstract
Graphene, owing to its inherent chemical inertness, biocompatibility, and mechanical flexibility, has great potential in guiding cell behaviors such as adhesion and differentiation. However, due to the two-dimensional (2D) nature of graphene, the microfabrication of graphene into micro/nanoscale patterns has been widely adopted for guiding cellular assembly. In this study, we report crumpled graphene, i.e., monolithically defined graphene with a nanoscale wavy surface texture, as a tissue engineering platform that can efficiently promote aligned C2C12 mouse myoblast cell differentiation. We imparted out-of-plane, nanoscale crumpled morphologies to flat graphene via compressive strain-induced deformation. When C2C12 mouse myoblast cells were seeded on the uniaxially crumpled graphene, not only were the alignment and elongation promoted at a single-cell level but also the differentiation and maturation of myotubes were enhanced compared to that on flat graphene. These results demonstrate the utility of the crumpled graphene platform for tissue engineering and regenerative medicine for skeletal muscle tissues.
Collapse
Affiliation(s)
- Junghoon Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Juyoung Leem
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792 Republic of Korea
| | - Pilgyu Kang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Mechanical Engineering, George Mason University, Fairfax, VA 22030 USA
| | - Jonghyun Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, Suwon, 16499 Republic of Korea
| | - SungWoo Nam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
10
|
Biomechanical interplay between anisotropic re-organization of cells and the surrounding matrix underlies transition to invasive cancer spread. Sci Rep 2018; 8:14210. [PMID: 30242256 PMCID: PMC6155084 DOI: 10.1038/s41598-018-32010-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023] Open
Abstract
The root cause of cancer mortality and morbidity is the metastatic spread of the primary tumor, but underlying mechanisms remain elusive. Here we investigate biomechanical interactions that may accompany invasive spread of melanoma cells. We find that metastatic cells can exert considerable traction forces and modify local collagen organization within a 3D matrix. When this re-organization is mimicked using a nano-fabricated model of aligned extracellular matrix fibers, metastatic cells, including less invasive melanoma cells, were in turn induced to align, elongate and migrate, guided by the local ridge orientations. Strikingly, we found that this aligned migration of melanoma cells was accompanied by long-range regulation of cytoskeletal remodeling that show anisotropic stiffening in the direction of fiber orientation suggestive of a positive feedback between ECM fiber alignment and forces exerted by cancer cells. Taken together, our findings suggest that the invasive spread of cancer cells can be defined by complex interplay with the surrounding matrix, during which they both modify the matrix and use the matrix alignment as a persistent migration cue, leading to more extensive and rapid invasive spread.
Collapse
|
11
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Kim HN, Jang KJ, Shin JY, Kang D, Kim SM, Koh I, Hong Y, Jang S, Kim MS, Kim BS, Jeong HE, Jeon NL, Kim P, Suh KY. Artificial Slanted Nanocilia Array as a Mechanotransducer for Controlling Cell Polarity. ACS NANO 2017; 11:730-741. [PMID: 28051852 DOI: 10.1021/acsnano.6b07134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a method to induce cell directional behavior using slanted nanocilia arrays. NIH-3T3 fibroblasts demonstrated bidirectional polarization in a rectangular arrangement on vertical nanocilia arrays and exhibited a transition from a bidirectional to a unidirectional polarization pattern when the angle of the nanocilia was decreased from 90° to 30°. The slanted nanocilia guided and facilitated spreading by allowing the cells to contact the sidewalls of the nanocilia, and the directional migration of the cells opposed the direction of the slant due to the anisotropic bending stiffness of the slanted nanocilia. Although the cells recognized the underlying anisotropic geometry when the nanocilia were coated with fibronectin, collagen type I, and Matrigel, the cells lost their directionality when the nanocilia were coated with poly-d-lysine and poly-l-lysine. Furthermore, although the cells recognized geometrical anisotropy on fibronectin coatings, pharmacological perturbation of PI3K-Rac signaling hindered the directional elongation of the cells on both the slanted and vertical nanocilia. Furthermore, myosin light chain II was required for the cells to obtain polarized morphologies. These results indicated that the slanted nanocilia array provided anisotropic contact guidance cues to the interacting cells. The polarization of cells was controlled through two steps: the recognition of underlying geometrical anisotropy and the subsequent directional spreading according to the guidance cues.
Collapse
Affiliation(s)
- Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul 136-791, Republic of Korea
| | - Kyung-Jin Jang
- Emulate Inc. , Boston, Massachusetts 02210, United States
| | - Jung-Youn Shin
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University , Suwon 443-749, Republic of Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University , Incheon 406-772, Republic of Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Yoonmi Hong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Segeun Jang
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Min Sung Kim
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Republic of Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| |
Collapse
|
13
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Ricotti L, Gori G, Cei D, Costa J, Signore G, Ahluwalia A. Polymeric Microporous Nanofilms as Smart Platforms for in Vitro Assessment of Nanoparticle Translocation and Caco-2 Cell Culture. IEEE Trans Nanobioscience 2016; 15:689-696. [PMID: 27576259 DOI: 10.1109/tnb.2016.2603191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study of nanomaterial translocation across epithelial barriers is often hindered by the low permeability of transwell membranes to nanoparticles. To address this issue ultra-thin poly(L-lactic acid) nanofilms with zero tortuosity micropores were developed for use in nanoparticle passage tests. In this study we demonstrate that microporous polymeric nanofilms allow a significantly higher passage of silver nanoparticles in comparison with commercial membranes normally used in transwell inserts. A reliable procedure for collecting free-standing nanofilms which enables their manipulation and use in lab-on-chip systems is described. We also demonstrate the cytocompatibility of porous nanofilms and their ability to sustain the adhesion and proliferation of Caco-2 cells. Ultra-thin microporous membranes show promise as low-cost nanomaterial screening tools and may be used as matrices for the development of bioengineered systems for mimicking the intestinal epithelium.
Collapse
|
15
|
Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, Kong D, Liu X. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett 2016; 12:1355-1360. [PMID: 27446437 PMCID: PMC4950051 DOI: 10.3892/ol.2016.4757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/26/2016] [Indexed: 01/02/2023] Open
Abstract
The majority of cancer stem cells exist in the G0, or quiescent phase of the cell cycle. However, the cells can escape quiescence following routine radiotherapy and chemotherapy, resulting in tumor recurrence. Presently, achieving the accurate regulation of cancer stem cell growth in order to study a specific state, including the quiescent (mostly G0 or G1 phase), proliferative (mostly S phase) or differential (mostly G2/M phase) states, can be challenging. This makes the determination of cell cycle state-specific characteristics and analysis of potential intervention treatments difficult, particularly for quiescent cells. Breast cancer stem cells were cultured on a soft or hard agar matrix surface in the presence or absence of stem cell growth factors. Cells could be successfully limited in either the quiescent, proliferative or differentiated states. These findings provide a foundation for further study of the cell cycle in breast cancer stem cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiangming Liu
- Department of Esophageal Neoplasms, Cancer Hospital of Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Lili Li
- Department of Orthopedics, Cancer Hospital of Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhigang Cui
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Yuan Gao
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Di Kong
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
16
|
Horzum U, Ozdil B, Pesen-Okvur D. Differentiation of Normal and Cancer Cell Adhesion on Custom Designed Protein Nanopatterns. NANO LETTERS 2015; 15:5393-5403. [PMID: 26132305 DOI: 10.1021/acs.nanolett.5b01785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell adhesion to the extracellular matrix is deregulated in metastasis. However, traditional surfaces used to study cell adhesion do not faithfully mimic the in vivo microenvironment. Electron beam lithography (EBL) is able to generate customized protein nanopatterns. Here, we used an EBL-based green lithography approach to fabricate homogeneous and gradient, single (fibronectin, K-casein) and double (fibronectin, laminin) active component protein nanopatterns with micrometer scale spacing to investigate differences in adhesion of breast cancer cells (BCC) and normal mammary epithelial cells (NMEC). Our results showed that as expected, in contrast to NMEC, BCC were plastic: they tolerated nonadhesion promoting regions, adapted to flow and exploited gradients better. In addition, the number of focal adhesions but not their area appeared to be the dominant parameter for regulation of cell adhesion. Our findings also demonstrated that custom designed protein nanopatterns, which can properly mimic the in vivo microenvironment, enable realistic distinction of normal and cancerous cell adhesion.
Collapse
Affiliation(s)
- Utku Horzum
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| | - Berrin Ozdil
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| | - Devrim Pesen-Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| |
Collapse
|
17
|
Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. BIOMICROFLUIDICS 2015; 9:024115. [PMID: 25945141 PMCID: PMC4401807 DOI: 10.1063/1.4917508] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/30/2015] [Indexed: 05/07/2023]
Abstract
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.
Collapse
Affiliation(s)
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul, South Korea
| | - Sun-Kyoung Im
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul, South Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University , Seoul, South Korea
| | | | | |
Collapse
|
18
|
Macadangdang J, Lee HJ, Carson D, Jiao A, Fugate J, Pabon L, Regnier M, Murry C, Kim DH. Capillary force lithography for cardiac tissue engineering. J Vis Exp 2014. [PMID: 24962161 DOI: 10.3791/50039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide(1). Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart's extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale(2). Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering(3-5). A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling(2). Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart(6-9). Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)(8) and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function(10-14). Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively(15,16). Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS(2).
Collapse
Affiliation(s)
| | - Hyun Jung Lee
- Department of Bioengineering, University of Washington
| | - Daniel Carson
- Department of Bioengineering, University of Washington
| | - Alex Jiao
- Department of Bioengineering, University of Washington
| | - James Fugate
- Department of Pathology, University of Washington
| | - Lil Pabon
- Department of Pathology, University of Washington
| | | | | | - Deok-Ho Kim
- Department of Bioengineering, University of Washington;
| |
Collapse
|
19
|
Kim P, Yuan A, Nam KH, Jiao A, Kim DH. Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering. Biofabrication 2014; 6:024112. [PMID: 24717683 DOI: 10.1088/1758-5082/6/2/024112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although synthetic polymers are desirable in tissue engineering applications for the reproducibility and tunability of their properties, synthetic small diameter vascular grafts lack the capability to endothelialize in vivo. Thus, synthetically fabricated biodegradable tissue scaffolds that reproduce important aspects of the extracellular environment are required to meet the urgent need for improved vascular grafting materials. In this study, we have successfully fabricated well-defined nanopatterned cell culture substrates made of a biodegradable composite hydrogel consisting of poly(ethylene glycol) dimethacrylate (PEGDMA) and gelatin methacrylate (GelMA) by using UV-assisted capillary force lithography. The elasticity and degradation rate of the composite PEG-GelMA nanostructures were tuned by varying the ratios of PEGDMA and GelMA. Human umbilical vein endothelial cells (HUVECs) cultured on nanopatterned PEG-GelMA substrates exhibited enhanced cell attachment compared with those cultured on unpatterned PEG-GelMA substrates. Additionally, HUVECs cultured on nanopatterned PEG-GelM substrates displayed well-aligned, elongated morphology similar to that of native vascular endothelial cells and demonstrated rapid and directionally persistent migration. The ability to alter both substrate stiffness and degradation rate and culture endothelial cells with increased elongation and alignment is a promising next step in recapitulating the properties of native human vascular tissue for tissue engineering applications.
Collapse
Affiliation(s)
- Peter Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Santoro F, Schnitker J, Panaitov G, Offenhäusser A. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. NANO LETTERS 2013; 13:5379-5384. [PMID: 24088026 DOI: 10.1021/nl402901y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The quality of the recording and stimulation capabilities of multielectrode arrays (MEAs) substantially depends on the interface properties and the coupling of the cell with the underlying electrode area. The purpose of this work was the investigation of a three-dimensional nanointerface, enabling simultaneous guidance and recording of electrogenic cells (HL-1) by utilizing nanostructures with a mushroom shape on MEAs.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
21
|
Kshitiz, Park J, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb) 2012; 4:1008-18. [PMID: 23077731 PMCID: PMC3476065 DOI: 10.1039/c2ib20080e] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The phenotypic expression and function of stem cells are regulated by their integrated response to variable microenvironmental cues, including growth factors and cytokines, matrix-mediated signals, and cell–cell interactions. Recently, growing evidence suggests that matrix-mediated signals include mechanical stimuli such as strain, shear stress, substrate rigidity and topography, and these stimuli have a more profound impact on stem cell phenotypes than had previously been recognized, e.g. self-renewal and differentiation through the control of gene transcription and signaling pathways. Using a variety of cell culture models enabled by micro and nanoscale technologies, we are beginning to systematically and quantitatively investigate the integrated response of cells to combinations of relevant mechanobiological stimuli. This paper reviews recent advances in engineering physical stimuli for stem cell mechanobiology and discusses how micro- and nanoscale engineered platforms can be used to control stem cell niche environments and regulate stem cell fate and function.
Collapse
Affiliation(s)
- Kshitiz
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim DH, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. ACTA ACUST UNITED AC 2012; 197:351-60. [PMID: 22547406 PMCID: PMC3341161 DOI: 10.1083/jcb.201108062] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.
Collapse
Affiliation(s)
- Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
23
|
Kim HN, Kang DH, Kim MS, Jiao A, Kim DH, Suh KY. Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng 2012; 40:1339-55. [PMID: 22258887 PMCID: PMC5439960 DOI: 10.1007/s10439-012-0510-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/04/2012] [Indexed: 12/23/2022]
Abstract
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.
Collapse
Affiliation(s)
- Hong Nam Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
| | - Do-Hyun Kang
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
| | - Min Sung Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
24
|
|