1
|
Lu S, Su R, Ma Y, Wan M. Timing-synchronized passive ultrasound imaging of cavitation using eigenspace-based minimum variance beamforming and principal component analysis. Med Phys 2025. [PMID: 40270093 DOI: 10.1002/mp.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Passive ultrasound imaging (PUI) allows to spatially resolve cavitation triggered during ultrasound irradiation, its application in therapeutic ultrasound has been gaining attention in recent years. The diffraction mode of the imaging transducer greatly limits the PUI axial resolution, which can be improved by transmit-receive synchronization and employment of delay sum beamforming (DSB) when transmitting short pulses, however, DSB yields poor performance in resolution and anti-interference. PURPOSE Inspired by adaptive beamforming and its low-complexity algorithm in active imaging field, this paper aims to develop an improved timing-synchronized PUI (TSPUI) algorithm for detection of short-pulse transmission-induced cavitation. METHODS The passive array data collected by timing synchronization is processed by minimum variance beamforming (MVB), whose weights are optimized by projection on the eigendecomposed signal subspace, that is, eigenspace-based MVB (EMVB), with the sum of the flight times on the transmitting and receiving paths as the delay. Applying principal component analysis (PCA) on the pre-collected MVB weight samples, a conversion matrix is constructed to allow the matrix inversion and eigendecomposition involved in weight calculation to be performed in a low dimension. The algorithm performance is confirmed by experiments, where a high-intensity focused ultrasound transducer and a linear-array transducer configured in a common parallel or vertical manner are employed for cavitation induction and cavitation imaging, and evaluated with the established indicators. RESULTS Reducing the eigenvalue threshold coefficient allows more sidelobes to be removed, and choosing an appropriate principal component number can reduce the time cost while guaranteeing the reconstruction quality. EMVB-PCA provides high resolution and anti-interference performance relative to DSB, with a reduction of over 60% in the point spread area and over 14 dB in the sidelobe and noise level, meanwhile, its time cost is considerably lower than EMVB, with a reduction of over 80%. Additionally, constructing the conversion matrix by simulation is feasible and valid, providing convenience for real imaging. CONCLUSIONS EMVB-PCA allows for high-quality TSPUI reconstruction of cavitation at a fast rate, providing an effective tool for detecting short-duration cavitation and further benefiting short-pulse therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ruibo Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yingping Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Magnier C, Kwiecinski W, Escudero DS, Garcia SA, Vacher E, Delplanque M, Messas E, Pernot M. Self-Sensing Cavitation Detection for Pulsed Cavitational Ultrasound Therapy. IEEE Trans Biomed Eng 2025; 72:435-444. [PMID: 39236142 DOI: 10.1109/tbme.2024.3454798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Monitoring cavitation during ultrasound therapy is crucial for assessing the procedure safety and efficacy. This work aims to develop a self-sensing and low-complexity approach for robust cavitation detection in moving organs such as the heart. METHODS An analog-to-digital converter was connected onto one channel of the therapeutic transducer from a clinical system dedicated to cardiac therapy, allowing to record signals on a computer. Acquisition of successive echoes backscattered by the cavitation cloud on the therapeutic transducer was performed at a high repetition rate. Temporal variations of the backscattered echoes were analyzed with a Singular-Value Decomposition filter to discriminate signals associated to cavitation, based on its stochastic nature. Metrics were derived to classify the filtered backscattered echoes. Classification of raw backscattered echoes was also performed with a machine learning approach. The performances were evaluated on 155 in vitro acquisitions and 110 signals acquired in vivo during transthoracic cardiac ultrasound therapy on 3 swine. RESULTS Cavitation detection was achieved successfully in moving tissues with high signal to noise ratio in vitro (cSNR = 25±5) and in vivo (cSNR = 20±6) and outperformed conventional methods (cSNR = 11±6). Classification methods were validated with spectral analysis of hydrophone measurements. High accuracy was obtained using either the clutter filter-based method (accuracy of 1) or the neural network-based method (accuracy of 0.99). CONCLUSION Robust self-sensing cavitation detection was demonstrated to be possible with a clutter filter-based method and a machine learning approach. SIGNIFICANCE The self-sensing cavitation detection method enables robust, reliable and low complexity cavitation activity monitoring during ultrasound therapy.
Collapse
|
3
|
Zamfirov L, Nguyen NM, Fernández-Sánchez ME, Cambronera Ghiglione P, Teston E, Dizeux A, Tiennot T, Farge E, Demené C, Tanter M. Acoustic-pressure-driven ultrasonic activation of the mechanosensitive receptor RET and of cell proliferation in colonic tissue. Nat Biomed Eng 2024:10.1038/s41551-024-01300-9. [PMID: 39706982 DOI: 10.1038/s41551-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/31/2024] [Indexed: 12/23/2024]
Abstract
Ultrasound generates both compressive and shear mechanical forces in soft tissues. However, the specific mechanisms by which these forces activate cellular processes remain unclear. Here we show that low-intensity focused ultrasound can activate the mechanosensitive RET signalling pathway. Specifically, in mouse colon tissues ex vivo and in vivo, focused ultrasound induced RET phosphorylation in colonic crypts cells, which correlated with markers of proliferation and stemness when using hours-long insonication. The activation of the RET pathway is non-thermal, is linearly related to acoustic pressure and is independent of radiation-force-induced shear strain in tissue. Our findings suggest that ultrasound could be used to regulate cell proliferation, particularly in the context of regenerative medicine, and highlight the importance of adhering to current ultrasound-safety regulations for medical imaging.
Collapse
Affiliation(s)
- Laura Zamfirov
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Ngoc-Minh Nguyen
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Maria Elena Fernández-Sánchez
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Paula Cambronera Ghiglione
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Eliott Teston
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Thomas Tiennot
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France.
| | - Charlie Demené
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France.
| | - Mickael Tanter
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France.
| |
Collapse
|
4
|
Zhang Q, Zhu Y, Zhang G, Xue H, Ding B, Tu J, Zhang D, Guo X. 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. ULTRASONICS SONOCHEMISTRY 2024; 110:107051. [PMID: 39232288 PMCID: PMC11404082 DOI: 10.1016/j.ultsonch.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Acoustic cavitation plays a critical role in various biomedical applications. However, uncontrolled cavitation can lead to undesired damage to healthy tissues. Therefore, real-time monitoring and quantitative evaluation of cavitation dynamics is essential for understanding underlying mechanisms and optimizing ultrasound treatment efficiency and safety. The current research addressed the limitations of traditionally used cavitation detection methods by developing introduced an adaptive time-division multiplexing passive cavitation imaging (PCI) system integrated into a commercial diagnostic ultrasound platform. This new method combined real-time cavitation monitoring with B-mode imaging, allowing for simultaneous visualization of treatment progress and 2D quantitative evaluation of cavitation dosage within targeted area. An improved delay-and-sum (DAS) algorithm, optimized with a minimum variance (MV) beamformer, is utilized to minimize the side lobe effect and improve the axial resolution typically associated with PCI. In additional to visualize and quantitatively assess the cavitation activities generated under varied acoustic pressures and microbubble concentrations, this system was specifically applied to perform 2D cavitation evaluation for ultrasound thrombolysis mediated by different solutions, e.g., saline, nanodiamond (ND) and nitrogen-annealed nanodiamond (N-AND). This research aims to bridge the gap between laboratory-based research systems and real-time spatiotemporal cavitation evaluation demands in practical uses. Results indicate that this improved 2D cavitation monitoring and evaluation system could offer a useful tool for comprehensive evaluating cavitation-mediated effects (e.g., ultrasound thrombolysis), providing valuable insights into in-depth understanding of cavitation mechanisms and optimization of cavitation applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Song M, Sapozhnikov OA, Khokhlova VA, Son H, Totten S, Wang YN, Khokhlova TD. Dynamic mode decomposition based Doppler monitoring of de novo cavitation induced by pulsed HIFU: an in vivo feasibility study. Sci Rep 2024; 14:22295. [PMID: 39333771 PMCID: PMC11436727 DOI: 10.1038/s41598-024-73787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) has the capability to induce de novo cavitation bubbles, offering potential applications for enhancing drug delivery and modulating tissue microenvironments. However, imaging and monitoring these cavitation bubbles during the treatment presents a challenge due to their transient nature immediately following pHIFU pulses. A planewave bubble Doppler technique demonstrated its potential, yet this Doppler technique used conventional clutter filter that was originally designed for blood flow imaging. Our recent study introduced a new approach employing dynamic mode decomposition (DMD) to address this in an ex vivo setting. This study demonstrates the feasibility of the application of DMD for in vivo Doppler monitoring of the cavitation bubbles in porcine liver and identifies the candidate monitoring metrics for pHIFU treatment. We propose a fully automated bubble mode identification method using k-means clustering and an image contrast-based algorithm, leading to the generation of DMD-filtered bubble images and corresponding Doppler power maps after each HIFU pulse. These power Doppler maps are then correlated with the extent of tissue damage determined by histological analysis. The results indicate that DMD-enhanced power Doppler map can effectively visualize the bubble distribution with high contrast, and the Doppler power level correlates with the severity of tissue damage by cavitation. Further, the temporal characteristics of the bubble modes, specifically the decay rates derived from DMD, provide information of the bubble dissolution rate, which are correlated with tissue damage level-slower rates imply more severe tissue damage.
Collapse
Affiliation(s)
- Minho Song
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Radiology, Stanford University, Stanford, USA.
| | - Oleg A Sapozhnikov
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Vera A Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Helena Son
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie Totten
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Zhu Y, Zhang G, Zhang Q, Luo L, Ding B, Guo X, Zhang D, Tu J. Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform. ULTRASONICS 2024; 142:107375. [PMID: 38901152 DOI: 10.1016/j.ultras.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
The implementation of real-time, convenient and high-resolution passive cavitation imaging (PCM) is crucial for ensuring the safety and effectiveness of ultrasound applications related to cavitation effects. However, the current B-mode ultrasound imaging system cannot achieve these functions. By developing a hybrid adaptive beamforming algorithm, the current work presented a real-time PCM and B-mode fusion imaging technique, using a modified diagnostic ultrasound platform enabling time-division multiplexing external triggering function. The proposed hybrid adaptive beamformer combined the advantages of delay-multiply-and-sum (DMAS) and minimum variance (MV) methods to effectively suppress the side lobe and tail-like artifacts, improving the resolution of PCM images. A high-pass filter was applied to selectively detect cavitation-specific signals while removing the interference from the tissue scatters. The system enabled synchronous visualization of tissue structure and cavitation activity under ultrasound exposure. Both numerical and experimental studies demonstrated that, compared with DAS, MV-DAS and DMAS methods, the proposed MV-DMAS algorithm performed better in both axial and lateral resolutions. This work represented a significant advancement in achieving high-quality real-time B-mode and PCM fusion imaging utilizing commercial medical ultrasound system, providing a powerful tool for synchronous monitoring and manipulating cavitation activity, which would enhance the safety and efficacy of cavitation-based applications.
Collapse
Affiliation(s)
- Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Lan Luo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Zhu H, Zeng Y, Cai X. Passive Acoustic Mapping for Convex Arrays With the Helical Wave Spectrum Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1923-1933. [PMID: 38198274 DOI: 10.1109/tmi.2024.3352283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Passive acoustic mapping (PAM) has emerged as a valuable imaging modality for monitoring the cavitation activity in focused ultrasound therapies. When it comes to imaging in the human abdomen, convex arrays are preferred due to their large acoustic window. However, existing PAM methods for convex arrays rely on the computationally expensive delay-and-sum (DAS) operation limiting the image reconstruction speed when the field-of-view (FOV) is large. In this work, we propose an efficient and frequency-selective PAM method for convex arrays. This method is based on projecting the helical wave spectrum (HWS) between cylindrical surfaces in the imaging field. Both the in silico and in vitro experiments showed that the HWS method has comparable image quality and similar acoustic cavitation source localization accuracy as the DAS-based methods. Compared to the frequency-domain and time-domain DAS methods, the time-complexity of the HWS method is reduced by one order and two orders of magnitude, respectively. A parallel implementation of the HWS method realized millisecond-level image reconstruction speed. We also show that the HWS method is inherently capable of mapping microbubble (MB) cavitation activity of different status, i.e., no cavitation, stable cavitation, or inertial cavitation. After compensating for the lens effects of the convex array, we further combined PAM formed by the HWS method and B-mode imaging as a real-time dual-mode imaging approach to map the anatomical location where MBs cavitate in a liver phantom experiment. This method may find use in applications where convex arrays are required for cavitation activity monitoring in real time.
Collapse
|
8
|
Baranger J, Villemain O, Goudot G, Dizeux A, Le Blay H, Mirault T, Messas E, Pernot M, Tanter M. The fundamental mechanisms of the Korotkoff sounds generation. SCIENCE ADVANCES 2023; 9:eadi4252. [PMID: 37792931 PMCID: PMC10550233 DOI: 10.1126/sciadv.adi4252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Blood pressure measurement is the most widely performed clinical exam to predict mortality risk. The gold standard for its noninvasive assessment is the auscultatory method, which relies on listening to the so-called "Korotkoff sounds" in a stethoscope placed at the outlet of a pneumatic arm cuff. However, more than a century after their discovery, the origin of these sounds is still debated, which implies a number of clinical limitations. We imaged the Korotkoff sound generation in vivo at thousands of images per second using ultrafast ultrasound. We showed with both experience and theory that Korotkoff sounds are paradoxically not sound waves emerging from the brachial artery but rather shear vibrations conveyed in surrounding tissues by the nonlinear pulse wave propagation. When these shear vibrations reached the stethoscope, they were synchronous, correlated, and comparable in intensity with the Korotkoff sounds. Understanding this mechanism could ultimately improve blood pressure measurement and provide additional understanding of arterial mechanical properties.
Collapse
Affiliation(s)
- Jerome Baranger
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| | - Olivier Villemain
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| | - Guillaume Goudot
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
- Université Paris Cité, Inserm UMR 970, PARCC, Vascular Medicine Department, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| | - Heiva Le Blay
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| | - Tristan Mirault
- Université Paris Cité, Inserm UMR 970, PARCC, Vascular Medicine Department, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuel Messas
- Université Paris Cité, Inserm UMR 970, PARCC, Vascular Medicine Department, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI PSL Paris, CNRS, Paris, France
| |
Collapse
|
9
|
Yamaguchi T, Nakano M, Sasanuma J, Takasaki M, Maki F, Hino S, Kaburagi M, Iijima K, Iwamuro H, Watanabe K. Cavitation with low-energy sonication during focused ultrasound thalamotomy for a patient with tremor-dominant Parkinson's disease: a potential risk. Acta Neurochir (Wien) 2023; 165:1195-1200. [PMID: 36917360 DOI: 10.1007/s00701-023-05551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
We report a patient with tremor-dominant Parkinson's disease who had a mild cavitation bioeffect during magnetic resonance-guided focused ultrasound thalamotomy. During the aligning phase with low-energy sonication, cavitation caused mild dysarthria and paresthesia, prompting treatment cessation. At the same time, tremor and rigidity improved. MRI revealed extensive high-intensity lesions in the thalamus 1 day after the procedure followed by steroid infusion, which resulted in resolution of adverse events. Tremor and rigidity improved 1.5 years after the procedure. Although cavitation can relieve tremors and rigidity, it should be carefully monitored due to potential permanent adverse events by unpredictable and unknown behaviors.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- International Academia for Focused Ultrasound Therapy, Katahira, Asaoku, Kawasaki, Kanagawa, 215-0023, Japan. .,Research Institute of Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan.
| | - Masayuki Nakano
- Department of Neurosurgery, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Jinichi Sasanuma
- Department of Neurosurgery, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Masahito Takasaki
- Department of Anesthesiology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Futaba Maki
- Department of Neurology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Sakae Hino
- Department of Neurology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Mayumi Kaburagi
- Department of Neurology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Ken Iijima
- International Academia for Focused Ultrasound Therapy, Katahira, Asaoku, Kawasaki, Kanagawa, 215-0023, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University, Bunkyo City, Tokyo, Japan
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Koriyama, Fukushima, Japan
| |
Collapse
|
10
|
Lu S, Su R, Wan C, Guo S, Wan M. Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming. Med Phys 2023; 50:2323-2335. [PMID: 36704970 DOI: 10.1002/mp.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Passive acoustic mapping (PAM) is showing increasing application potential in monitoring ultrasound therapy by spatially resolving cavitation activity. PAM with the relative time-of-flight information leads to poor axial resolution when implemented with ultrasound diagnostic transducers. Through utilizing the absolute time-of-flight information preserved by the transmit-receive synchronization and applying the common delay-sum (DS) beamforming algorithm, PAM axial resolution can be greatly improved in the short-pulse excitation scenario, as with active ultrasound imaging. However, PAM with the absolute time-of-flight information (referred as AtPAM) suffers from low imaging resolution and weak interference suppression when the DS algorithm is applied. PURPOSE This study aims to propose an enhanced AtPAM algorithm based on delay-multiply-sum (DMS) beamforming, to address the shortcomings of the DS-based AtPAM algorithm. METHODS In DMS beamforming, the element signals delayed by the absolute time delays are first processed with a signed square-root operation and then multiplied in pairs and finally summed, the resulting beamformed output is further band-pass filtered. The performances of DS- and DMS-based AtPAMs are compared by experiments, in which an ultrasound diagnostic transducer (a linear array) is employed to passively sense the wire signals generated by an unfocused ultrasound transducer and the cavitation signals generated by a focused therapeutic ultrasound transducer in a flow phantom. The AtPAM image quality is assessed by main-lobe width (MLW), intensity valley value (IVV), area of pixels (AOP), signal-to-interference ratio (SIR), and signal-to-noise ratio (SNR). RESULTS The single-wire experimental results show that compared to the DS algorithm, the DMS algorithm leads to an enhanced AtPAM image with a decreased transverse MLW of 0.15 mm and an improved SIR and SNR of 31.50 and 18.77 dB. For the four-wire images, the transverse (axial) IVV is decreased by 18.37 dB (13.11 dB) and the SIR (the SNR) is increased by 26.13 dB (18.47 dB) when using the DMS algorithm. The cavitation activity is better highlighted by DMS-based AtPAM, which decreases the AOP by 0.81 mm2 (-10-dB level) and 4.43 mm2 (-20-dB level) and increases the SIR and SNR by 20.14 and 10.48 dB respectively. The pixel distributions of AtPAM images of both wires and cavitation activity also indicate a better suppression of the DMS algorithm in sidelobe and noise. CONCLUSIONS The experimental results illustrate that the DMS algorithm can improve the image quality of AtPAM compared to the DS algorithm. DMS-based AtPAM is beneficial for detecting cavitation activity during short-pulse ultrasound exposure with high resolution, and further for monitoring short-pulse ultrasound therapy.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ruibo Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chunye Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Zhang J, Zheng T, Tang L, Qi H, Wu X, Zhu L. Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel. MICROMACHINES 2022; 13:mi13081337. [PMID: 36014259 PMCID: PMC9414155 DOI: 10.3390/mi13081337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 05/21/2023]
Abstract
BAW-based micromixers usually achieve mixing enhancement with acoustic-induced bubbles, while SAW-based micromixers usually enhance mixing efficiency by varying the configuration of IDTs and microchannels. In this paper, bubble-enhanced acoustic mixing induced by standing surface acoustic waves (SSAWs) in a microchannel is proposed and experimentally demonstrated. Significant enhancement in the mixing efficiency was achieved after the bubbles were stimulated in our acoustofluidic microdevice. With an applied voltage of 5 V, 50 times amplified, the proposed mixing microdevice could achieve 90.8% mixing efficiency within 60 s at a flow rate of 240 μL/h. The bubbles were generated from acoustic cavitation assisted by the temperature increase resulting from the viscous absorption of acoustic energy. Our results also suggest that a temperature increase is harmful to microfluidic devices and temperature monitoring. Regulation is essential, especially in chemical and biological applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China
- Correspondence:
| | - Tengfei Zheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lin Tang
- School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Hui Qi
- School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Xiaoyu Wu
- School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Linlong Zhu
- School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China
| |
Collapse
|
12
|
Burgess MT, Aliabouzar M, Aguilar C, Fabiilli ML, Ketterling JA. Slow-Flow Ultrasound Localization Microscopy Using Recondensation of Perfluoropentane Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:743-759. [PMID: 35125244 PMCID: PMC8983467 DOI: 10.1016/j.ultrasmedbio.2021.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging, super-resolution imaging technique for detailed mapping of the microvascular structure and flow velocity via subwavelength localization and tracking of microbubbles. Because microbubbles rely on blood flow for movement throughout the vascular space, acquisition times can be long in the smallest, low-flow microvessels. In addition, detection of microbubbles in low-flow regions can be difficult because of minimal separation of microbubble signal from tissue. Nanoscale, phase-change contrast agents (PCCAs) have emerged as a switchable, intermittent or persisting contrast agent for ULM via acoustic droplet vaporization (ADV). Here, the focus is on characterizing the spatiotemporal contrast properties of less volatile perfluoropentane (PFP) PCCAs. The results indicate that at physiological temperature, nanoscale PFP PCCAs with diameters less than 100 nm disappear within microseconds after ADV with high-frequency ultrasound (16 MHz, 5- to 6-MPa peak negative pressure) and that nanoscale PFP PCCAs have an inherent deactivation mechanism via immediate recondensation after ADV. This "blinking" on-and-off contrast signal allowed separation of flow in an in vitro flow phantom, regardless of flow conditions, although with a need for some replenishment at very low flow conditions to maintain count rate. This blinking behavior allows for rapid spatial mapping in areas of low or no flow with ULM, but limits velocity tracking because there is no stable bubble formation with nanoscale PFP PCCAs.
Collapse
Affiliation(s)
- Mark T Burgess
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA.
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Aguilar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Ketterling
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA
| |
Collapse
|
13
|
Jeong MK, Choi MJ. A Novel Approach for the Detection of Every Significant Collapsing Bubble in Passive Cavitation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1288-1300. [PMID: 35167448 DOI: 10.1109/tuffc.2022.3151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Passive cavitation image (PCI) shows the power distribution of the acoustic emissions resulting from cavitation bubble collapses. The conventional PCI convolves the emitted cavitation signals with the point spread function of an imaging system, and it suffers from a low spatial resolution and contrast due to the increased sidelobe artifacts accumulated during the temporal integral process. To overcome the problems, the present study considers a 3-D time history of instantaneous PCIs where cavitation occurs at the local maxima of the main lobes of the beamformed cavitation field surrounded by the sidelobes largely spreading out in a time-space domain. A spatial and temporal gating technique was employed to detect the local maxima so that cavitation bubbles can be identified with their collapsing strength. The proposed approach was verified by the simulation for single and multiple cavitation bubbles, proving that it accurately detects the location and strength of the collapsing bubbles. An experimental test was also carried out for the cavitation bubbles produced by a clinical extracorporeal shock wave therapeutic device, which underpins that the proposed method successfully identifies every individual cavitation bubble.
Collapse
|
14
|
Jeong MK, Choi MJ, Kwon SJ. High-spatial-resolution, instantaneous passive cavitation imaging with temporal resolution in histotripsy: a simulation study. Ultrasonography 2022; 41:566-577. [PMID: 35535468 PMCID: PMC9262664 DOI: 10.14366/usg.21153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Purpose In histotripsy, a shock wave is transmitted, and the resulting inertial bubble cavitation that disrupts tissue is used for treatment. Therefore, it is necessary to detect when cavitation occurs and track the position of cavitation occurrence using a new passive cavitation (PC) imaging method. Methods An integrated PC image, which is constructed by collecting the focused signals at all times, does not provide information on when cavitation occurs and has poor spatial resolution. To solve this problem, we constructed instantaneous PC images by applying delay and sum beamforming at instantaneous time instants. By calculating instantaneous PC images at all data acquisition times, the proposed method can detect cavitation when it occurs by using the property that when signals from the cavitation are focused, their amplitude becomes large, and it can obtain a high-resolution PC image by masking out side lobes in the vicinity of cavitation. Results Ultrasound image simulation confirmed that the proposed method has higher resolution than conventional integrated PC imaging and showed that it can determine the position and time of cavitation occurrence as well as the signal strength. Conclusion Since the proposed novel PC imaging method can detect each cavitation separately when the incidence of cavitations is low, it can be used to monitor the treatment process of shock wave therapy and histotripsy, in which cavitation is an important mechanism of treatment.
Collapse
Affiliation(s)
- Mok Kun Jeong
- Department of Electronic Engineering, Daejin University, Pocheon, Korea
| | - Min Joo Choi
- Department of Medicine, Jeju National University, Jeju, Korea
| | - Sung Jae Kwon
- Division of IT Convergence Engineering, Daejin University, Pocheon, Korea
| |
Collapse
|
15
|
Jiang Z, Sujarittam K, Yildiz BI, Dickinson RJ, Choi JJ. Passive Cavitation Detection With a Needle Hydrophone Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:233-240. [PMID: 34648439 DOI: 10.1109/tuffc.2021.3120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic ultrasound and microbubble technologies seek to drive systemically administered microbubbles into oscillations that safely manipulate tissue or release drugs. Such procedures often detect the unique acoustic emissions from microbubbles with the intention of using this feedback to control the microbubble activity. However, most sensor systems reported introduce distortions to the acoustic signal. Acoustic shockwaves, a key emission from microbubbles, are largely absent in reported recording, possibly due to the sensors being too large or too narrowband, or having strong phase distortions. Here, we built a sensor array that countered such limitations with small, broadband sensors and a low-phase distorting material. We built eight needle hydrophones with polyvinylidene fluoride (PVDF, diameter: 2 mm) then fit them into a 3-D-printed scaffold in a two-layered, staggered arrangement. Using this array, we monitored microbubbles exposed to therapeutically relevant ultrasound pulses (center frequency: 0.5 MHz, peak-rarefactional pressure: 130-597 kPa, pulselength: four cycles). Our tests revealed that the hydrophones were broadband with the best having a sensitivity of -224.8 dB ± 3.2 dB re 1 V/ μ Pa from 1 to 15 MHz. The array was able to capture shockwaves generated by microbubbles. The signal-to-noise ratio (SNR) of the array was approximately two times higher than individual hydrophones. Also, the array could localize microbubbles (-3 dB lateral resolution: 2.37 mm) and determine the cavitation threshold (between 161 and 254 kPa). Thus, the array accurately monitored and localized microbubble activities, and may be an important technological step toward better feedback control methods and safer and more effective treatments.
Collapse
|
16
|
Li M, Gu J, Vu T, Sankin G, Zhong P, Yao J, Jing Y. Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2361-2369. [PMID: 33635787 PMCID: PMC8269954 DOI: 10.1109/tuffc.2021.3062357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery (FUS). PCM can be used as an adjunct to magnetic resonance imaging to provide crucial information on the safety and efficacy of FUS. The most widely used algorithm for PCM is delay-and-sum (DAS). One of the major limitations of DAS is its suboptimal computational efficiency. Although frequency-domain DAS can partially resolve this issue, such an algorithm is not suitable for imaging the evolution of bubble activity in real time and for cases in which cavitation events occur asynchronously. This study investigates a transient angular spectrum (AS) approach for PCM. The working principle of this approach is to backpropagate the received signal to the domain of interest and reconstruct the spatial-temporal wavefield encoded with the bubble location and collapse time. The transient AS approach is validated using an in silico model and water bath experiments. It is found that the transient AS approach yields similar results to DAS, but it is one order of magnitude faster. The results obtained by this study suggest that the transient AS approach is promising for fast and accurate PCM.
Collapse
|
17
|
Telichko AV, Lee T, Jakovljevic M, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1184-1197. [PMID: 33141665 PMCID: PMC8486001 DOI: 10.1109/tuffc.2020.3035696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Passive cavitation mapping (PCM) algorithms for diagnostic ultrasound arrays based on time exposure acoustics (TEA) exhibit poor axial resolution, which is in part due to the diffraction-limited point spread function of the imaging system and poor rejection by the delay-and-sum beamformer. In this article, we adapt a method for speed of sound estimation to be utilized as a cavitation source localization (CSL) approach. This method utilizes a hyperbolic fit to the arrival times of the cavitation signals in the aperture domain, and the coefficients of the fit are related to the position of the cavitation source. Wavefronts exhibiting poor fit to the hyperbolic function are corrected to yield improved source localization. We demonstrate through simulations that this method is capable of accurate estimation of the origin of coherent spherical waves radiating from cavitation/point sources. The average localization error from simulated microbubble sources was 0.12 ± 0.12mm ( 0.15 ± 0.14λ0 for a 1.78-MHz transmit frequency). In simulations of two simultaneous cavitation sources, the proposed technique had an average localization error of 0.2mm ( 0.23λ0 ), whereas conventional TEA had an average localization error of 0.81mm ( 0.97λ0 ). The reconstructed PCM-CSL image showed a significant improvement in resolution compared with the PCM-TEA approach.
Collapse
|
18
|
Thies M, Oelze ML. Real-Time Visualization of a Focused Ultrasound Beam Using Ultrasonic Backscatter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1213-1223. [PMID: 33147143 PMCID: PMC8081032 DOI: 10.1109/tuffc.2020.3035784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Focused ultrasound (FUS) therapies induce therapeutic effects in localized tissues using either temperature elevations or mechanical stresses caused by an ultrasound wave. During an FUS therapy, it is crucial to continuously monitor the position of the FUS beam in order to correct for tissue motion and keep the focus within the target region. Toward the goal of achieving real-time monitoring for FUS therapies, we have developed a method for the real-time visualization of an FUS beam using ultrasonic backscatter. The intensity field of an FUS beam was reconstructed using backscatter from an FUS pulse received by an imaging array and then overlaid onto a B-mode image captured using the same imaging array. The FUS beam visualization allows one to monitor the position and extent of the FUS beam in the context of the surrounding medium. Variations in the scattering properties of the medium were corrected in the FUS beam reconstruction by normalizing based on the echogenicity of the coaligned B-mode image. On average, normalizing by echogenicity reduced the mean square error between FUS beam reconstructions in nonhomogeneous regions of a phantom and baseline homogeneous regions by 21.61. FUS beam visualizations were achieved, using a single diagnostic imaging array as both an FUS source and an imaging probe, in a tissue-mimicking phantom and a rat tumor in vivo with a frame rate of 25-30 frames/s.
Collapse
|
19
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Wear KA. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:358-375. [PMID: 33186102 PMCID: PMC8325172 DOI: 10.1109/tuffc.2020.3037946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.
Collapse
|
21
|
Li M, Sankin G, Vu T, Yao J, Zhong P. Tri-modality cavitation mapping in shock wave lithotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1258. [PMID: 33639826 PMCID: PMC8329839 DOI: 10.1121/10.0003555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Shock wave lithotripsy (SWL) has been widely used for non-invasive treatment of kidney stones. Cavitation plays an important role in stone fragmentation, yet it may also contribute to renal injury during SWL. It is therefore crucial to determine the spatiotemporal distributions of cavitation activities to maximize stone fragmentation while minimizing tissue injury. Traditional cavitation detection methods include high-speed optical imaging, active cavitation mapping (ACM), and passive cavitation mapping (PCM). While each of the three methods provides unique information about the dynamics of the bubbles, PCM has most practical applications in biological tissues. To image the dynamics of cavitation bubble collapse, we previously developed a sliding-window PCM (SW-PCM) method to identify each bubble collapse with high temporal and spatial resolution. In this work, to further validate and optimize the SW-PCM method, we have developed tri-modality cavitation imaging that includes three-dimensional high-speed optical imaging, ACM, and PCM seamlessly integrated in a single system. Using the tri-modality system, we imaged and analyzed laser-induced single cavitation bubbles in both free field and constricted space and shock wave-induced cavitation clusters. Collectively, our results have demonstrated the high reliability and spatial-temporal accuracy of the SW-PCM approach, which paves the way for the future in vivo applications on large animals and humans in SWL.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Georgy Sankin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
22
|
Zhao C, Parab ND, Li X, Fezzaa K, Tan W, Rollett AD, Sun T. Critical instability at moving keyhole tip generates porosity in laser melting. Science 2020; 370:1080-1086. [PMID: 33243887 DOI: 10.1126/science.abd1587] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 11/03/2022]
Abstract
Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low-scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects.
Collapse
Affiliation(s)
- Cang Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China. .,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
| | - Niranjan D Parab
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xuxiao Li
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Kamel Fezzaa
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wenda Tan
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthony D Rollett
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. .,NextManufacturing Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tao Sun
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
23
|
Asquier N, Chapelon JY, Lafon C. Evaluation of the Uncertainty of Passive Cavitation Measurements for Blood-Brain Barrier Disruption Monitoring. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2736-2743. [PMID: 32653206 DOI: 10.1016/j.ultrasmedbio.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ultrasound combined with intravenous injection of microbubbles is a technique that can be used to temporarily disrupt the blood-brain barrier. Transcranial monitoring of cavitation can be done with one or more passive cavitation detectors (PCDs). However, the positioning of the PCDs relative to the cavitation site and the attenuation of these signals by the skull are two sources of error in the quantification of cavitation activity. The aim of this study was to evaluate in vitro the amplitude variation of cavitation signals that can be expected for an excised porcine skull model. The variation caused by the relative positioning of the PCD with respect to the cavitation site was quantified. A position-based correction of the signal amplitude was evaluated. Pig skull samples were used to assess variation in signal amplitude caused by bone. The overall coefficient of variation of the signals owing to these measurement biases was estimated at 30.8%.
Collapse
Affiliation(s)
- Nicolas Asquier
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France.
| | - Jean-Yves Chapelon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
24
|
Wang S, Hossack JA, Klibanov AL. From Anatomy to Functional and Molecular Biomarker Imaging and Therapy: Ultrasound Is Safe, Ultrafast, Portable, and Inexpensive. Invest Radiol 2020; 55:559-572. [PMID: 32776766 PMCID: PMC10290890 DOI: 10.1097/rli.0000000000000675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasound is the most widely used medical imaging modality worldwide. It is abundant, extremely safe, portable, and inexpensive. In this review, we consider some of the current development trends for ultrasound imaging, which build upon its current strength and the popularity it experiences among medical imaging professional users.Ultrasound has rapidly expanded beyond traditional radiology departments and cardiology practices. Computing power and data processing capabilities of commonly available electronics put ultrasound systems in a lab coat pocket or on a user's mobile phone. Taking advantage of new contributions and discoveries in ultrasound physics, signal processing algorithms, and electronics, the performance of ultrasound systems and transducers have progressed in terms of them becoming smaller, with higher imaging performance, and having lower cost. Ultrasound operates in real time, now at ultrafast speeds; kilohertz frame rates are already achieved by many systems.Ultrasound has progressed beyond anatomical imaging and monitoring blood flow in large vessels. With clinical approval of ultrasound contrast agents (gas-filled microbubbles) that are administered in the bloodstream, tissue perfusion studies are now routine. Through the use of modern ultrasound pulse sequences, individual microbubbles, with subpicogram mass, can be detected and observed in real time, many centimeters deep in the body. Ultrasound imaging has broken the wavelength barrier; by tracking positions of microbubbles within the vasculature, superresolution imaging has been made possible. Ultrasound can now trace the smallest vessels and capillaries, and obtain blood velocity data in those vessels.Molecular ultrasound imaging has now moved closer to clinic; the use of microbubbles with a specific affinity to endothelial biomarkers allows selective accumulation and retention of ultrasound contrast in the areas of ischemic injury, inflammation, or neoangiogenesis. This will aid in noninvasive molecular imaging and may provide additional help with real-time guidance of biopsy, surgery, and ablation procedures.The ultrasound field can be tightly focused inside the body, many centimeters deep, with millimeter precision, and ablate lesions by energy deposition, with thermal or mechanical bioeffects. Some of such treatments are already in clinical use, with more indications progressing through the clinical trial stage. In conjunction with intravascular microbubbles, focused ultrasound can be used for tissue-specific drug delivery; localized triggered release of sequestered drugs from particles in the bloodstream may take time to get to clinic. A combination of intravascular microbubbles with circulating drug and low-power ultrasound allows transient opening of vascular endothelial barriers, including blood-brain barrier; this approach has reached clinical trial stage. Therefore, the drugs that normally would not be getting to the target tissue in the brain will now have an opportunity to produce therapeutic efficacy.Overall, medical ultrasound is developing at a brisk rate, even in an environment where other imaging modalities are also advancing rapidly and may be considered more lucrative. With all the current advances that we discuss, and many more to come, ultrasound may help solve many problems that modern medicine is facing.
Collapse
|
25
|
Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, Aryal M, Airan RD. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci 2020; 14:675. [PMID: 32760238 PMCID: PMC7372945 DOI: 10.3389/fnins.2020.00675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Tommaso Di Ianni
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daivik B Vyas
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Zhenbo Huang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sunmee Park
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Niloufar Hosseini-Nassab
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Muna Aryal
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Raag D Airan
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Lu S, Li R, Zhao Y, Yu X, Wang D, Wan M. Dual apodization with cross‐correlation combined with robust Capon beamformer applied to ultrasound passive cavitation mapping. Med Phys 2020; 47:2182-2196. [DOI: 10.1002/mp.14093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Yan Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| |
Collapse
|
28
|
Pouliopoulos AN, Wu SY, Burgess MT, Karakatsani ME, Kamimura HAS, Konofagou EE. A Clinical System for Non-invasive Blood-Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:73-89. [PMID: 31668690 PMCID: PMC6879801 DOI: 10.1016/j.ultrasmedbio.2019.09.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 05/07/2023]
Abstract
Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is currently being investigated in clinical trials. Here, we describe a portable clinical system with a therapeutic transducer suitable for humans, which eliminates the need for in-line magnetic resonance imaging (MRI) guidance. A neuronavigation-guided 0.25-MHz single-element FUS transducer was developed for non-invasive clinical BBB opening. Numerical simulations and experiments were performed to determine the characteristics of the FUS beam within a human skull. We also validated the feasibility of BBB opening obtained with this system in two non-human primates using U.S. Food and Drug Administration (FDA)-approved treatment parameters. Ultrasound propagation through a human skull fragment caused 44.4 ± 1% pressure attenuation at a normal incidence angle, while the focal size decreased by 3.3 ± 1.4% and 3.9 ± 1.8% along the lateral and axial dimension, respectively. Measured lateral and axial shifts were 0.5 ± 0.4 mm and 2.1 ± 1.1 mm, while simulated shifts were 0.1 ± 0.2 mm and 6.1 ± 2.4 mm, respectively. A 1.5-MHz passive cavitation detector transcranially detected cavitation signals of Definity microbubbles flowing through a vessel-mimicking phantom. T1-weighted MRI confirmed a 153 ± 5.5 mm3 BBB opening in two non-human primates at a mechanical index of 0.4, using Definity microbubbles at the FDA-approved dose for imaging applications, without edema or hemorrhage. In conclusion, we developed a portable system for non-invasive BBB opening in humans, which can be achieved at clinically relevant ultrasound exposures without the need for in-line MRI guidance. The proposed FUS system may accelerate the adoption of non-invasive FUS-mediated therapies due to its fast application, low cost and portability.
Collapse
Affiliation(s)
| | - Shih-Ying Wu
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | - Mark T Burgess
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | | | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA; Department of Radiology, Columbia University, New York City, New York, USA.
| |
Collapse
|
29
|
Lu S, Li R, Yu X, Wang D, Wan M. Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation. Med Phys 2019; 46:4441-4454. [PMID: 31309568 DOI: 10.1002/mp.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Passive acoustic mapping (PAM) has been proposed as a means of monitoring ultrasound therapy, particularly nonthermal cavitation-mediated applications. In PAM, the most common beamforming algorithm is a delay, sum, and integrate (DSAI) approach. However, using DSAI leads to low-quality images for the case where a narrow-aperture receiving array such as a standard B-mode linear array is used. This study aims to propose an enhanced linear-array PAM algorithm based on delay, multiply, sum, and integrate (DMSAI). METHODS In the proposed algorithm, before summation, the delayed signals are combinatorially coupled and multiplied, which means that the beamformed output of the proposed algorithm is the spatial coherence of received acoustic emissions. We tested the performance of the proposed DMSAI using both simulated and experimental data and compared it with DSAI. The reconstructed cavitation images were evaluated quantitatively by using source location errors between the two algorithms, full width at half maximum (FWHM), size of point spread function (A50 area), signal-to-noise ratio (SNR), and computational time. RESULTS The results of simulations and experiments for single cavitation source show that, by introducing DMSAI, the FWHM and the A50 area are reduced and the SNR is improved compared with those obtained by DSAI. The simulation results for two symmetric or nonsymmetric cavitation sources and multiple cavitation sources show that DMSAI can significantly reduce the A50 area and improve the SNR, therefore improving the detectability of multiple cavitation sources. CONCLUSIONS The results indicate that the proposed DMSAI algorithm outperforms the conventionally used DSAI algorithm. This work may have the potential of providing an appropriate method for ultrasound therapy monitoring.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
30
|
Burgess MT, Konofagou EE. Fast qualitative two-dimensional mapping of ultrasound fields with acoustic cavitation-enhanced ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:EL158. [PMID: 31472567 PMCID: PMC6863696 DOI: 10.1121/1.5122194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Characterization of ultrasound fields is a routine procedure for both diagnostic and therapeutic ultrasound. Quantitative field mapping with a calibrated hydrophone and multi-axis positioning system can be difficult and time consuming. In this study, the use of acoustic cavitation field mapping as a qualitative surrogate to acoustic pressure field mapping, albeit without acoustic pressure values is demonstrated. This technique allows for fast qualitative mapping of ultrasound fields and thereby functionality of the corresponding transducers, in a matter of seconds. In addition, this technique could be used to rapidly image in vivo acoustic cavitation fields during therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Mark T Burgess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, ,
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, ,
| |
Collapse
|
31
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
32
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238#suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|
33
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:EL78. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|
34
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
35
|
Chitnis PV, Farny CH, Roy RA. SVD-Based Separation of Stable and Inertial Cavitation Signals Applied to Passive Cavitation Mapping During HIFU. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:857-866. [PMID: 30762545 DOI: 10.1109/tuffc.2019.2898917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detection of inertial and stable cavitation is important for guiding high-intensity focused ultrasound (HIFU). Acoustic transducers can passively detect broadband noise from inertial cavitation and the scattering of HIFU harmonics from stable cavitation bubbles. Conventional approaches to cavitation noise diagnostics typically involve computing the Fourier transform of the time-domain noise signal, applying a custom comb filter to isolate the frequency components of interest, followed by an inverse Fourier transform. We present an alternative technique based on singular value decomposition (SVD) that efficiently separates the broadband emissions and HIFU harmonics. Spatiotemporally resolved cavitation detection was achieved using a 128-element, 5-MHz linear-array ultrasound imaging system operating in the receive mode at 15 frames/s. A 1.1-MHz transducer delivered HIFU to tissue-mimicking phantoms and excised liver tissue for a duration of 5 s. Beamformed radio frequency signals corresponding to each scan line in a frame were assembled into a matrix, and SVD was performed. Spectra of the singular vectors obtained from a tissue-mimicking gel phantom were analyzed by computing the peak ratio ( R ), defined as the ratio of the peak of its fifth-order polynomial fit and the maximum spectral peak. Singular vectors that produced an were classified as those representing stable cavitation, i.e., predominantly containing harmonics of HIFU. The projection of data onto this singular base reproduced stable cavitation signals. Similarly, singular vectors that produced an were classified as those predominantly containing broadband noise associated with inertial cavitation. These singular vectors were used to isolate the inertial cavitation signal. The R -value thresholds determined using gel data were then employed to analyze cavitation data obtained from bovine liver ex vivo. The SVD-based method faithfully reproduced the structural details in the spatiotemporal cavitation maps produced using the more cumbersome comb-filter approach with a maximum root-mean-squared error of 10%.
Collapse
|
36
|
Jones RM, Hynynen K. Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability. Br J Radiol 2019; 92:20180601. [PMID: 30507302 DOI: 10.1259/bjr.20180601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcranial focused ultrasound (FUS) combined with intravenously circulating microbubbles can transiently and selectively increase blood-brain barrier permeability to enable targeted drug delivery to the central nervous system, and is a technique that has the potential to revolutionize the way neurological diseases are managed in medical practice. Clinical testing of this approach is currently underway in patients with brain tumors, early Alzheimer's disease, and amyotrophic lateral sclerosis. A major challenge that needs to be addressed in order for widespread clinical adoption of FUS-mediated blood-brain barrier permeabilization to occur is the development of systems and methods for real-time treatment monitoring and control, to ensure that safe and effective acoustic exposure levels are maintained throughout the procedures. This review gives a basic overview of the oscillation dynamics, acoustic emissions, and biological effects associated with ultrasound-stimulated microbubbles in vivo, and provides a summary of recent advances in acoustic-based strategies for detecting, controlling, and mapping microbubble activity in the brain. Further development of next-generation clinical FUS brain devices tailored towards microbubble-mediated applications is warranted and required for translation of this potentially disruptive technology into routine clinical practice.
Collapse
Affiliation(s)
- Ryan M Jones
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada
| | - Kullervo Hynynen
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada.,3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
37
|
Çavuşoğlu M, Zhang J, Ielacqua GD, Pellegrini G, Signorell RD, Papachristodoulou A, Brambilla D, Roth P, Weller M, Rudin M, Martin E, Leroux JC, Werner B. Closed-loop cavitation control for focused ultrasound-mediated blood-brain barrier opening by long-circulating microbubbles. Phys Med Biol 2019; 64:045012. [PMID: 30577029 DOI: 10.1088/1361-6560/aafaa5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Focused ultrasound (FUS) exposure in the presence of microbubbles (MBs) has been successfully used in the delivery of various sizes of therapeutic molecules across the blood-brain barrier (BBB). While acoustic pressure is correlated with the BBB opening size, real-time control of BBB opening to avoid vascular and neural damage is still a challenge. This arises mainly from the variability of FUS-MB interactions due to the variations of animal-specific metabolic environment and specific experimental setup. In this study, we demonstrate a closed-loop cavitation control framework to induce BBB opening for delivering large therapeutic molecules without causing macro tissue damages. To this end, we performed in mice long-term (5 min) cavitation monitoring facilitated by using long-circulating MBs. Monitoring the long-term temporal kinetics of the MBs under varying level of FUS pressure allowed to identify in situ, animal specific activity regimes forming pressure-dependent activity bands. This enables to determine the boundaries of each activity band (i.e. steady oscillation, transition, inertial cavitation) independent from the physical and physiological dynamics of the experiment. However, such a calibration approach is time consuming and to speed up characterization of the in situ, animal specific FUS-MB dynamics, we tested a novel method called 'pre-calibration' that closely reproduces the results of long-term monitoring but with a much shorter duration. Once the activity bands are determined from the pre-calibration method, an operation band can be selected around the desired cavitation dose. To drive cavitation in the selected operation band, we developed an adaptive, closed-loop controller that updates the acoustic pressure between each sonication based on measured cavitation dose. Finally, we quantitatively assessed the safety of different activity bands and validated the proposed methods and controller framework. The proposed framework serves to optimize the FUS pressure instantly to maintain the targeted cavitation level while improving safety control.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Center for MR-Research, University Children's Hospital Zurich, 8032 Zurich, Switzerland. Institute for Biomedical Engineering, ETH Zurich, 8091 Zurich, Switzerland. Information Technology and Electrical Engineering Department, Swiss Federal Institute of Technology, Institute for Biomedical Engineering, ETH Zurich, ETZ F 64.1, Gloriastrasse 35, 8092, Zurich, Switzerland. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Anthony GJ, Bader KB, Wang J, Zamora M, Ostdiek A, Antic T, Krueger S, Weiss S, Trogler WC, Blair SL, Kummel AC, Sammet S. MRI-guided transurethral insonation of silica-shell phase-shift emulsions in the prostate with an advanced navigation platform. Med Phys 2019; 46:774-788. [PMID: 30414276 PMCID: PMC6367027 DOI: 10.1002/mp.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
PURPOSE In this study, the efficacy of transurethral prostate ablation in the presence of silica-shell ultrasound-triggered phase-shift emulsions (sUPEs) doped with MR contrast was evaluated. The influence of sUPEs on MR imaging assessment of the ablation zone was also investigated. METHODS sUPEs were doped with a magnetic resonance (MR) contrast agent, Gd2 O3 , to assess ultrasound transition. Injections of saline (sham), saline and sUPEs alone, and saline and sUPEs with Optison microbubbles were performed under guidance of a prototype interventional MRI navigation platform in a healthy canine prostate. Treatment arms were evaluated for differences in lesion size, T1 contrast, and temperature. In addition, non-perfused areas (NPAs) on dynamic contrast-enhanced (DCE) MRI, 55°C isotherms, and areas of 240 cumulative equivalent minutes at 43°C (CEM43 ) dose or greater computed from MR thermometry were measured and correlated with ablated areas indicated by histology. RESULTS For treatment arms including sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area ranged from 0.96-0.99, 0.98-0.99, and 0.91-0.99, respectively. In the absence of sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area were 0.69, 0.54, and 0.50, respectively. Across all treatment arms, the areas of thermal tissue damage and NPAs were not significantly different (P = 0.47). Areas denoted by 55°C isotherms and 240 CEM43 dose boundaries were significantly larger than the areas of thermal damage, again for all treatment arms (P = 0.009 and 0.003, respectively). No significant differences in lesion size, T1 contrast, or temperature were observed between any of the treatment arms (P > 0.0167). Lesions exhibiting thermal fixation on histological analysis were present in six of nine insonations involving sUPE injections and one of five insonations involving saline sham injections. Significantly larger areas (P = 0.002), higher temperatures (P = 0.004), and more frequent ring patterns of restricted diffusion on ex vivo diffusion-weighted imaging (P = 0.005) were apparent in lesions with thermal fixation. CONCLUSIONS T1 contrast suggesting sUPE transition was not evident in sUPE treatment arms. The use of MR imaging metrics to predict prostate ablation was not diminished by the presence of sUPEs. Lesions generated in the presence of sUPEs exhibited more frequent thermal fixation, though there were no significant changes in the ablation areas when comparing arms with and without sUPEs. Thermal fixation corresponded to some qualitative imaging features.
Collapse
Affiliation(s)
| | | | - James Wang
- The University of California San DiegoSan DiegoCA92093USA
| | | | | | | | | | | | | | - Sarah L. Blair
- The University of California San DiegoSan DiegoCA92093USA
| | | | | |
Collapse
|
39
|
Suarez Escudero D, Goudot G, Vion M, Tanter M, Pernot M. 2D and 3D real-time passive cavitation imaging of pulsed cavitation ultrasound therapy in moving tissues. Phys Med Biol 2018; 63:235028. [PMID: 30520419 DOI: 10.1088/1361-6560/aaef68] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulsed cavitation ultrasound therapy (PCUT) is an effective non-invasive therapeutic approach in various medical indications that relies on the mechanical effects generated by cavitation bubbles. Even though limited by the poor contrast, conventional ultrasound B-Mode imaging has been widely used for the guidance and monitoring of the therapeutic procedure, allowing the visualization of the cavitation bubble cloud. However, the visualization of the bubble cloud is often limited in deep organs such as the liver and the heart and remains moreover completely subjective for the operator. Our goal is to develop a new imaging mode to better identify the cavitation cloud. Active and passive cavitation imaging methods have been developed but none of them has been able to locate the cavitation bubble created by PCUT in real-time and in moving organs. In this paper we propose a passive ultrasound imaging approach combined with a spatiotemporal singular value decomposition filter to detect and map the bubble cloud with high sensitivity and high contrast. In moving applications at a maximal motion speed of 10 mm s-1, the contrast-to-noise ratio for passive cavitation imaging is up to 10 times higher than for active cavitation imaging, with a temporal resolution of about 100 ms. The mapping of the bubble cloud can be overlaid in real-time to the conventional B-Mode, which permits to locate the cavitation phenomena in relation to the anatomic image. Finally, we extend the technique to volumetric imaging and show its feasibility on moving phantoms.
Collapse
Affiliation(s)
- Daniel Suarez Escudero
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris 7, 17 rue Moreau, 75012 Paris, France. Cardiawave SA, 29 rue du Faubourg Saint Jacques, 75014, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Boulos P, Varray F, Poizat A, Ramalli A, Gilles B, Bera JC, Cachard C. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2301-2310. [PMID: 30273149 DOI: 10.1109/tuffc.2018.2871983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound (US) cavitation is currently being explored for low-invasive therapy techniques applied to a wide panel of pathologies. Because of the random behavior of cavitation, a real-time spatial monitoring system may be required. For this purpose, the US passive imaging techniques have been recently investigated. In particular, the passive acoustic mapping (PAM) beamforming method enables the reconstruction of cavitation activity maps by beamforming acoustic signals passively recorded by an array transducer. In this paper, an optimized version of PAM, PAM weighted with a phase coherence factor (PAM-PCF), is considered. A general validation process is developed including simulations on a point source and experiments on a wire. Furthermore, using a focused regulated US-induced cavitation generator, reproducible cavitation experiments are conducted in water and in agar gel. The spatial behavior of a bubble cavitation cloud is determined using the PAM-PCF beamforming method to localize the focal cavitation point in two perpendicular imaging planes.
Collapse
|
41
|
Lyka E, Coviello CM, Paverd C, Gray MD, Coussios CC. Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2582-2592. [PMID: 29994701 DOI: 10.1109/tmi.2018.2843291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening, and histotripsy. Passive acoustic mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the robust capon beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed robust beamforming by linear programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. The RLPB is found via numerical simulations to improve resolvability over time exposure acoustics and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications.
Collapse
|
42
|
Patel A, Schoen SJ, Arvanitis CD. Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping. IEEE Trans Biomed Eng 2018; 66:10.1109/TBME.2018.2882337. [PMID: 30475706 PMCID: PMC6690816 DOI: 10.1109/tbme.2018.2882337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state controller that uses specific frequency bands of the microbubble acoustic emissions (harmonic, ultra-harmonic, etc.) to control cavitation activity (observer states). To attain both spatial and temporal control of cavitation activity with high signal to noise ratio, we implement a controller using fast frequency-selective passive acoustic mapping (PAM) based on the angular spectrum approach. The controller includes safety states based on the recorded broadband signal level and is able to reduce sensing inaccuracies with the inclusion of multiple frequency bands. In its simplest implementation the controller uses the peak intensity of the passive acoustic maps, reconstructed using the 3rd harmonic (4.896 × 0.019 MHz) of the excitation frequency. Our results show that the proposed real-time nonlinear state controller based on PAM is able to reach the targeted level of observer state (harmonic emissions) in less than 6 seconds and remain within 10 % of tolerance for the duration of the experiment (45 seconds). Similar response was observed using the acoustic emissions from single element passive cavitation detection, albeit with higher susceptibility to background noise and lack of spatial information. Importantly, the proposed PAM-based controller was able to control cavitation activity with spatial selectivity when cavitation existed simultaneously in multiple regions. The robustness of the controller is demonstrated using a range of controller parameters, multiple observer states concurrently (harmonic, ultra-harmonic, and broadband), noise levels (°6 to 12 dB SNR), and bubble concentrations (0.3 to 180 × 103 bubbles per microliter). More research in this direction under preclinical and clinical conditions is warranted.
Collapse
Affiliation(s)
- Arpit Patel
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Scott J. Schoen
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Costas D. Arvanitis
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
44
|
Gray MD, Coussios CC. Broadband Ultrasonic Attenuation Estimation and Compensation With Passive Acoustic Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1997-2011. [PMID: 30130184 DOI: 10.1109/tuffc.2018.2866171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Several active and passive techniques have been developed to detect, localize, and quantify cavitation activity during therapeutic ultrasound procedures. Much of the prior cavitation monitoring research has been conducted using lossless in vitro systems or small animal models in which path attenuation effects were minimal. However, the performance of these techniques may be substantially degraded by attenuation between the internal therapeutic target and the external monitoring system. As a further step toward clinical application of passive acoustic mapping (PAM), this paper presents methods for attenuation estimation and compensation based on broadband cavitation data measured with a linear ultrasound array. Soft tissue phantom experiment results are used to illustrate: 1) the impact of realistic attenuation on PAM; 2) the possibility of estimating attenuation from cavitation data; 3) cavitation source energy estimation following attenuation compensation; and 4) the impact of sound speed uncertainty on PAM-related processing. Cavitation-based estimates of attenuation were within 1.5%-6.2% of the values found from conventional through-transmission measurements. Tissue phantom attenuation reduced the PAM energy estimate by an order of magnitude, but array data compensation using the cavitation-based attenuation spectrum enabled recovery of the PAM energy estimate to within 2.9%-5.9% of the values computed in the absence of the phantom. Sound speed uncertainties were found to modestly impact attenuation-compensated PAM energies, inducing errors no larger than 28% for a 40-m/s path-averaged speed error. Together, the results indicate the potential to significantly enhance the quantitative capabilities of PAM for ensuring therapeutic safety and efficacy.
Collapse
|
45
|
Liu HL, Tsai CH, Jan CK, Chang HY, Huang SM, Li ML, Qiu W, Zheng H. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1756-1767. [PMID: 30010555 DOI: 10.1109/tuffc.2018.2855181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasound phased array system design to support transmit/receive operations for concurrent ultrasound exposure and backscattered focal beam reconstruction through a spherically focused ultrasound array. A 256-channel ultrasound transmission system was used to transmit focused ultrasonic energy (full 256 channels), with an extended implementation of multiple-channel receiving function (up to 64 channels) using the same 256-channel ultrasound array. A coherent backscatter-received beam formation algorithm was implemented to map the point spread function (PSF) and focal beam distribution under a free-field/transcranial environment setup, with the backscattering generated from a strong scatterer (a point reflector or a microbubble-perfused tube) or a weakly scattered tissue-mimicking graphite phantom. Our results showed that PSF and focal beam can be successfully reconstructed and visualized in free-field conditions and can also be transcranially reconstructed following skull-induced aberration correction. In vivo experiments were conducted to demonstrate its capability to preoperatively and semiquantitatively map a focal beam to guide blood-brain barrier opening. The proposed system may have potential for real-time guidance of ultrasound brain intervention, and may facilitate the design of a dual-mode ultrasound phased array for brain therapeutic applications.
Collapse
|
46
|
Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M. Ultrasound Localization Microscopy and Super-Resolution: A State of the Art. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1304-1320. [PMID: 29994673 DOI: 10.1109/tuffc.2018.2850811] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.
Collapse
|
47
|
Maimbourg G, Houdouin A, Santin M, Lehericy S, Tanter M, Aubry JF. Inside/outside the brain binary cavitation localization based on the lowpass filter effect of the skull on the harmonic content: a proof of concept study. Phys Med Biol 2018; 63:135012. [PMID: 29864024 DOI: 10.1088/1361-6560/aaca21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cavitation activity induced by ultrasound may occur during high intensity focused ultrasound (HIFU) treatment, due to bubble nucleation under high peak negative pressure, and during blood-brain-barrier (BBB) disruption, due to injected ultrasound contrast agents (UCAs). Such microbubble activity has to be monitored to assess the safety and efficiency of ultrasonic brain treatments. In this study, we aim at assessing whether cavitation occurs within cerebral tissue by binary discriminating cavitation activity originating from the inside or the outside of the skull. The results were obtained from both in vitro experiments mimicking BBB opening, by using UCA flow, and in vitro thermal necrosis in calf brain samples. The sonication was applied using a 1 MHz focused transducer and the acoustic response of the microbubbles was recorded with a wideband passive cavitation detector. The spectral content of the recorded signal was used to localize microbubble activity. Since the skull acts as a low pass filter, the ratio of high harmonics to low harmonics is lower for cavitation events located inside the skull compared to events outside the skull. Experiments showed that the ratio of the 5/2 ultraharmonic to the 1/2 subharmonic for binary localization cavitation activity achieves 100% sensitivity and specificity for both monkey and human skulls. The harmonic ratio of the fourth to the second harmonic provided 100% sensitivity and 96% and 46% specificity on a non-human primate for thermal necrosis and BBB opening, respectively. Nonetheless, the harmonic ratio remains promising for human applications, as the experiments showed 100% sensitivity and 100% specificity for both thermal necrosis and BBB opening through the human skull. The study requires further validation on a larger number of skull samples.
Collapse
Affiliation(s)
- Guillaume Maimbourg
- Institut Langevin, ESPCI Paris, CNRS UMR7587, INSERM U 979, F-75012, PSL Research University, Paris, France. Université Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Jones RM, Deng L, Leung K, McMahon D, O'Reilly MA, Hynynen K. Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening. Am J Cancer Res 2018; 8:2909-2926. [PMID: 29896293 PMCID: PMC5996357 DOI: 10.7150/thno.24911] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening recently entered clinical testing for targeted drug delivery to the brain. Sources of variability exist in the current procedures, motivating the development of real-time monitoring and control techniques to improve treatment safety and efficacy. Here we used three-dimensional (3D) transcranial microbubble imaging to calibrate FUS exposure levels for volumetric BBB opening. Methods: Using a sparse hemispherical transmit/receive ultrasound phased array, pulsed ultrasound was focused transcranially into the thalamus of rabbits during microbubble infusion and multi-channel 3D beamforming was performed online with receiver signals captured at the subharmonic frequency. Pressures were increased pulse-by-pulse until subharmonic activity was detected on acoustic imaging (psub), and tissue volumes surrounding the calibration point were exposed at 50-100%psub via rapid electronic beam steering. Results: Spatially-coherent subharmonic microbubble activity was successfully reconstructed transcranially in vivo during calibration sonications. Multi-point exposures induced volumetric regions of elevated BBB permeability assessed via contrast-enhanced magnetic resonance imaging (MRI). At exposure levels ≥75%psub, MRI and histological examination occasionally revealed tissue damage, whereas sonications at 50%psub were performed safely. Substantial intra-grid variability of FUS-induced bioeffects was observed via MRI, prompting future development of multi-point calibration schemes for improved treatment consistency. Receiver array sparsity and sensor configuration had substantial impacts on subharmonic detection sensitivity, and are factors that should be considered when designing next-generation clinical FUS brain therapy systems. Conclusion: Our findings suggest that 3D subharmonic imaging can be used to calibrate exposure levels for safe FUS-induced volumetric BBB opening, and should be explored further as a method for cavitation-mediated treatment guidance.
Collapse
|
49
|
Burgess MT, Apostolakis I, Konofagou EE. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles. Phys Med Biol 2018; 63:065009. [PMID: 29457587 PMCID: PMC5881390 DOI: 10.1088/1361-6560/aab05c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.
Collapse
Affiliation(s)
- M T Burgess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | |
Collapse
|
50
|
Macoskey JJ, Choi SW, Hall TL, Vlaisavljevich E, Lundt JE, Lee FT, Johnsen E, Cain CA, Xu Z. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation. Phys Med Biol 2018; 63:055013. [PMID: 29424711 DOI: 10.1088/1361-6560/aaae3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2 = 0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.
Collapse
Affiliation(s)
- J J Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|