1
|
Sharma A, Ojha S, Shelke A, Habib A. Scanning acoustic microscopy for biomechanical characterization of reindeer antler using singular spectral analysis. Bone 2025; 196:117475. [PMID: 40209972 DOI: 10.1016/j.bone.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Scanning Acoustic Microscopy (SAM) has become a vital tool in materials science and biology, allowing for non-destructive and non-invasive analysis of biological specimens and bio-inspired materials. Its deep-penetrating imaging capabilities enable a broad range of applications. This study combines SAM with Singular Spectral Analysis (SSA) to enhance signal processing and extract key data, particularly acoustic impedance. Reindeer antlers, known for their rapid growth and unique mechanical properties, were chosen as a focus for this method. SAM was used to quantify the specific acoustic impedance, longitudinal stiffness, bulk modulus, and Young's modulus of the material at three orientations (0°, 45°, and 90°). This analysis provides a comprehensive understanding of the directional dependence of its structural behavior, highlighting its orthotropic nature. By analyzing cross-sections along three axes, this study reveals the orthotropic biomechanical properties of reindeer antlers, offering a systematic approach to characterizing biological materials. Their unique strength, resilience, and rapid growth highlight their potential as a sustainable and innovative biomaterial for bioengineering and advanced composites.
Collapse
Affiliation(s)
- Adarsh Sharma
- Department of Physics, Indian Institute of Technology Guwahati, India
| | - Shivam Ojha
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Amit Shelke
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Anowarul Habib
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
2
|
Kodama S, Mita H, Tamura N, Koyama D, Matsukawa M. Bone mineral density and hydroxyapatite alignment in leg cortical bone influence on ultrasound velocity. JASA EXPRESS LETTERS 2025; 5:032001. [PMID: 40063088 DOI: 10.1121/10.0036082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Bone diagnosis using x-ray techniques, such as computed tomography and dual-energy x-ray absorptiometry, can evaluate bone mineral density (BMD) and microstructure but does not provide elastic properties. This study investigated the ultrasonic properties of racehorse leg cortical bone, focusing on the relationship between wave velocity, BMD, and hydroxyapatite (HAp) crystallite alignment. The results showed a strong correlation between wave velocity and BMD, suggesting that quantitative ultrasound-obtained wave velocity is primarily influenced by BMD, followed by the HAp alignment direction.
Collapse
Affiliation(s)
- Shuta Kodama
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hiroshi Mita
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, , , , ,
| | - Norihisa Tamura
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, , , , ,
| | - Daisuke Koyama
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Mami Matsukawa
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
3
|
Agarwal K, Ojha S, Dalmo RA, Seternes T, Shelke A, Melandsø F, Habib A. Uncertainty analysis of Altantic salmon fish scale's acoustic impedance using 30 MHz C-Scan measurements. ULTRASONICS 2024; 142:107360. [PMID: 38924961 DOI: 10.1016/j.ultras.2024.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Understanding the biomechanics of fish scales is crucial for their survival and adaptation. Ultrasonic C-scan measurements offer a promising tool for non-invasive characterization, however, existing literature lacks uncertainty analysis while evaluating acoustic impedance. This article presents an innovative integration of uncertainty into the analytical framework for estimating stochastic specific acoustic impedance of salmon fish scale through ultrasonic C-scans. In this study, the various types of uncertainties arising due to variation in biological structures and aging, measurement errors, and analytical noises are combined together in the form of uncertain reflectance. This uncertain reflectance possesses a distribution which is derived using a theory of waves by assuming suitable stochasticity in wavenumber. This distribution helps in development of a stochastic-specific acoustic impedance map of the scales which demonstrates the possible deviations of impedance from mean value depending on uncertainties. Furthermore, maximal overlap discrete wavelet transform is employed for efficient time-frequency deconvolution and Kriging for spatial data interpolation to enhance the robustness of the impedance map, especially in scenarios with limited data. The framework is validated by accurately estimating the specific acoustic impedance of well-known materials like a pair of target medium (polyvinylidene fluoride) and reference medium (polyimide), achieving over 90% accuracy. Moreover, the accuracy of the framework is found superior when compared with an established approach in the literature. Applying the framework to salmon fish scales, we obtain an average specific acoustic impedance of 3.1 MRayl along with a stochastic map visualizing the potential variations arising from uncertainties. Overall, this work paves the way for more accurate and robust studies in fish scale biomechanics by incorporating a comprehensive uncertainty analysis framework.
Collapse
Affiliation(s)
- Komal Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Shivam Ojha
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Tore Seternes
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Amit Shelke
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Frank Melandsø
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anowarul Habib
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
4
|
Sellman L, Tong X, Burton IS, Kröger H. Retrospective Characterization of Bone Histomorphometric Findings in Clinical Patient Specimens. J Bone Metab 2024; 31:132-139. [PMID: 38886970 PMCID: PMC11184156 DOI: 10.11005/jbm.2024.31.2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Bone histomorphometry provides comprehensive information on bone metabolism and microstructure. In this retrospective study, we aimed to obtain an overview of the typical indications, referring hospitals, and histomorphometric quantification-based diagnoses of the bone tissue in our histomorphometry laboratory, the only laboratory in Finland carrying out histomorphometric examination of clinical bone biopsies. METHODS Between January 1, 2005 and December 31, 2020, 553 clinical bone biopsies were sent to our histomorphometry laboratory for histomorphometric examination. The median age of the patients was 55 years (range, 0.2-89.9 years), 51% of them were males, and 18% comprised pediatric patients. We received bone biopsy specimens from 23 hospitals or healthcare units. The majority of the samples we sent by nephrologists. RESULTS The most common bone biopsy indications were suspicion of renal osteodystrophy (ROD), unknown bone turnover status in osteoporosis, and several or untypical fractures. The most common quantitative bone histomorphometry-based diagnosis was ROD. CONCLUSIONS This study provides information on the clinical application of bone histomorphometry in Finland. Precise and quantitative ROD evaluation is the most common indication for bone histomorphometry, being crucial in clinical decision-making and targeted treatment of this patient group.
Collapse
Affiliation(s)
- Linnea Sellman
- Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern Finland, Kuopio,
Finland
| | - Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern Finland, Kuopio,
Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern Finland, Kuopio,
Finland
- Hospital Nova of Central Finland, Jyväskylä,
Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern Finland, Kuopio,
Finland
- Department of Orthopaedics, Traumatology, and Hand Surgery, Kuopio University Hospital, Kuopio,
Finland
| |
Collapse
|
5
|
Laakso S, Xiaoyu T, Blouin S, Keplinger P, Välimäki VV, Kröger H, Mäkitie O, Hartmann MA. Bone Tissue Evaluation Indicates Abnormal Mineralization in Patients with Autoimmune Polyendocrine Syndrome Type I: Report on Three Cases. Calcif Tissue Int 2023; 112:675-682. [PMID: 36944707 DOI: 10.1007/s00223-023-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Autoimmune polyendocrine syndrome type-1 (APS1) is characterized by autoimmune manifestations affecting different organs from early childhood on. Immunological abnormalities, the resulting endocrinopathies, and their treatments may compromise bone health. For the first time in APS1, we analyzed transiliac bone biopsy samples by bone histomorphometry and quantitative backscattered electron imaging in three adult patients (female P1, 38 years; male P2, 47 years; male P3, 25 years). All had biallelic mutations in the autoimmune regulator gene and in addition to endocrinopathies, also significant bone fragility. Histomorphometry showed bone volume in the lower normal range for P1 (BV/TV, - 0.98 SD) and P3 (- 1.34 SD), mainly due to reduced trabecular thickness (TbTh, - 3.63 and - 2.87 SD). In P1, osteoid surface was low (OS/BS, - 0.96 SD); active osteoblasts and double labeling were seen only on cortical bone. P3 showed a largely increased bone turnover rate (BFR/BV, + 4.53 SD) and increased mineralization lag time (Mlt, + 3.40 SD). Increased osteoid surface (OS/BS, + 2.03 and + 4.71 SD for P2 and P3) together with a large proportion of lowly mineralized bone area (Trab CaLow, + 2.22 and + 9.81 SD for P2 and P3) and focal mineralization defects were consistent with abnormal mineralization. In all patients, the density and area of osteocyte lacunae in cortical and trabecular bone were similar to healthy adults. The bone tissue characteristics were variable and included decreased trabecular thickness, increased amount of osteoid, and abnormal mineralization which are likely to contribute to bone fragility in patients with APS1.
Collapse
Affiliation(s)
- Saila Laakso
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | - Tong Xiaoyu
- Department of Orthopedics, Kuopio Musculoskeletal Research Unit, University of Eastern Finland, and, Kuopio University Hospital, Kuopio, Finland
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Petra Keplinger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Ville-Valtteri Välimäki
- Department of Orthopedics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heikki Kröger
- Department of Orthopedics, Kuopio Musculoskeletal Research Unit, University of Eastern Finland, and, Kuopio University Hospital, Kuopio, Finland
| | - Outi Mäkitie
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
6
|
Hoerig C, Mamou J. Advanced Topics in Quantitative Acoustic Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1403:253-277. [PMID: 37495922 DOI: 10.1007/978-3-031-21987-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Quantitative acoustic microscopy (QAM) reconstructs two-dimensional (2D) maps of the acoustic properties of thin tissue sections. Using ultrahigh frequency transducers (≥ 100 MHz), unstained, micron-thick tissue sections affixed to glass are raster scanned to collect radiofrequency (RF) echo data and generate parametric maps with resolution approximately equal to the ultrasound wavelength. 2D maps of speed of sound, mass density, acoustic impedance, bulk modulus, and acoustic attenuation provide unique and quantitative information that is complementary to typical optical microscopy modalities. Consequently, many biomedical researchers have great interest in utilizing QAM instruments to investigate the acoustic and biomechanical properties of tissues at the micron scale. Unfortunately, current state-of-the-art QAM technology is costly, requires operation by a trained user, and is accompanied by substantial experimental challenges, many of which become more onerous as the transducer frequency is increased. In this chapter, typical QAM technology and standard image formation methods are reviewed. Then, novel experimental and signal processing approaches are presented with the specific goal of reducing QAM instrument costs and improving ease of use. These methods rely on modern techniques based on compressed sensing and sparsity-based deconvolution methods. Together, these approaches could serve as the basis of the next generation of QAM instruments that are affordable and provide high-resolution QAM images with turnkey solutions requiring nearly no training to operate.
Collapse
Affiliation(s)
- Cameron Hoerig
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Tong X, Turunen MJ, Burton IS, Kröger H. Generalized Uncoupled Bone Remodeling Associated With Delayed Healing of Fatigue Fractures. JBMR Plus 2022; 6:e10598. [PMID: 35309868 PMCID: PMC8914151 DOI: 10.1002/jbm4.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
Fatigue fractures in bones are common injuries with load‐bearing activities, during which the remodeling aimed at removing microdamage has been suggested to play a role in increasing related fracture risk. Much attention has been given to the uncoupling between osteoclastic bone resorption and osteoblastic osteogenesis in fatigue fracture cases; however, the underlying pathophysiologic mechanisms of impaired fracture healing are yet unknown. Here we report multiple fatigue fractures in a physically active woman receiving contraceptive pills for years. Her fracture healing was remarkably slow, although she has been otherwise healthy. The patient underwent bone biopsy of the iliac crest that showed remarkable peritrabecular fibrosis with increased osteoclastic bone resorption combined with relatively low bone formation. Analysis of bone biochemical composition revealed a more complex picture: First, notable declines in bone mineral content–based parameters indicating abnormal mineralization were evident in both cancellous and cortical bone. Second, there was elevation in mineral crystal size, perfection, and collagen maturity in her bone tissues from different anatomical sites. To our knowledge, this is the first report showing generalized uncoupling in bone remodeling, increased peritrabecular fibrosis, and bone compositional changes associated with delayed healing of fatigue fractures. These results may explain delayed healing of fatigue and stress fractures. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Mikael J Turunen
- Department of Applied Physics University of Eastern Finland Kuopio Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
- Department of Orthopaedics, Traumatology, and Hand Surgery Kuopio University Hospital Kuopio Finland
| |
Collapse
|
8
|
Piezoelectric and Opto-Acoustic Material Properties of Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:319-346. [DOI: 10.1007/978-3-030-91979-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Karbalaeisadegh Y, Muller M. Ultrasound Scattering in Cortical Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:177-196. [PMID: 35508876 PMCID: PMC10823499 DOI: 10.1007/978-3-030-91979-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent advances in imaging of bone microstructure have led to a growing recognition of the role of cortical microstructure in osteoporosis. It is now accepted that the assessment of the microstructure of cortical porosity is essential to assess bone mechanical competence and predict fracture risk. Cortical porosity affects the propagation of ultrasound waves because pores act as ultrasound scatterers. Scattering by the porosity is an opportunity that should be leveraged to extract quantitative information about cortical microstructure. Scattering by the pores affects a number of ultrasound parameters that should be quantified, including attenuation, backscatter coefficient, ultrasound diffusivity, and their frequency dependence. Measuring these ultrasound parameters and developing models that describe their dependence upon parameters of cortical microstructure is the key to solve inverse problems that will allow the quantitative assessment of cortical porosity and ultimately will improve the non-invasive ultrasound-based evaluation of bone mechanical competence and fracture risk. In this chapter, we present recent advances in measuring and modeling those parameters in cortical bone.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Brémaud L, Cai X, Brenner R, Grimal Q. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Biomech Model Mechanobiol 2021; 20:1509-1518. [PMID: 33884512 DOI: 10.1007/s10237-021-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
The mineralization level is heterogeneous in cortical bone extracellular matrix as a consequence of remodeling. Models of the effective elastic properties at the millimeter scale have been developed based on idealizations of the vascular pore network and matrix properties. Some popular models do not take into account the heterogeneity of the matrix. However, the errors on the predicted elasticity when the difference in elastic properties between osteonal and interstitial tissues is not modeled have not been quantified. This work provides an estimation of the maximum error. We compare the effective elasticity of a representative volume element (RVE) assuming (1) different elastic properties in osteonal and interstitial tissues vs. (2) average matrix properties. In order to account for the variability of bone microstructure, we use a collection of high resolution images of the pore network to build RVEs. In each RVE we assumed a constant osteonal wall thickness and we artificially varied this thickness between 35 and 140 [Formula: see text]m to create RVEs with different amounts of osteonal tissue. The homogenization problem was solved with a fast Fourier transform (FFT)-based numerical scheme. We found that the error depends on pore volume fraction and varies on average from 1 to [Formula: see text] depending on the assumed diameter of the osteons. The results suggest that matrix heterogeneity may be disregarded in cortical bone models in most practical cases.
Collapse
Affiliation(s)
- Luc Brémaud
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.,Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 75005, Paris, France
| | - Xiran Cai
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.,School of Information Science and Technology, ShanghaiTech University, Pudong District, 201210, Shanghai, China
| | - Renald Brenner
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 75005, Paris, France
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.
| |
Collapse
|
11
|
Xi L, Zhang Y, Gupta H, Terrill N, Wang P, Zhao T, Fang D. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone 2021; 143:115666. [PMID: 33007528 DOI: 10.1016/j.bone.2020.115666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Glucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited. Here, we combined multiscale experimental techniques (scanning small/wide-angle X-ray scattering/diffraction, backscattered electron imaging, and X-ray radiography) to investigate these changes in a mouse model (Crh-120/+) with chronic endogenous steroid production. Nanoscale degree of orientation, the size distribution of mineral nanocrystals in the bone matrix, the spatial map of mineralization on the femoral cortex, and the microporosity showed significant changes between GIOP and the control, especially in the endosteal cortex. Our work can provide insight into the altered structure-property relationship leading to lowered mechanical properties in GIOP. SIGNIFICANCE STATEMENT: As a natural nanocomposite with a hierarchical structure, bone undergoes a staggered load transfer mechanism at the nanoscale. Disease and age-related deterioration of bone mechanics are caused by changes in bone structure at multiple length scales. Although clinical tools such as dual-energy X-ray absorptiometry (DXA) can be used to assess the reduction of bone quantity in these cases, little is known about how altered bone quality in diseased bone can increase fracture risk. It is clear that high-resolution diagnostic techniques need to be developed to narrow the gap between the onset and diagnosis of fracture-related changes. Here, by combining several scanning probe methods on a mouse model (Crh-120/+) of glucocorticoid-induced osteoporosis (GIOP), we developed quantitative and spatially resolved maps of ultrastructural changes in collagen fibrils and mineral nanocrystals, mineralization distribution (microscale), and morphology (macroscale) across femoral osteoporotic bone. Our results indicate that the altered bone remodelling in GIOP leads to 1) heterogeneous bone structure and mineralization, 2) reduced degree of orientation of collagen fibrils and mineral nanocrystals, and 3) reduced length and increased thickness of mineral nanocrystals, which contribute to mechanical abnormalities. The combined multiscale experimental approach presented here will be used to understand musculoskeletal degeneration in aging and osteoporosis.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK.
| | - Yi Zhang
- Institution of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Himadri Gupta
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nick Terrill
- Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Pan Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Tian Zhao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
12
|
Nakamura T, Takata M, Michimoto I, Koyama D, Matsukawa M. Site dependence of ultrasonically induced electrical potentials in bone. JASA EXPRESS LETTERS 2021; 1:012002. [PMID: 36154087 DOI: 10.1121/10.0003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The success rate of low-intensity pulsed ultrasound (LIPUS) therapy depends on the bone site. However, the initial mechanism of physical stimulation by ultrasound and bone cellular response remains unclear. One possible physical stimulation is the induced electrical potentials due to the piezoelectricity. In this study, the output electrical potentials of ultrasound transducers made from bovine bones were investigated. Transducers made from the radius bone showed the largest electric potentials, followed by tibia, femur, and humerus. There was clear site dependence of the induced electric potentials of bone, in good accordance with the success rate of LIPUS therapy.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Mineaki Takata
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Itsuki Michimoto
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Daisuke Koyama
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| |
Collapse
|
13
|
Lainović T, Margueritat J, Martinet Q, Dagany X, Blažić L, Pantelić D, Rabasović MD, Krmpot AJ, Dehoux T. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomater 2020; 105:214-222. [PMID: 31988041 DOI: 10.1016/j.actbio.2020.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/10/2023]
Abstract
The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces. Here, we describe a microscope based on Brillouin light scattering (BLS) developed to probe the spectrum of the light scattered from tooth tissues, from which the mechanical properties (sound velocity, viscosity) can be inferred with a priori knowledge of the refractive index. BLS is an inelastic process that uses the scattering of light by acoustic waves in the GHz range. Our microscope thus reveals the mechanical properties at the micrometer scale without contact with the sample. BLS signals show significant differences between sound tissues and pathological lesions, and can be used to precisely delineate carious dentin. We also show maps of the sagittal and transversal planes of sound tubular dentin that reveal its anisotropic microstructure at 1 µm resolution. Our observations indicate that the collagen-based matrix of dentine is the main load-bearing structure, which can be considered as a fiber-reinforced composite. In the vicinity of polymeric tooth-filling materials, we observed the infiltration of the adhesive complex into the opened tubules of sound dentine. The ability to probe the quality of this interfacial layer could lead to innovative designs of biomaterials used for dental restorations in contemporary adhesive dentistry, with possible direct repercussions on decision-making during clinical work. STATEMENT OF SIGNIFICANCE: Mechanical properties of teeth can be altered by diet, age or diseases. Yet existing imaging modalities cannot reveal the micromechanics of the tooth. Here we developed a new type of microscope that uses the scattering of a laser light by naturally-occurring acoustic waves to probe mechanical changes in tooth tissues at a sub-micrometer scale without contact to the sample. We observe significant mechanical differences between healthy tissues and pathological lesions. The contrast in mechanical properties also reveals the microstructure of the polymer-dentin interfaces. We believe that this new development of laser spectroscopy is very important because it should lead to innovative designs of biomaterials used for dental restoration, and allow delineating precisely destructed dentin for minimally-invasive strategies.
Collapse
|
14
|
Makra A, Bost W, Kallo I, Horvath A, Fournelle M, Gyongy M. Enhancement of Acoustic Microscopy Lateral Resolution: A Comparison Between Deep Learning and Two Deconvolution Methods. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:136-145. [PMID: 31502966 DOI: 10.1109/tuffc.2019.2940003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scanning acoustic microscopy (SAM) provides high-resolution images of biological tissues. Since higher transducer frequencies limit penetration depth, image resolution enhancement techniques could help in maintaining sufficient lateral resolution without sacrificing penetration depth. Compared with existing SAM research, this work introduces two novelties. First, deep learning (DL) is used to improve lateral resolution of 180-MHz SAM images, comparing it with two deconvolution-based approaches. Second, 316-MHz images are used as ground truth in order to quantitatively evaluate image resolution enhancement. The samples used were mouse and rat brain sections. The results demonstrate that DL can closely approximate ground truth (NRMSE = 0.056 and PSNR = 28.4 dB) even with a relatively limited training set (four images, each smaller than 1 mm ×1 mm). This study suggests the high potential of using DL as a single image superresolution method in SAM.
Collapse
|
15
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Karbalaeisadegh Y, Yousefian O, Iori G, Raum K, Muller M. Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1015. [PMID: 31472561 PMCID: PMC6687498 DOI: 10.1121/1.5121010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/01/2023]
Abstract
While osteoporosis assessment has long focused on the characterization of trabecular bone, the cortical bone micro-structure also provides relevant information on bone strength. This numerical study takes advantage of ultrasound multiple scattering in cortical bone to investigate the effect of pore size and pore density on the acoustic diffusion constant. Finite-difference time-domain simulations were conducted in cortical microstructures that were derived from acoustic microscopy images of human proximal femur cross sections and modified by controlling the density (Ct.Po.Dn) ∈[5-25] pore/mm2 and size (Ct.Po.Dm) ∈[30-100] μm of the pores. Gaussian pulses were transmitted through the medium and the backscattered signals were recorded to obtain the backscattered intensity. The incoherent contribution of the backscattered intensity was extracted to give access to the diffusion constant D. At 8 MHz, significant differences in the diffusion constant were observed in media with different porous micro-architectures. The diffusion constant was monotonously influenced by either pore diameter or pore density. An increase in pore size and pore density resulted in a decrease in the diffusion constant (D =285.9Ct.Po.Dm-1.49, R2=0.989 , p=4.96×10-5,RMSE=0.06; D=6.91Ct.Po.Dn-1.01, R2=0.94, p=2.8×10-3 , RMSE=0.09), suggesting the potential of the proposed technique for the characterization of the cortical microarchitecture.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Omid Yousefian
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Gianluca Iori
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| |
Collapse
|
17
|
Rohrbach D, Mamou J. Autoregressive Signal Processing Applied to High-Frequency Acoustic Microscopy of Soft Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2054-2072. [PMID: 30222559 DOI: 10.1109/tuffc.2018.2869876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative acoustic microscopy (QAM) at frequencies exceeding 100 MHz has become an established imaging tool to depict acoustical and mechanical properties of soft biological tissues at microscopic resolutions. In this study, we investigate a novel autoregressive (AR) model to improve signal processing and parameter estimation and to test its applicability to QAM. The performance of the AR model for estimating acoustical parameters of soft tissues (i.e., acoustic impedance, speed of sound, and attenuation) was compared to the performance of the Hozumi model using simulated ultrasonic QAM signals and using experimentally measured signals from thin (i.e., 12 and ) sections of human lymph-node and pig-cornea tissue specimens. Results showed that the AR and Hozumi methods performed equally well (i.e., produced an estimation error of 0) in signals with low, linear attenuation in the tissue and high impedance contrast between the tissue and the coupling medium. However, the AR model outperformed the Hozumi model in estimation accuracy and stability (i.e., parameter error variation and number of outliers) in cases of 1) thin tissue-sample thickness and high tissue-sample speed of sound, 2) small impedance contrast between the tissue sample and the coupling medium, 3) high attenuation in the tissue sample, and 4) nonlinear attenuation in the tissue sample. Furthermore, the AR model allows estimating the exponent of nonlinear attenuation. The results of this study suggest that the AR model approach can improve current QAM by providing more reliable, quantitative, tissue-property estimates and also provides additional values of parameters related to nonlinear attenuation.
Collapse
|
18
|
Assessment of trabecular bone tissue elasticity with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater 2017; 74:106-110. [DOI: 10.1016/j.jmbbm.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022]
|
19
|
Tong X, Malo MKH, Burton IS, Jurvelin JS, Isaksson H, Kröger H. Histomorphometric and osteocytic characteristics of cortical bone in male subtrochanteric femoral shaft. J Anat 2017; 231:708-717. [PMID: 28786101 DOI: 10.1111/joa.12670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
The histomorphometric properties of the subtrochanteric femoral region have rarely been investigated. The aim of this study was to investigate the age-associated variations and regional differences of histomorphometric and osteocytic properties in the cortical bone of the subtrochanteric femoral shaft, and the association between osteocytic and histological cortical bone parameters. Undecalcified histological sections of the subtrochanteric femoral shaft were obtained from cadavers (n = 20, aged 18-82 years, males). They were cut and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with ×50 and ×100 magnification after identifying cortical bone boundaries using our previously validated method. Within cortical bone areas, only complete osteons with typical concentric lamellae and cement line were selected and measured. Osteocytic parameters of cortical bone were analyzed under phase contrast microscopy and epifluorescence within microscopic fields (0.55 mm2 for each). The cortical widths of the medial and lateral quadrants were significantly higher than other quadrants (P < 0.01). Osteonal area per cortical bone area was lower and cortical porosities were higher in the posterior quadrant than in the other quadrants (P < 0.05). Osteocyte lacunar number per cortical bone area was found higher in the young subjects (≤ 50 years) than in the older ones (> 50 years) both before and after adjustments for body height and weight (P < 0.05). Moreover, significant but low correlations were found between the cortical bone and osteocytic parameters (0.20 ≤ R2 ≤ 0.35, P < 0.05). It can be concluded that in healthy males, the cortical histomorphometric parameters differ between the anatomical regions of the subtrochanteric femoral shaft, and are correlated with the osteocytic parameters from the same site. These findings may be of use when discussing mechanisms that predispose patients to decreasing bone strength.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, Lund, Sweden
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Orthopaedics, Traumatology, and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Tong X, Burton IS, Jurvelin JS, Isaksson H, Kröger H. Iliac crest histomorphometry and skeletal heterogeneity in men. Bone Rep 2016; 6:9-16. [PMID: 28377976 PMCID: PMC5365273 DOI: 10.1016/j.bonr.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/26/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose The cortical characteristics of the iliac crest in male have rarely been investigated with quantitative histomorphometry. Also it is still unknown how cortical microarchitecture may vary between the iliac crest and fractures related sites at the proximal femur. We studied the microarchitecture of both external and internal cortices within the iliac crest, and compared the results with femoral neck and subtrochanteric femoral shaft sites. Methods Undecalcified histological sections of the iliac crest were obtained bicortically from cadavers (n = 20, aged 18–82 years, males). They were cut (7 μm) and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with low (× 50) and high (× 100) magnification, after identifying cortical bone boundaries using our previously validated method. Within cortical bone area, only complete osteons with typical concentric lamellae and cement line were selected and measured. Results At the iliac crest, the mean cortical width of external cortex was higher than at the internal cortex (p < 0.001). Also, osteon structural parameters, e.g. mean osteonal perimeter, were higher in the external cortex (p < 0.05). In both external and internal cortices, pore number per cortical bone area was higher in young subjects (≤ 50 years) (p < 0.05) while mean pore perimeter was higher in the old subjects (> 50 years) (p < 0.05). Several cortical parameters (e.g. osteon area per cortical bone area, pore number per cortical area) were the lowest in the femoral neck (p < 0.05). The maximal osteonal diameter and mean wall width were the highest in the external cortex of the iliac crest (p < 0.05), and the mean cortical width, osteon number per cortical area were the highest in the subtrochanteric femoral shaft (p < 0.05). Some osteonal structural parameters (e.g. min osteonal diameter) were significantly positively correlated (0.29 ≤ R2 ≤ 0.45, p < 0.05) between the external iliac crest and the femoral neck. Conclusions This study reveals heterogeneity in cortical microarchitecture between the external and internal iliac crest cortices, as well as between the iliac crest, the femoral neck and the subtrochanteric femoral shaft. Standard iliac crest biopsy does not reflect accurately cortical microarchitecture of other skeletal sites. The structural asymmetry between cortices of the ilium remains after childhood. In both cortices of the ilium, cortical pore perimeter was higher in the old subjects. The cortical microarchitecture is highly variable between different skeletal sites. Positive correlation is revealed between the external iliac crest and the femoral neck in osteonal characteristics.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FIN-70029 KYS, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, POB 118, SE-221 00 Lund, Sweden
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Orthopaedics, Traumatology, and Hand Surgery, Kuopio University Hospital, POB 100, FIN-70029 KYS, Kuopio, Finland
| |
Collapse
|
21
|
Schrof S, Varga P, Hesse B, Schöne M, Schütz R, Masic A, Raum K. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater 2016; 44:51-64. [PMID: 27497843 DOI: 10.1016/j.actbio.2016.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/03/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The mechanical competence of bone is crucially determined by its material composition and structural design. To investigate the interaction of the complex hierarchical architecture, the chemical composition and the resulting elastic properties of healthy femoral bone at the level of single bone lamellae and entire structural units, we combined polarized Raman spectroscopy (PRS), scanning acoustic microscopy (SAM) and synchrotron X-ray phase contrast nano tomography (SR-nanoCT). In line with earlier studies, mutual correlation analysis strongly suggested that the characteristic elastic modulations of bone lamellae within single units are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density deviations. Furthermore, we show that predominant fibril orientations in entire tissue units can be rapidly assessed from Raman parameter maps. Coexisting twisted and oscillating fibril patterns were observed in all investigated tissue domains. Ultimately, our findings demonstrate in particular the potential of combined PRS and SAM measurements in providing multi-scalar analysis of correlated fundamental tissue properties. In future studies, the presented approach can be applied for non-destructive investigation of small pathologic samples from bone biopsies and a broad range of biological materials and tissues. STATEMENT OF SIGNIFICANCE Bone is a complex structured composite material consisting of collagen fibrils and mineral particles. Various studies have shown that not only composition, maturation, and packing of its components, but also their structural arrangement determine the mechanical performance of the tissue. However, prominent methodologies are usually not able to concurrently describe these factors on the micron scale and complementary tissue characterization remains challenging. In this study we combine X-ray nanoCT, polarized Raman imaging and scanning acoustic microscopy and propose a protocol for fast and easy assessment of predominant fibril orientations in bone. Based on our site-matched analysis of cortical bone, we conclude that the elastic modulations of bone lamellae are mainly determined by the fibril arrangement.
Collapse
Affiliation(s)
- Susanne Schrof
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Peter Varga
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Martin Schöne
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Roman Schütz
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Admir Masic
- Dep. of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave, Cambridge, MA 02139, USA
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
22
|
Ojanen X, Töyräs J, Inkinen SI, Malo MKH, Isaksson H, Jurvelin JS. Differences in acoustic impedance of fresh and embedded human trabecular bone samples-Scanning acoustic microscopy and numerical evaluation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1931. [PMID: 27914413 DOI: 10.1121/1.4962347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 μm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone.
Collapse
Affiliation(s)
- Xiaowei Ojanen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Satu I Inkinen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
23
|
Rohrbach D, Jakob A, Lloyd HO, Tretbar SH, Silverman RH, Mamou J. A Novel Quantitative 500-MHz Acoustic Microscopy System for Ophthalmologic Tissues. IEEE Trans Biomed Eng 2016; 64:715-724. [PMID: 27249824 DOI: 10.1109/tbme.2016.2573682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This paper describes development of a novel 500-MHz scanning acoustic microscope (SAM) for assessing the mechanical properties of ocular tissues at fine resolution. The mechanical properties of some ocular tissues, such as lamina cribrosa (LC) in the optic nerve head, are believed to play a pivotal role in eye pathogenesis. METHODS A novel etching technology was used to fabricate silicon-based lens for a 500-MHz transducer. The transducer was tested in a custom-designed scanning system on human eyes. Two-dimensional (2-D) maps of bulk modulus (K) and mass density (ρ) were derived using improved versions of current state-of-the-art signal processing approaches. RESULTS The transducer employed a lens radius of 125 μm and had a center frequency of 479 MHz with a -6-dB bandwidth of 264 MHz and a lateral resolution of 4 μm. The LC, Bruch's membrane (BM) at the interface of the retina and choroid, and Bowman's layer (BL) at the interface of the corneal epithelium and stroma, were successfully imaged and resolved. Analysis of the 2-D parameter maps revealed average values of LC, BM, and BL with KLC = 2.81 ±0.17; GPa, KBM = 2.89 ±0.18; GPa, KBL = 2.6 ±0.09 ; GPa, ρ LC = 0.96 ±0.03 g/cm3; ρ BM = 0.97 ±0.04 g/cm3; ρ BL = 0.98 ±0.04 g/cm3. SIGNIFICANCE This novel SAM was shown to be capable of measuring mechanical properties of soft biological tissues at microscopic resolution; it is currently the only system that allows simultaneous measurement of K, ρ, and attenuation in large lateral scales (field area >9 mm2) and at fine resolutions.
Collapse
|
24
|
Eneh CTM, Liukkonen J, Malo MKH, Jurvelin JS, Töyräs J. Inter-individual changes in cortical bone three-dimensional microstructure and elastic coefficient have opposite effects on radial sound speed. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3491-3499. [PMID: 26723306 DOI: 10.1121/1.4934276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Knowledge about simultaneous contributions of tissue microstructure and elastic properties on ultrasound speed in cortical bone is limited. In a previous study, porosities and elastic coefficients of cortical bone in human femurs were shown to change with age. In the present study, influences of inter-individual and site-dependent variation in cortical bone microstructure and elastic properties on radial speed of sound (SOS; at 4, 6, and 8 MHz) were investigated using three-dimensional (3D) finite difference time domain modeling. Models with fixed (nominal model) and sample-specific (sample-specific model) values of radial elastic coefficients were compared. Elastic coefficients and microstructure for samples (n = 24) of human femoral shafts (n = 6) were derived using scanning acoustic microscopy and micro-computed tomography images, respectively. Porosity-related SOS varied more extensively in nominal models than in sample-specific models. Linear correlation between pore separation and SOS was similar (R = 0.8, p < 0.01, for 4 MHz) for both models. The determination coefficient (R(2)= 0.75, p < 0.05) between porosity and radial SOS, especially at 4 MHz, was highest in the posterior quadrant. The determination coefficient was lower for models with sample-specific values of radial elastic coefficient implemented (R(2) < 0.33, p < 0.05), than for nominal models (0.48 < R(2)< 0.63, p < 0.05). This information could be useful in in vivo pulse-echo cortical thickness measurements applying constant SOS.
Collapse
Affiliation(s)
- Chibuzor T M Eneh
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jukka Liukkonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
25
|
Matsuki H, Shibano J, Kobayashi M, Nakatsuchi Y, Moriizumi T, Kato H. Elastic modulus of the femoral trochanteric region measured by scanning acoustic microscopy in elderly women. J Med Ultrason (2001) 2015; 42:303-13. [PMID: 26576781 DOI: 10.1007/s10396-014-0608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE We have devised a method that can obtain continuous detailed distributions of the elastic modulus along the measurement line in a non-decalcified specimen of human bone tissue. The aim of this study was to determine whether local variations exist in the distribution of mechanical properties within the trochanteric region of the femur of elderly females using a newly developed form of scanning acoustic microscopy (SAM) technology. METHODS Human proximal femurs were harvested from seven female cadavers aged between 67 and 88 years at death. Using data collected with SAM, the elastic modulus of cortical and trabecular bone tissue of the lateral and medial trochanter was calculated and statistically analyzed. RESULTS The longitudinal and transverse elastic moduli in cortical bone tissue of the lateral trochanter were found to be significantly lower than those of the medial trochanter in all specimens from individuals over age 70 (p < 0.05). Compared to that of the distal region, the longitudinal and transverse elastic moduli of trabecular bone tissue of the proximal region of the lateral trochanter were significantly lower in all specimens from individuals over age 80 (p < 0.05). CONCLUSION Our new method allows obtaining detailed distributions of the elastic modulus of bone tissue.
Collapse
Affiliation(s)
- Hiroyuki Matsuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Junichi Shibano
- Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Michiaki Kobayashi
- Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Yukio Nakatsuchi
- Department of Orthopaedic Surgery, Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano, 390-8601, Japan
| | - Tetsuji Moriizumi
- Department of Anatomy, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
26
|
Skeletal maturation substantially affects elastic tissue properties in the endosteal and periosteal regions of loaded mice tibiae. Acta Biomater 2015; 21:154-64. [PMID: 25900443 DOI: 10.1016/j.actbio.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 02/01/2023]
Abstract
Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age.
Collapse
|
27
|
Bernard S, Schneider J, Varga P, Laugier P, Raum K, Grimal Q. Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomech Model Mechanobiol 2015; 15:97-109. [DOI: 10.1007/s10237-015-0689-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
28
|
Rohrbach D, Grimal Q, Varga P, Peyrin F, Langer M, Laugier P, Raum K. Distribution of mesoscale elastic properties and mass density in the human femoral shaft. Connect Tissue Res 2015; 56:120-32. [PMID: 25738522 DOI: 10.3109/03008207.2015.1013627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cortical bone properties are determined by tissue composition and structure at several hierarchical length scales. In this study, the spatial distribution of micro- and mesoscale elastic properties within a human femoral shaft has been investigated. Microscale tissue degree of mineralization (DMB), cortical vascular porosity Ct.Po and the average transverse isotropic stiffness tensor C(Micro) of cylindrical-shaped samples (diameter: 4.4 mm, N = 56) were obtained from cortical regions between 20 and 85% of the total femur length and around the periphery (anterior, medial, posterior and lateral quadrants) by means of synchrotron radiation µCT (SRµCT) and 50-MHz scanning acoustic microscopy (SAM). Within each cylinder, the volumetric bone mineral density (vBMD) and the mesoscale stiffness tensor C(Meso) were derived using a numerical homogenization approach. Moreover, microelastic maps of the axial elastic coefficient c33 measured by SAM at distinct cross-sectional locations along the femur were used to construct a 3-D multiscale elastic model of the femoral shaft. Variations of vBMD (6.1%) were much lower than the variations of mesoscale elastic coefficients (11.1-21.3%). The variation of DMB was only a minor predictor for variations of the mesoscale elastic properties (0.05 ≤ R(2) ≤ 0.34). Instead, variations of the mesoscale elastic properties could be explained by variations of cortical porosity and microscale elastic properties. These data were suitable inputs for numerical evaluations and may help to unravel the relations between structure and composition on the elastic function in cortical bone.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Julius-Wolff-Institute & Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Granke M, Grimal Q, Parnell WJ, Raum K, Gerisch A, Peyrin F, Saïed A, Laugier P. To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Acta Biomater 2015; 12:207-215. [PMID: 25462527 DOI: 10.1016/j.actbio.2014.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/01/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
An evidence gap exists in fully understanding and reliably modeling the variations in elastic anisotropy that are observed at the millimeter scale in human cortical bone. The porosity (pore volume fraction) is known to account for a large part, but not all, of the elasticity variations. This effect may be modeled by a two-phase micromechanical model consisting of a homogeneous matrix pervaded by cylindrical pores. Although this model has been widely used, it lacks experimental validation. The aim of the present work is to revisit experimental data (elastic coefficients, porosity) previously obtained from 21 cortical bone specimens from the femoral mid-diaphysis of 10 donors and test the validity of the model by proposing a detailed discussion of its hypotheses. This includes investigating to what extent the experimental uncertainties, pore network modeling, and matrix elastic properties influence the model's predictions. The results support the validity of the two-phase model of cortical bone which assumes that the essential source of variations of elastic properties at the millimeter-scale is the volume fraction of vascular porosity. We propose that the bulk of the remaining discrepancies between predicted stiffness coefficients and experimental data (RMSE between 6% and 9%) is in part due to experimental errors and part due to small variations of the extravascular matrix properties. More significantly, although most of the models that have been proposed for cortical bone were based on several homogenization steps and a large number of variable parameters, we show that a model with a single parameter, namely the volume fraction of vascular porosity, is a suitable representation for cortical bone. The results could provide a guide to build specimen-specific cortical bone models. This will be of interest to analyze the structure-function relationship in bone and to design bone-mimicking materials.
Collapse
|
30
|
Casanova M, Schindeler A, Little D, Müller R, Schneider P. Quantitative phenotyping of bone fracture repair: a review. BONEKEY REPORTS 2014; 3:550. [PMID: 25120907 DOI: 10.1038/bonekey.2014.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022]
Abstract
Fracture repair is a complex process that involves the interaction of numerous molecular factors, cell lineages and tissue types. These biological processes allow for an impressive feat of engineering: an elastic soft callus is progressively replaced by a more rigid and mineralized callus. During this reparative phase, the healing bone is exposed to a risk of re-fracture. Bone volume and bone quality are the two major factors determining the strength of the callus. Although both factors are important, often only bone volume is analyzed and reported in preclinical studies. Recent developments in techniques for examining bone quality in the callus will enable the rapid and detailed analysis of its material properties and its microstructure. This review aims to give an overview of the methods available for quantitatively phenotyping the bone callus in preclinical studies such as Raman spectroscopy, nanoindentation, scanning acoustic microscopy, in vivo micro-computed tomography (micro-CT) and high-resolution micro-CT. Consolidated and emerging experimental methods are described with a focus on their applicability, and with examples of their utilization.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland ; Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia ; Paediatrics and Child Health, University of Sydney , Camperdown, New South Wales, Australia
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia ; Paediatrics and Child Health, University of Sydney , Camperdown, New South Wales, Australia
| | - Ralph Müller
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland ; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton , Southampton, United Kingdom
| |
Collapse
|
31
|
Abstract
Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.
Collapse
Affiliation(s)
- Kay Raum
- Julius Wolff Institute & Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
32
|
Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations. Rheumatol Int 2014; 35:1-16. [PMID: 24879325 DOI: 10.1007/s00296-014-3052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
Collapse
|
33
|
Grimal Q, Rohrbach D, Grondin J, Barkmann R, Glüer CC, Raum K, Laugier P. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1015-1026. [PMID: 24486239 DOI: 10.1016/j.ultrasmedbio.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method.
Collapse
Affiliation(s)
- Quentin Grimal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France.
| | - Daniel Rohrbach
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julien Grondin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Claus-C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Kay Raum
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| |
Collapse
|
34
|
Tiburtius S, Schrof S, Molnár F, Varga P, Peyrin F, Grimal Q, Raum K, Gerisch A. On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 2014; 13:1003-23. [DOI: 10.1007/s10237-013-0550-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
|
35
|
The role of angular reflection in assessing elastic properties of bone by scanning acoustic microscopy. J Mech Behav Biomed Mater 2014; 29:438-50. [DOI: 10.1016/j.jmbbm.2013.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022]
|
36
|
Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model. Hernia 2013; 18:579-85. [PMID: 24346242 DOI: 10.1007/s10029-013-1201-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mesh integration is a key parameter for reliable and safe hernia repair. So far, its assessment is based on histology obtained from rare second-look operations or experimental research. Therefore, non-invasive high-resolution imaging techniques would be of great value. Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) have shown potential in the imaging of hard and soft tissues. This experimental study compared the detection of mesh integration, foreign body reaction and scar formation in UBM/SAM with standard histology. MATERIALS AND METHODS Ten titanized polypropylene meshes were implanted in rats in a model of onlay repair. 17 days postoperative animals were killed and samples were paraffin embedded for histology (H&E, Cresyl violet) or processed for postmortem UBM/SAM. The observation period was uneventful and meshes appeared well integrated. RESULTS Relocation of neighboring cross-sectional levels could easily be achieved with the 40-MHz UBM and granulation tissue could be distinguished from adjacent muscle tissue layers. The spatial resolution of approximately 8 μm of the 200-MHz UBM system images was comparable to standard histology (2.5-5× magnification) and allowed a clear identification of mesh fibers and different tissue types, e.g., scar, fat, granulation, and muscle tissues, as well as vessels, abscedations, and foreign body giant cell clusters. CONCLUSION This pilot study demonstrates the potential of high-frequency ultrasound to assess hernia mesh integration non-invasively. Although the methods lack cell-specific information, tissue integration could reliably be assessed. The possibility of conducting UBM in vivo advocates this method as a guidance tool for the indication of second-look operations and subsequent elaborate histological analyses.
Collapse
|
37
|
Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, Kröger H, Raum K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013; 53:451-8. [PMID: 23334084 DOI: 10.1016/j.bone.2013.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Tr<c33Ct), location (c33(Ct.Ps)=37.7GPa>c33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïed A, Laugier P. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 2013; 8:e58043. [PMID: 23472132 PMCID: PMC3589472 DOI: 10.1371/journal.pone.0058043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/30/2013] [Indexed: 11/25/2022] Open
Abstract
The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.
Collapse
Affiliation(s)
- Mathilde Granke
- UMPC Univ Paris 6, UMR 7623, Laboratoire d'Imagerie Paramétrique, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 2012; 45:2264-70. [DOI: 10.1016/j.jbiomech.2012.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
40
|
Tanoue H, Hagiwara Y, Kobayashi K, Saijo Y. Ultrasonic tissue characterization of prostate biopsy tissues by ultrasound speed microscope. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:8499-502. [PMID: 22256321 DOI: 10.1109/iembs.2011.6092097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrasound speed microscope was developed for quantitative measurement of ultrasonic parameters of soft tissues. The system can measure the ultrasonic attenuation and sound speed in the tissue using fast Fourier transform of a single pulsed wave instead of burst waves used in conventional acoustic microscopy. Prostate biopsy tissues were formalin-fixed and sectioned approximately 5-6 μm in thickness. They were mounted on glass slides without cover slips. The ultrasonic transducer was mechanically scanned over the specimen. Attenuation was 1.42 ± 0.08 dB/mm and the sound speed was 1584 ± 12 m/s in prostatic cancer while both values were 1.86 ± 0.14 dB/mm and 1614 ± 30 m/s in normal prostate. The basic measurements of ultrasonic properties would help understanding the interpretation of clinical echography in diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Hideki Tanoue
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan.
| | | | | | | |
Collapse
|
41
|
Zhao X, Akhtar R, Nijenhuis N, Wilkinson SJ, Murphy L, Ballestrem C, Sherratt MJ, Watson RE, Derby B. Multi-layer phase analysis: quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:610-20. [PMID: 22547273 PMCID: PMC3492756 DOI: 10.1109/tuffc.2012.2240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Scanning acoustic microscopy is potentially a powerful tool for characterizing the elastic properties of soft biological tissues and cells. In this paper, we present a method, multi-layer phase analysis (MLPA), which can be used to extract local speed of sound values, for both thin tissue sections mounted on glass slides and cultured cells grown on cell culture plastic, with a resolution close to 1 μm. The method exploits the phase information that is preserved in the interference between the acoustic wave reflected from the substrate surface and internal reflections from the acoustic lens. In practice, a stack of acoustic images are captured beginning with the acoustic focal point 4 μm above the substrate surface and moving down in 0.1-μm increments. Scanning parameters, such as acoustic wave frequency and gate position, were adjusted to obtain optimal phase and lateral resolution. The data were processed offline to extract the phase information with the contribution of any inclination in the substrate removed before the calculation of sound speed. Here, we apply this approach to both skin sections and fibroblast cells, and compare our data with the V(f) (voltage versus frequency) method that has previously been used for characterization of soft tissues and cells. Compared with the V(f) method, the MPLA method not only reduces signal noise but can be implemented without making a priori assumptions with regards to tissue or cell parameters.
Collapse
Affiliation(s)
- Xuegen Zhao
- School of Materials, The University of Manchester UK ()
| | - Riaz Akhtar
- School of Materials and Cardiovascular Sciences Research Group (Manchester Academic Health Science Centre), The University of Manchester UK
| | - Nadja Nijenhuis
- Faculty of Life Sciences, Michael Smith Building, Oxford Road,Manchester,M13 9PT, The University of Manchester UK ()
| | | | - Lilli Murphy
- School of Materials, The University of Manchester UK ()
| | - Christoph Ballestrem
- Faculty of Life Sciences, Michael Smith Building, Oxford Road,Manchester,M13 9PT, The University of Manchester UK ()
| | - Michael. J. Sherratt
- Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, The University of Manchester UK ()
| | - Rachel E.B. Watson
- Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre,, The University of Manchester UK ()
| | - Brian Derby
- School of Materials, The University of Manchester, UK ()
| |
Collapse
|
42
|
Grondin J, Grimal Q, Yamamoto K, Matsukawa M, Saïed A, Laugier P. Relative contributions of porosity and mineralized matrix properties to the bulk axial ultrasonic wave velocity in human cortical bone. ULTRASONICS 2012; 52:467-471. [PMID: 22182403 DOI: 10.1016/j.ultras.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
Velocity of ultrasound waves has proved to be a useful indicator of bone biomechanical competence. A detailed understanding of the dependence of ultrasound parameters such as velocity on bone characteristics is a key to the development of bone quantitative ultrasound (QUS). The objective of this study is to investigate the relative contributions of porosity and mineralized matrix properties to the bulk compressional wave velocity (BCV) along the long bone axis. Cross-sectional slabs from the diaphysis of four human femurs were included in the study. Seven regions of interest (ROIs) were selected in each slab. BCV was measured in through-transmission at 5 MHz. Impedance of the mineralized matrix (Z(m)) and porosity (Por) were obtained from 50 MHz scanning acoustic microscopy. Por and Z(m) had comparable effects on BCV along the bone axis (R=-0.57 and R=0.72, respectively).
Collapse
Affiliation(s)
- Julien Grondin
- UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
43
|
Lakshmanan S, Koch T, Brand S, Männicke N, Wicke M, Mörlein D, Raum K. Prediction of the intramuscular fat content in loin muscle of pig carcasses by quantitative time-resolved ultrasound. Meat Sci 2012; 90:216-25. [DOI: 10.1016/j.meatsci.2011.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|
44
|
Mathieu V, Fukui K, Matsukawa M, Kawabe M, Vayron R, Soffer E, Anagnostou F, Haiat G. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant. J Biomech Eng 2011; 133:021006. [PMID: 21280878 DOI: 10.1115/1.4003131] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti-6Al-4V implants were placed in vivo at a distance of 200 μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200 μm×4.4 mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190 μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10 μm diameter. The ROIs were located in newly formed bone tissue (within the 200 μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10(-3) m/s in newly formed bone tissue and 5.31×10(-3) m/s in mature bone. Analysis of variance (p=2.42×10(-4)) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.
Collapse
Affiliation(s)
- Vincent Mathieu
- Laboratoire de Biomécanique Biomatériau Ostéo Articulaire, CNRS, Université Paris 7, UMR CNRS 7052, 10 Avenue de Verdun, Paris 75010, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K. Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:474-483. [PMID: 21256668 DOI: 10.1016/j.ultrasmedbio.2010.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The course of bone healing in animal models is conventionally monitored by morphologic approaches, which do not allow the determination of the material properties of the tissues involved. Mechanical characterization techniques are either dedicated to the macroscopic evaluation of the entire organ or to the microscopic evaluation of the tissue matrix. The latter provides insight to regionally specific alterations at the tissue level in the course of healing. In this study, quantitative scanning acoustic microscopy was used at 50 MHz to investigate microstructural and elastic alterations of mineralized callus and cortical tissue after transverse osteotomy in sheep tibiae. Analyses were performed after 2, 3, 6 and 9 weeks of consolidation with stabilization by either a rigid or a semi-rigid external fixator. Increased stiffness and decreased porosity were observed in the callus tissue over the course of the healing process, which was dependent on the fixator type. In the adjacent cortical tissue, stiffness decreased during the first 3 weeks. Cortical porosity increased over time but the time-dependence was different between the two fixator types. The changes of stiffness of cortical and callus tissues were measured with respect to the distance to the periosteal cortex-callus boundary. Stiffness of cortex and callus tissue smoothly decreased as a function of the distance from the inner cortical region. The data obtained in this study can help to understand the processes involved in tissue maturation during endogenous bone healing.
Collapse
Affiliation(s)
- Bernd Preininger
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
46
|
A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 2011; 10:925-37. [DOI: 10.1007/s10237-010-0284-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
|
47
|
Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle. Meat Sci 2010; 88:51-8. [PMID: 21196084 DOI: 10.1016/j.meatsci.2010.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 11/15/2010] [Accepted: 12/02/2010] [Indexed: 11/22/2022]
Abstract
Ultrasound velocity and attenuation of soft tissues have been widely investigated. However, few studies completely covered considerable variations of both, structure and composition. The aim of this study was to collect acoustic reference data of porcine Longissimus muscle and associate them with compositional traits. In addition, measurements were conducted on fresh, formalin fixed, and frozen-thawed samples to evaluate the effect of processing on ultrasound parameters and comparisons with earlier investigations. Measurement conditions (temperature and fibre orientation) were realised close to hanging carcasses conditions. Sound velocity ranged from 1617 ± 6 to 1622 ± 5 ms(-1), while attenuation mostly ranged from 1.0 ± 0.3 to 1.2 ± 0.3 dB MHz(-1)cm(-1). Only formalin fixed samples showed significantly higher attenuation (2.2 ± 0.6 dB MHz(-1)cm(-1)). Highest correlations have been observed between intramuscular fat and attenuation (up to r = .7). The obtained results are anticipated to improve ultrasound based estimation of the intramuscular fat of pig muscle on intact carcasses.
Collapse
|
48
|
Kasseck C, Kratz M, Torcasio A, Gerhardt NC, van Lenthe GH, Gambichler T, Hoffmann K, Jones DB, Hofmann MR. Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:046019. [PMID: 20799821 DOI: 10.1117/1.3477193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We investigate optical coherence tomography (OCT) as a method for imaging bone. The OCT images are compared directly to those of the standard methods of bone histology and microcomputed tomography (microCT) on a single, fixed human femoral trabecular bone sample. An advantage of OCT over bone histology is its noninvasive nature. OCT also images the lamellar structure of trabeculae at slightly higher contrast than normal bone histology. While microCT visualizes the trabecular framework of the whole sample, OCT can image additionally cells with a penetration depth limited approximately to 1 mm. The most significant advantage of OCT, however, is the absence of toxic effects (no ionizing radiation), i.e., continuous images may be made and individual cell tracking may be performed. The penetration depth of OCT, however, limits its use to small animal models and small bone organ cultures.
Collapse
Affiliation(s)
- Christoph Kasseck
- Ruhr-University Bochum, Photonics and Terahertz Technology, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rupin F, Bossis D, Vico L, Peyrin F, Raum K, Laugier P, Saïed A. Adaptive remodeling of trabecular bone core cultured in 3-D bioreactor providing cyclic loading: an acoustic microscopy study. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:999-1007. [PMID: 20510189 DOI: 10.1016/j.ultrasmedbio.2010.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
Scanning acoustic microscopy (SAM) provides high-resolution mapping of acoustic impedance related to tissue stiffness. This study investigates changes in tissue acoustic impedance resulting from mechanical loading in trabecular bone cores cultured in 3-D bioreactor. Trabecular bone cores were extracted from bovine sternum (n = 15) and ulna metaphysis (n = 15). From each bone, the samples were divided in three groups. The basal control (BC) group was fixed post-extraction, the control (C) and loaded (L) groups were maintained as viable in a controlled culture-loading cell over three weeks. Samples of L group underwent a dynamic compressive strain, whereas C samples were left free from loading. After three weeks, L and C samples were embedded in polymethylmethacrylate and all samples were explored with a 200-MHz SAM. For each specimen, the acoustic impedance distribution was obtained over flat and polished section of bone blocks prepared parallel to the loading axis. Our results showed that in basal controls, the acoustic impedance varied with bone anatomical location and was 15% higher in weight-bearing ulna compared with nonweight-bearing sternum. The comparison between loaded and nonloaded groups showed that sternum-only exhibited significant change in acoustic impedance (L vs. C sternum: +9%). This result suggests that when the applied load is comparable with the stress naturally experienced by a weight-bearing bone (ulna), the tissue material properties (manifested by acoustic impedance) remained unchanged. In conclusion, SAM is a potentially relevant tool for the assessment of subtle changes in intrinsic microelastic properties of bone induced by adaptive remodeling process in response to mechanical loading.
Collapse
|
50
|
Bildgebung und Bildverarbeitung. BIOMED ENG-BIOMED TE 2010. [DOI: 10.1515/bmt.2010.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|