1
|
Lu N, Yeats EM, Sukovich JR, Hall TL, Pandey AS, Xu Z. Treatment envelope of transcranial histotripsy: challenges and strategies to maximize the treatment location profile. Phys Med Biol 2024; 69:225006. [PMID: 39481233 PMCID: PMC11551913 DOI: 10.1088/1361-6560/ad8d9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
A 750 kHz, 360-element ultrasound array has been built for transcranial histotripsy applications. This study aims to evaluate its performance to determine whether this array is adequate for treating a wide range of brain locations through a human skull. Treatment location profiles in 2 excised human skulls were experimentally characterized based on passive cavitation mapping. Full-wave acoustic simulations were performed in 8 human skulls to analyze the ultrasound propagation at shallow targets in skulls with different properties. Results showed that histotripsy successfully generated cavitation from deep to shallow targets within 5 mm from the skull surface in the skull with high SDR and small thickness, whereas in the skull with low SDR and large thickness, the treatment envelope was limited up to 16 mm from the skull surface. Simulation results demonstrated that the treatment envelope was highly dependent on the skull acoustic properties. Pre-focal pressure hotspots were observed in both simulation and experiments when targeting near the skull. For each skull, the acoustic pressure loss increases significantly for shallow targets compared to central targets due to high attenuation, large incident angles, and pre-focal pressure hotspots. Strategies including array design optimization, pose optimization, and amplitude correction, are proposed to broaden the treatment envelope. This study identifies the capabilities and limitations of the 360-element transcranial histotripsy array and suggests strategies for designing the next-generation transcranial histotripsy array to expand the treatment location profile for a future clinical trial.
Collapse
Affiliation(s)
- Ning Lu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, United States of America
| | - Ellen M Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
2
|
Shan J, Du L, Wang X, Zhang S, Li Y, Xue S, Tang Q, Liu P. Ultrasound Trigger Ce-Based MOF Nanoenzyme For Efficient Thrombolytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304441. [PMID: 38576170 PMCID: PMC11132072 DOI: 10.1002/advs.202304441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Indexed: 04/06/2024]
Abstract
The inflammatory damage caused by thrombus formation and dissolution can increase the risk of thrombotic complications on top of cell death and organ dysfunction caused by thrombus itself. Therefore, a rapid and precise thrombolytic therapy strategy is in urgent need to effectively dissolve thrombus and resist oxidation simultaneously. In this study, Ce-UiO-66, a cerium-based metal-organic framework (Ce-MOF) with reactive oxygen species (ROS) scavenging properties, encapsulated by low-immunogenic mesenchymal stem cell membrane with inflammation-targeting properties, is used to construct a targeted nanomedicine Ce-UiO-CM. Ce-UiO-CM is applied in combination with external ultrasound stimulation for thrombolytic therapy in rat femoral artery. Ce-UiO-66 has abundant Ce (III)/Ce (IV) coupling sites that react with hydrogen peroxide (H2O2) to produce oxygen, exhibiting catalase (CAT) activity. The multi-cavity structure of Ce-UiO-66 can generate electron holes, and its pore channels can act as micro-reactors to further enhance its ROS scavenging capacity. Additionally, the porous structure of Ce-UiO-66 and the oxygen produced by its reaction with H2O2 may enhance the cavitation effects of ultrasound, thereby improving thrombolysis efficacy.
Collapse
Affiliation(s)
- Jianggui Shan
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ling Du
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xingang Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Sidi Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yiping Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Song Xue
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
3
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|
5
|
Morse R, Childers C, Nowak E, Rao J, Vlaisavljevich E. Catheter-Based Medical Device Biofilm Ablation Using Histotripsy: A Parameter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00203-X. [PMID: 37394375 DOI: 10.1016/j.ultrasmedbio.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Biofilm formation in medical catheters is a major source of hospital-acquired infections which can produce increased morbidity and mortality for patients. Histotripsy is a non-invasive, non-thermal focused ultrasound therapy and recently has been found to be effective at removal of biofilm from medical catheters. Previously established histotripsy methods for biofilm removal, however, would require several hours of use to effectively treat a full-length medical catheter. Here, we investigate the potential to increase the speed and efficiency with which biofilms can be ablated from catheters using histotripsy. METHODS Pseudomonas aeruginosa (PA14) biofilms were cultured in in vitro Tygon catheter mimics and treated with histotripsy using a 1 MHz histotripsy transducer and a variety of histotripsy pulsing rates and scanning methods. The improved parameters identified in these studies were then used to explore the bactericidal effect of histotripsy on planktonic PA14 suspended in a catheter mimic. RESULTS Histotripsy can be used to remove biofilm and kill bacteria at substantially increased speeds compared with previously established methods. Near-complete biofilm removal was achieved at treatment speeds up to 1 cm/s, while a 4.241 log reduction in planktonic bacteria was achieved with 2.4 cm/min treatment. CONCLUSION These results represent a 500-fold increase in biofilm removal speeds and a 6.2-fold increase in bacterial killing speeds compared with previously published methods. These findings indicate that histotripsy shows promise for the treatment of catheter-associated biofilms and planktonic bacteria in a clinically relevant time frame.
Collapse
Affiliation(s)
- Ryan Morse
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
| | | | - Elizabeth Nowak
- Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Jayasimha Rao
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
6
|
Bader KB, Flores Basterrechea K, Hendley SA. In silico assessment of histotripsy-induced changes in catheter-directed thrombolytic delivery. Front Physiol 2023; 14:1225804. [PMID: 37449013 PMCID: PMC10336328 DOI: 10.3389/fphys.2023.1225804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: For venous thrombosis patients, catheter-directed thrombolytic therapy is the standard-of-care to recanalize the occluded vessel. Limitations with thrombolytic drugs make the development of adjuvant treatments an active area of research. One potential adjuvant is histotripsy, a focused ultrasound therapy that lyses red blood cells within thrombus via the spontaneous generation of bubbles. Histotripsy has also been shown to improve the efficacy of thrombolytic drugs, though the precise mechanism of enhancement has not been elucidated. In this study, in silico calculations were performed to determine the contribution of histotripsy-induced changes in thrombus diffusivity to alter catheter-directed therapy. Methods: An established and validated Monte Carlo calculation was used to predict the extent of histotripsy bubble activity. The distribution of thrombolytic drug was computed with a finite-difference time domain (FDTD) solution of the perfusion-diffusion equation. The FDTD calculation included changes in thrombus diffusivity based on outcomes of the Monte Carlo calculation. Fibrin degradation was determined using the known reaction rate of thrombolytic drug. Results: In the absence of histotripsy, thrombolytic delivery was restricted in close proximity to the catheter. Thrombolytic perfused throughout the focal region for calculations that included the effects of histotripsy, resulting in an increased degree of fibrinolysis. Discussion: These results were consistent with the outcomes of in vitro studies, suggesting histotripsy-induced changes in the thrombus diffusivity are a primary mechanism for enhancement of thrombolytic drugs.
Collapse
Affiliation(s)
- Kenneth B. Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
7
|
Ruger L, Yang E, Gannon J, Sheppard H, Coutermarsh-Ott S, Ziemlewicz TJ, Dervisis N, Allen IC, Daniel GB, Tuohy J, Vlaisavljevich E, Klahn S. Mechanical High-Intensity Focused Ultrasound (Histotripsy) in Dogs With Spontaneously Occurring Soft Tissue Sarcomas. IEEE Trans Biomed Eng 2023; 70:768-779. [PMID: 36006886 PMCID: PMC9969335 DOI: 10.1109/tbme.2022.3201709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Histotripsy is a non-invasive focused ultrasound therapy that uses controlled acoustic cavitation to mechanically disintegrate tissue. To date, there are no reports investigating histotripsy for the treatment of soft tissue sarcoma (STS). OBJECTIVE This study aimed to investigate the in vivo feasibility of ablating STS with histotripsy and to characterize the impact of partial histotripsy ablation on the acute immunologic response in canine patients with spontaneous STS. METHODS A custom 500 kHz histotripsy system was used to treat ten dogs with naturally occurring STS. Four to six days after histotripsy, tumors were surgically resected. Safety was determined by monitoring vital signs during treatment and post-treatment physical examinations, routine lab work, and owners' reports. Ablation was characterized using radiologic and histopathologic analyses. Systemic immunological impact was evaluated by measuring changes in cytokine concentrations, and tumor microenvironment changes were evaluated by characterizing changes in infiltration with tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) using multiplex immunohistochemistry and differential gene expression. RESULTS Results showed histotripsy ablation was achievable and well-tolerated in all ten dogs. Immunological results showed histotripsy induced pro-inflammatory changes in the tumor microenvironment. Conclusion & Significance: Overall, this study demonstrates histotripsy's potential as a precise, non-invasive treatment for STS.
Collapse
|
8
|
Ruger LN, Hay AN, Vickers ER, Coutermarsh-Ott SL, Gannon JM, Covell HS, Daniel GB, Laeseke PF, Ziemlewicz TJ, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Characterizing the Ablative Effects of Histotripsy for Osteosarcoma: In Vivo Study in Dogs. Cancers (Basel) 2023; 15:741. [PMID: 36765700 PMCID: PMC9913343 DOI: 10.3390/cancers15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor treated by limb amputation or limb salvage surgeries and chemotherapy. Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. Recent ex vivo and in vivo pilot studies have demonstrated the ability of histotripsy for ablating OS but were limited in scope. This study expands on these initial findings to more fully characterize the effects of histotripsy for bone tumors, particularly in tumors with different compositions. A prototype 500 kHz histotripsy system was used to treat ten dogs with suspected OS at an intermediate treatment dose of 1000 pulses per location. One day after histotripsy, treated tumors were resected via limb amputation, and radiologic and histopathologic analyses were conducted to determine the effects of histotripsy for each patient. The results of this study demonstrated that histotripsy ablation is safe and feasible in canine patients with spontaneous OS, while offering new insights into the characteristics of the achieved ablation zone. More extensive tissue destruction was observed after histotripsy compared to that in previous reports, and radiographic changes in tumor size and contrast uptake following histotripsy were reported for the first time. Overall, this study significantly expands our understanding of histotripsy bone tumor ablation and informs future studies for this application.
Collapse
Affiliation(s)
- Lauren N. Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Elliana R. Vickers
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Sheryl L. Coutermarsh-Ott
- Department of Biological Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Jessica M. Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Hannah S. Covell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Gregory B. Daniel
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Paul F. Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Katharine R. Kierski
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Brittany J. Ciepluch
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Joanne L. Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
9
|
Ruger L, Yang E, Coutermarsh-Ott S, Vickers E, Gannon J, Nightengale M, Hsueh A, Ciepluch B, Dervisis N, Vlaisavljevich E, Klahn S. Histotripsy ablation for the treatment of feline injection site sarcomas: a first-in-cat in vivo feasibility study. Int J Hyperthermia 2023; 40:2210272. [PMID: 37196996 DOI: 10.1080/02656736.2023.2210272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE Feline soft tissue sarcoma (STS) and injection site sarcoma (fISS) are rapidly growing tumors with low metastatic potential, but locally aggressive behavior. Histotripsy is a non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the in vivo safety and feasibility of histotripsy to treat fISS using a custom 1 MHz transducer. MATERIALS AND METHODS Three cats with naturally-occurring STS were treated with histotripsy before surgical removal of the tumor 3 to 6 days later. Gross and histological analyses were used to characterize the ablation efficacy of the treatment, and routine immunohistochemistry and batched cytokine analysis were used to investigate the acute immunological effects of histotripsy. RESULTS Results showed that histotripsy ablation was achievable and well-tolerated in all three cats. Precise cavitation bubble clouds were generated in all patients, and hematoxylin & eosin stained tissues revealed ablative damage in targeted regions. Immunohistochemical results identified an increase in IBA-1 positive cells in treated tissues, and no significant changes in cytokine concentrations were identified post-treatment. CONCLUSIONS Overall, the results of this study demonstrate the safety and feasibility of histotripsy to target and ablate superficial feline STS and fISS tumors and guide the clinical development of histotripsy devices for this application.
Collapse
Affiliation(s)
- Lauren Ruger
- Department of Biomedical Engineering and Mechanics, VA Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ester Yang
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
| | - Sheryl Coutermarsh-Ott
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elliana Vickers
- Department of Biomedical Engineering and Mechanics, VA Polytechnic Institute and State University, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, VA Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Marlie Nightengale
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
| | - Brittany Ciepluch
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, VA Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA, USA
| |
Collapse
|
10
|
Simon A, Robinson F, Anzivino A, Boyer M, Hendricks-Wenger A, Guilliams D, Casey J, Grider D, Valea F, Vlaisavljevich E. Histotripsy for the Treatment of Uterine Leiomyomas: A Feasibility Study in Ex Vivo Uterine Fibroids. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1652-1662. [PMID: 35641394 DOI: 10.1016/j.ultrasmedbio.2022.04.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Uterine fibroids (leiomyomas), the most common benign tumors in women of reproductive age, are a frequent cause of abnormal vaginal bleeding and other reproductive complaints among women. This study investigates the feasibility of using histotripsy, a non-invasive, non-thermal focused ultrasound ablation method, to ablate uterine fibroids. Human fibroid samples (n = 16) were harvested after hysterectomy or myomectomy procedures at Carilion Memorial Hospital. Histotripsy was applied to ex vivo fibroids in two sets of experiments using a 700-kHz clinical transducer to apply multicycle histotripsy pulses and a prototype 500-kHz transducer to apply single-cycle histotripsy pulses. Ultrasound imaging was used for real-time treatment monitoring, and post-treatment ablation was quantified histologically using hematoxylin and eosin and Masson trichrome stains. Results revealed that multicycle histotripsy generated diffuse cavitation in targeted fibroids, with minimal cellular ablative changes after treatment with 2000 pulses/point. Single-cycle pulsing generated well-confined bubble clouds with evidence of early coagulative necrosis on histological assessment in samples treated with 2000 pulses/point, near-complete ablation in samples treated with 4000 pulses/point and complete tissue destruction in samples treated with 10,000 pulses/point. This study illustrates that histotripsy is capable of fibroid ablation under certain pulsing parameters and warrants further investigation as an improved non-invasive ablation method for the treatment of leiomyomas.
Collapse
Affiliation(s)
- Alex Simon
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Faith Robinson
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony Anzivino
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Maggie Boyer
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Alissa Hendricks-Wenger
- Department of Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Danielle Guilliams
- Department of Research and Development, Carilion Clinic, Roanoke, Virginia, USA
| | - James Casey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Department of Obstetrics and Gynecology, Carilion Clinic Gynecological Oncology, Roanoke, Virginia, USA
| | - Douglas Grider
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Dominion Pathology Associates, Roanoke, Virginia, USA
| | - Fidel Valea
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Department of Obstetrics and Gynecology, Carilion Clinic Gynecological Oncology, Roanoke, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
11
|
Ruger LN, Hay AN, Gannon JM, Sheppard HO, Coutermarsh-Ott SL, Daniel GB, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Histotripsy Ablation of Spontaneously Occurring Canine Bone Tumors In Vivo. IEEE Trans Biomed Eng 2022; PP:10.1109/TBME.2022.3191069. [PMID: 35834467 PMCID: PMC9921194 DOI: 10.1109/tbme.2022.3191069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. INTRODUCTION Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. METHODS Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. RESULTS Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.
Collapse
|
12
|
Dadgar MM, Hynynen K. High-Pressure Low-Frequency Lateral Mode Phased-Array Transducer System for the Treatment of Deep Vein Thrombosis: An In Vitro Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1088-1099. [PMID: 35020593 DOI: 10.1109/tuffc.2022.3141871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep vein thrombosis (DVT) can lead to a fatal disease known as pulmonary embolism. Application of high-power ultrasound has been successful in studies to mechanically fragment the clots. Single-element ultrasound transducers were used in most of the studies. Challenges associated with phased arrays, such as high electrical impedance and element breakdown at high voltages, were addressed in the previous study, and a high-power 64-element transducer module was designed and fabricated. In this study, a cylindrical array of 16 modules with the frequency of 260 kHz was modeled and constructed for DVT thrombolysis. The maximum pressure, focal size, and steering ability of the array were examined. In vitro experiments were conducted to assess the performance of the array. The simulated pressure amplitude of 34 MPa at the depth of 55 mm (average femoral vein (FV) distance from the inner surface of the thigh) was in consistent with the experiments and satisfied the purpose of this study. Moreover, the employed module distribution resulted in a focal spot dimension of 2.4×2.8×7.3 mm3 (at the 75% pressure amplitude level) that can be confined in a human FV with the average diameter of 12 mm. In vitro experiments manifested a partial and complete clot breakdown at 11.5- and 15-MPa pressure at the focus. The design and engineering of the array system was succeeded in maintaining the desired pressure and focal size even when steered. The results presented in this study suggest the potential of the designed array system for clinical applications.
Collapse
|
13
|
Goel L, Wu H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3231-3239. [PMID: 34446331 PMCID: PMC8487993 DOI: 10.1016/j.ultrasmedbio.2021.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Recent in vitro work has revealed that a forward-viewing intravascular (FVI) transducer has sonothrombolysis applications. However, the safety of this device has yet to be evaluated. In this study, we evaluated the safety of this device in terms of tissue heating, vessel damage and particle debris size during sonothrombolysis using microbubbles or nanodroplets with tissue plasminogen activator, in both retracted and unretracted blood clots. The in vitro and ex vivo sonothrombolysis tests using FVI transducers revealed a temperature rise of less than 1°C, no vessel damage as assessed by histology and no downstream clot particles >500 µm. These in vitro and ex vivo results indicate that the FVI transducer poses minimal risk for sonothrombolysis applications and should be further evaluated in animal models.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
14
|
Childers C, Edsall C, Gannon J, Whittington AR, Muelenaer AA, Rao J, Vlaisavljevich E. Focused Ultrasound Biofilm Ablation: Investigation of Histotripsy for the Treatment of Catheter-Associated Urinary Tract Infections (CAUTIs). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2965-2980. [PMID: 33950839 DOI: 10.1109/tuffc.2021.3077704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urinary catheters often become contaminated with biofilms, resulting in catheter-associated urinary tract infections (CAUTIs) that adversely affect patient outcomes. Histotripsy is a noninvasive focused ultrasound therapy previously developed for the noninvasive ablation of cancerous tumors and soft tissues. Histotripsy has also previously shown the ability to treat biofilms on glass slides and surgical meshes. Here, we investigate the potential of histotripsy for the treatment of CAUTIs for the first time in vitro. Clinically relevant catheter materials (Tygon, Silicone, and latex catheter mimics) and commonly used clinical catheters were tested to determine the feasibility of producing luminal histotripsy bubble clouds. A Pseudomonas aeruginosa (strain PA14) biofilm model was developed and tested to produce luminal biofilms in an in vitro Tygon catheter mimic. This model was treated with histotripsy to determine the ability to remove a luminal biofilm. Finally, the bactericidal effects of histotripsy were tested by treating PA14 suspended inside the Tygon catheter mimic. Results showed that histotripsy produced precise luminal cavitation within all tested catheter mimics and clinical catheters. Histotripsy treatment of a PA14 biofilm with histotripsy reduced luminal biofilm OD590 signal down to background levels. Further, the treatment of suspended PA14 in Luria-Bertani (LB) showed a 3.45 ± 0.11 log10 reduction in CFU/mL after six histotripsy scans across the catheter mimics. Overall, the results of this study demonstrate the potential of histotripsy to provide a new modality for removing bacterial biofilms from catheter-based medical devices and suggest that additional work is warranted to investigate histotripsy for the treatment of CAUTIs and other biomaterial-associated infections.
Collapse
|
15
|
Bader KB, Hendley SA, Bollen V. Assessment of Collaborative Robot (Cobot)-Assisted Histotripsy for Venous Clot Ablation. IEEE Trans Biomed Eng 2021; 68:1220-1228. [PMID: 32915723 PMCID: PMC8018710 DOI: 10.1109/tbme.2020.3023630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The application of bubble-based ablation with the focus ultrasound therapy histotripsy is gaining traction for the treatment of venous thrombosis, among other pathologies. For extensive clot burden, the histotripsy source must be translated to ensure uniform bubble activity throughout the vascular obstruction. The purpose of this study was to evaluate the targeting accuracy of a histotripsy system comprised of a focused source, ultrasound image guidance, and a collaborative robot (cobot) positioner. The system was designed with a primary emphasis for treating deep vein thrombosis. METHODS Studies to test treatment planning and targeting bubble activity with the histotripsy-cobot system were conducted in an in vitro clot model. A tissue-mimicking phantom was also targeted with the system, and the predicted and actual areas of liquefaction were compared to gauge the spatial accuracy of ablation. RESULTS The system provided submillimeter accuracy for both tracking along an intended path (within 0.6 mm of a model vessel) and targeting bubble activity within the venous clot model (0.7 mm from the center of the clot). Good correlation was observed between the planned and actual liquefaction locations in the tissue phantom, with an average Dice similarity coefficient of 77.8%, and average Hausdorff distance of 1.6 mm. CONCLUSION Cobots provide an effective means to apply histotripsy pulses over a treatment volume, with the ablation precision contingent on the quality of image guidance. SIGNIFICANCE Overall, these results demonstrate cobots can be used to guide histotripsy ablation for targets that extend beyond the natural focus of the transducer.
Collapse
|
16
|
Goel L, Wu H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. MICROSYSTEMS & NANOENGINEERING 2021; 7:3. [PMID: 33456783 PMCID: PMC7787976 DOI: 10.1038/s41378-020-00228-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 05/02/2023]
Abstract
One major challenge in current microbubble (MB) and tissue plasminogen activator (tPA)-mediated sonothrombolysis techniques is effectively treating retracted blood clots, owing to the high density and low porosity of retracted clots. Nanodroplets (NDs) have the potential to enhance retracted clot lysis owing to their small size and ability to penetrate into retracted clots to enhance drug delivery. For the first time, we demonstrate that a sub-megahertz, forward-viewing intravascular (FVI) transducer can be used for ND-mediated sonothrombolysis, in vitro. In this study, we determined the minimum peak negative pressure to induce cavitation with low-boiling point phase change nanodroplets and clot lysis. We then compared nanodroplet mediated sonothrombolysis to MB and tPA mediate techniques. The clot lysis as a percent mass decrease in retracted clots was 9 ± 8%, 9 ± 5%, 16 ± 5%, 14 ± 9%, 17 ± 9%, 30 ± 8%, and 40 ± 9% for the control group, tPA alone, tPA + US, MB + US, MB + tPA + US, ND + US, and ND + tPA + US groups, respectively. In retracted blood clots, combined ND- and tPA-mediated sonothrombolysis was able to significantly enhance retracted clot lysis compared with traditional MB and tPA-mediated sonothrombolysis techniques. Combined nanodroplet with tPA-mediated sonothrombolysis may provide a feasible strategy for safely treating retracted clots.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599 USA
| | - Huaiyu Wu
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Bohua Zhang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Jinwook Kim
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599 USA
| | - Paul A. Dayton
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599 USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Xiaoning Jiang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
17
|
Goel L, Wu H, Kim H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1698-1706. [PMID: 32389332 PMCID: PMC7293952 DOI: 10.1016/j.ultrasmedbio.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
Previous work revealed that a forward-viewing intravascular (FVI) transducer can be used for microbubble (MB)-mediated sonothrombolysis and that the clot lysis was dependent on MB concentration. This study examined the effects of combining tissue plasminogen activator (tPA) with MB-mediated FVI sonothrombolysis. In vitro clot lysis and passive cavitation experiments were conducted to study the effect of low-dose tPA in FVI sonothrombolysis with varying MB concentrations. Enhanced FVI sonothrombolysis was observed in cases in which ultrasound (US) was combined with tPA or MBs compared with control, tPA alone or US alone. The lysis rate of US + tPA + MBs was improved by up to 130%, 31% and 8% for MB concentrations of 106, 107 and 108 MBs/mL, respectively, compared with MBs + US alone. Changes in stable and inertial cavitation doses were observed, corresponding to changes in clot lysis in MB-mediated FVI sonothrombolysis with and without tPA.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
18
|
Goel L, Jiang X. Advances in Sonothrombolysis Techniques Using Piezoelectric Transducers. SENSORS 2020; 20:s20051288. [PMID: 32120902 PMCID: PMC7085655 DOI: 10.3390/s20051288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
One of the great advancements in the applications of piezoelectric materials is the application for therapeutic medical ultrasound for sonothrombolysis. Sonothrombolysis is a promising ultrasound based technique to treat blood clots compared to conventional thrombolytic treatments or mechanical thrombectomy. Recent clinical trials using transcranial Doppler ultrasound, microbubble mediated sonothrombolysis, and catheter directed sonothrombolysis have shown promise. However, these conventional sonothrombolysis techniques still pose clinical safety limitations, preventing their application for standard of care. Recent advances in sonothrombolysis techniques including targeted and drug loaded microbubbles, phase change nanodroplets, high intensity focused ultrasound, histotripsy, and improved intravascular transducers, address some of the limitations of conventional sonothrombolysis treatments. Here, we review the strengths and limitations of these latest pre-clincial advancements for sonothrombolysis and their potential to improve clinical blood clot treatments.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695-7910, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Correspondence: ; Tel.: +1-919-515-5240
| |
Collapse
|
19
|
Bollen V, Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. In Vitro Thrombolytic Efficacy of Single- and Five-Cycle Histotripsy Pulses and rt-PA. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:336-349. [PMID: 31785841 PMCID: PMC6930350 DOI: 10.1016/j.ultrasmedbio.2019.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Although primarily known as an ablative modality, histotripsy can increase the efficacy of lytic therapy in a retracted venous clot model. Bubble cloud oscillations are the primary mechanism of action for histotripsy, and the type of bubble activity is dependent on the pulse duration. A retracted human venous clot model was perfused with and without the thrombolytic recombinant tissue plasminogen activator (rt-PA). The clot was exposed to histotripsy pulses of single- or five-cycle duration and peak negative pressures of 0-30 MPa. Bubble activity within the clot was monitored via passive cavitation imaging. The combination of histotripsy and rt-PA was more efficacious than rt-PA alone for single- and five-cycle pulses with peak negative pressures of 25 and 20 MPa, respectively. For both excitation schemes, the detected acoustic emissions correlated with the degree of thrombolytic efficacy. These results indicate that rt-PA and single- or multicycle histotripsy pulses enhance thrombolytic therapy.
Collapse
Affiliation(s)
- Viktor Bollen
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Samuel A Hendley
- Graduate Program of Medical Physics, University of Chicago, Chicago, Illinois, USA
| | - Jonathan D Paul
- Department of Medicine-Cardiology, University of Chicago, Chicago, Illinois, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA; Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Guo S, Guo X, Wang X, Zhou D, Du X, Han M, Zong Y, Wan M. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. ULTRASONICS SONOCHEMISTRY 2019; 54:183-191. [PMID: 30773494 DOI: 10.1016/j.ultsonch.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 05/06/2023]
Abstract
Thrombosis-related diseases such as stroke, deep vein thrombosis, and others represent leading causes of mortality and morbidity around the globe. Current clinical thrombolytic treatments are limited by either slow reperfusion (drugs) or invasiveness (catheters) and carry significant risks of bleeding. High intensity focused ultrasound (HIFU) has been demonstrated to be a non-pharmacological, non-invasive but yet efficient thrombolytic approach. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. In this study, we introduced phase-change nanodroplets into pulse HIFU-mediated thrombolysis. The size distribution of the clot debris generated in sonothrombolysis with and without nanodroplets was compared. The effects of nanodroplet concentration, acoustic power and pulse repetition frequency on the clot debris size were further evaluated. It was found that the volume percentage of the large clot debris particles (above 10 μm in diameter) was smaller and the average diameter of the clot debris reduced significantly in nanodroplets-assisted sonothrombolysis. The stable cavitation dose was higher in sonothrombolysis without nanodroplets but the inertial cavitation dose showed no significant differences under two conditions. Besides, the average diameter decreased with increasing nanodroplet concentration and acoustic power when calculated by number percentage, but was found to be similar when calculated by volume percentage. In addition, the number percentage of the clot debris above 30 μm was demonstrated to be larger upon applying a higher pulse repetition frequency. Taken in concert, this study demonstrated that the introduction of phase-change nanodroplets could provide a safer sonothrombolysis method by reducing the overall clot debris size.
Collapse
Affiliation(s)
- Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuyan Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Di Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuan Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
21
|
Lu S, Yu X, Li R, Zong Y, Wan M. Passive cavitation mapping using dual apodization with cross-correlation in ultrasound therapy monitoring. ULTRASONICS SONOCHEMISTRY 2019; 54:18-31. [PMID: 30827905 DOI: 10.1016/j.ultsonch.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Recently, passive acoustic mapping (PAM) has been successfully applied for dynamic monitoring of ultrasound therapy by beamforming acoustic emissions of cavitation activity during ultrasound exposure. The most widely used PAM algorithm in the literature is time exposure acoustics (TEA), which is a standard delay, sum, and integrate algorithm. However, it results in large point spread function (PSF) and serious imaging artifacts for the case where a narrow-aperture receiving array such as a standard B-mode linear array is used, therefore degrading the quality of cavitation image. To address these challenges, in this paper, we proposed a novel PAM algorithm namely dual apodization with cross-correlation (DAX)-based TEA, in which DAX was originally used as a reconstruction algorithm in medical ultrasound imaging. In the proposed algorithm, two sets of signals were beamformed by two receive apodization functions with alternating elements enabled, and the cross-correlation coefficient of the two signals served as a weighting factor that would be multiplied to the sum of the two signals. The performance of the proposed algorithm was tested on simulated channel data obtained using a multi-bubble model, and experiments were also performed in an in vitro vessel phantom with flowing microbubbles as cavitation nuclei. The reconstructed cavitation images were evaluated quantitatively using established quality metrics including full width at half maximum (FWHM), A-6dB area, and signal-to-noise ratio (SNR). The results suggested that the proposed algorithm significantly outperformed the conventionally used TEA algorithm. This work may have the potential of providing a useful tool for highly accurate localization of cavitation activity during ultrasound therapy.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
22
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
23
|
Shi A, Lundt J, Deng Z, Macoskey J, Gurm H, Owens G, Zhang X, Hall TL, Xu Z. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2697-2709. [PMID: 30279032 PMCID: PMC6215517 DOI: 10.1016/j.ultrasmedbio.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/04/2023]
Abstract
After the collapse of a cavitation bubble cloud, residual microbubbles can persist for up to seconds and function as weak cavitation nuclei for subsequent pulses in a phenomenon known as cavitation memory effect. In histotripsy, the cavitation memory effect can cause bubble clouds to repeatedly form at the same discrete set of sites. This effect limits the efficacy of histotripsy-based tissue fractionation. Our previous studies have indicated that low-amplitude bubble-coalescing (BC) ultrasound sequences interleaved with high-amplitude histotripsy pulses can coalesce the residual bubbles into one large bubble quickly. This reduces the cavitation memory effect and may increase treatment efficacy. Histotripsy has been investigated for thrombolysis by breaking up clots into debris smaller than red blood cells. However, this treatment has low efficacy for aged or retracted clots. In this study, we investigate the use of histotripsy with BC to improve the efficacy of treatment of retracted clots. An integrated histotripsy and bubble-coalescing (HBC) transducer system with specialized electronic driving system was built in-house. One high-amplitude (32 MPa), one-cycle histotripsy pulse followed by 36 low-amplitude (2.4 MPa), one-cycle BC pulses formed one HBC sequence. Results indicate that HBC sequences successfully generated a flow channel through the retracted clots at scan speeds of 0.2-0.5 mm/s. The channel size created using the HBC sequence was 128% to 480% larger than that created using histotripsy alone. The clot debris particles generated during HBC treatments were within the tolerable range. These results illustrate the concept that BC improves the treatment efficacy of histotripsy thrombolysis for retracted clots.
Collapse
Affiliation(s)
- Aiwei Shi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zilin Deng
- Department of Biomedical Engineering, Beihang University, Beijing, China
| | - Jonathan Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hitinder Gurm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabe Owens
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Xi Zhang
- Fitbit Corporation, San Francisco, California, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Acconcia CN, Jones RM, Hynynen K. Receiver array design for sonothrombolysis treatment monitoring in deep vein thrombosis. Phys Med Biol 2018; 63:235017. [PMID: 30484436 DOI: 10.1088/1361-6560/aaee91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High intensity focused ultrasound (HIFU) can disintegrate blood clots through the generation and stimulation of bubble clouds within thrombi. This work examined the design of a device to image bubble clouds for monitoring cavitation-based HIFU treatments of deep vein thrombosis (DVT). Acoustic propagation simulations were carried out on multi-layered models of the human thigh using two patient data sets from the Visible Human Project. The design considerations included the number of receivers (32, 64, 128, 256, and 512), their spatial positioning, and the effective angular array aperture (100° and 180° about geometric focus). Imaging array performance was evaluated for source frequencies of 250, 750, and 1500 kHz. Receiver sizes were fixed relative to the wavelength (pistons, diameter = λ/2) and noise was added at levels that scaled with receiver area. With a 100° angular aperture the long axis size of the -3 dB main lobe was ~1.2λ-i.e. on the order of the vessel diameter at 250 kHz (~7 mm). Increasing the array aperture to span 180° about the geometric focus reduced the long axis by a factor of ~2. The smaller main lobe sizes achieved by imaging at higher frequencies came at the cost of increased levels of sensitivity to phase aberrations induced during acoustic propagation through the intervening soft tissue layers. With noise added to receiver signals, images could be reconstructed with peak sidelobe ratios < -3 dB using single-cycle integration times for source frequencies of 250 and 750 kHz (NRx ⩾ 128). At 1500 kHz, longer integration times and/or higher element counts were required to achieve similar peak sidelobe ratios. Our results suggest that a modest number of receivers(i.e. NRx = 128) arranged on a semi-cylindrical shell may be sufficient to enable passive acoustic imaging with single-cycle integration times (i.e. volumetric rates up to 0.75 MHz) for monitoring cavitation-based HIFU treatments of DVT.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
25
|
Lu S, Hu H, Yu X, Long J, Jing B, Zong Y, Wan M. Passive acoustic mapping of cavitation using eigenspace-based robust Capon beamformer in ultrasound therapy. ULTRASONICS SONOCHEMISTRY 2018; 41:670-679. [PMID: 29137800 DOI: 10.1016/j.ultsonch.2017.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Pulse-echo imaging technique can only play a role when high intensity focused ultrasound (HIFU) is turned off due to the interference between the primary HIFU signal and the transmission pulse. Passive acoustic mapping (PAM) has been proposed as a tool for true real-time monitoring of HIFU therapy. However, the most-used PAM algorithm based on time exposure acoustic (TEA) limits the quality of cavitation image. Recently, robust Capon beamformer (RCB) has been used in PAM to provide improved resolution and reduced artifacts over TEA-based PAM, but the presented results have not been satisfactory. In the present study, we applied an eigenspace-based RCB (EISRCB) method to further improve the PAM image quality. The optimal weighting vector of the proposed method was found by projecting the RCB weighting vector onto the desired vector subspace constructed from the eigenstructure of the covariance matrix. The performance of the proposed PAM was validated by both simulations and in vitro histotripsy experiments. The results suggested that the proposed PAM significantly outperformed the conventionally used TEA and RCB-based PAM. The comparison results between pulse-echo images of the residual bubbles and cavitation images showed the potential of our proposed PAM in accurate localization of cavitation activity during HIFU therapy.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiangying Long
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Bowen Jing
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
26
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1684-1697. [PMID: 28880166 PMCID: PMC5681355 DOI: 10.1109/tuffc.2017.2748050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.
Collapse
|
27
|
Acconcia CN, Jones RM, Goertz DE, O'Reilly MA, Hynynen K. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array. Phys Med Biol 2017; 62:L31-L40. [PMID: 28786395 DOI: 10.1088/1361-6560/aa84d7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Zhang X, Macoskey JJ, Ives K, Owens GE, Gurm HS, Shi J, Pizzuto M, Cain CA, Xu Z. Non-Invasive Thrombolysis Using Microtripsy in a Porcine Deep Vein Thrombosis Model. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1378-1390. [PMID: 28457630 PMCID: PMC5440202 DOI: 10.1016/j.ultrasmedbio.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/15/2017] [Accepted: 01/31/2017] [Indexed: 05/04/2023]
Abstract
Histotripsy is a non-invasive therapeutic technique that uses ultrasound generated from outside the body to create controlled cavitation in targeted tissue, and fractionates it into acellular debris. We have developed a new histotripsy approach, termed microtripsy, to improve targeting accuracy and to avoid collateral tissue damage. This in vivo study evaluates the safety and efficacy of microtripsy for non-invasive thrombolysis in a porcine deep vein thrombosis model. Acute thrombi were formed in left femoral veins of pigs (∼35 kg) by occluding the vessel using two balloon catheters and infusing with thrombin. Guided by real-time ultrasound imaging, microtripsy thrombolysis treatment was conducted in 14 pigs; 10 pigs were euthanized on the same day (acute) and 4 at 2 wk (subacute). To evaluate vessel damage, 30-min free-flow treatment in the right femoral vein (no thrombus) was also conducted in 8 acute pigs. Blood flow was successfully restored or significantly increased after treatment in 13 of the 14 pigs. The flow channels re-opened by microtripsy had a diameter up to 64% of the vessel diameter (∼6 mm). The average treatment time was 16 min per centimeter-long thrombus. Only mild intravascular hemolysis was induced during microtripsy thrombolysis. No damage was observed on vessel walls after 2 wk of recovery, venous valves were preserved, and there was no sign of pulmonary embolism. The results of this study indicate that microtripsy has the potential to be a safe and effective treatment for deep vein thrombosis in a porcine model.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jonathan J Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly Ives
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabe E Owens
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Hitinder S Gurm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Pizzuto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Yang W, Zhou Y. Effect of pulse repetition frequency of high-intensity focused ultrasound on in vitro thrombolysis. ULTRASONICS SONOCHEMISTRY 2017; 35:152-160. [PMID: 27666197 DOI: 10.1016/j.ultsonch.2016.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Vascular occlusion by the thrombi is the main reason for ischemic stroke and deep vein thrombosis. High-intensity focused ultrasound (HIFU) and histotripsy or microtripsy pulses can effectively dissolve the blood clot with no use of thrombolytic agent and ultrasound contrast agent (microbubbles). In this study, HIFU bursts at the same duty cycle (2%) but varied pulse repetition frequency (PRF) from 1Hz to 1000Hz were delivered to in vitro porcine blood clot for 30s. Thrombolysis efficiency initially increases slightly with the PRF, 86.4±10.3%, 89.9±11.9, and 92.9±12.8% at the PRF of 1Hz, 10Hz, and 100Hz, respectively, without significant difference (p>0.05), but then drops dramatically to 37.9±6.9% at the PRF of 1000Hz (p<0.05). The particle size in the supernatant of dissolution is 547.1±129.5nm, which suggests the disruption of thrombi into the subcellular level. Thrombi motion during HIFU exposure shows violent motion and significant curling at the low PRF, rotation about its axis with occasional curling at the moderate PRF, and localized vibration at the high PRF due to the generation of acoustic radiation force and streaming. Quantitative analysis of recorded motion shows the axial displacement decreases with the PRF of delivered HIFU bursts, from 3.9±1.5mm at 1Hz to 0.7±0.4mm at 1000Hz. Bubble cavitation during HIFU exposure to the blood clot was also monitored. The increase of PRF led to the increase of inertial cavitation but the decrease of stable cavitation. In summary, the PRF of delivered HIFU bursts at the same output energy has a significant effect on the thrombi motion, bubble cavitation activities, and subsequently thrombolysis efficiencies.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
30
|
Zhang X, Owens GE, Cain CA, Gurm HS, Macoskey J, Xu Z. Histotripsy Thrombolysis on Retracted Clots. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1903-18. [PMID: 27166017 PMCID: PMC4912870 DOI: 10.1016/j.ultrasmedbio.2016.03.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 05/04/2023]
Abstract
Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage compared with the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus and dual-pass multi-focus. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results of this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Gabe E Owens
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hitinder S Gurm
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|