1
|
Chen H, Anastasiadis P, Woodworth GF. MR Imaging-Guided Focused Ultrasound-Clinical Applications in Managing Malignant Gliomas. Magn Reson Imaging Clin N Am 2024; 32:673-679. [PMID: 39322356 DOI: 10.1016/j.mric.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Malignant gliomas (MGs) are the most common primary brain tumors in adults. Despite recent advances in understanding the biology and potential therapeutic vulnerabilities of MGs, treatment options remain limited as the delivery of drugs is often impeded by the blood-brain barrier (BBB), and safe, complete surgical resection may not always be possible, especially for deep-seated tumors. In this review, the authors highlight emerging applications for MR imaging-guided focused ultrasound (MRgFUS) as a noninvasive treatment modality for MGs. Specifically, the authors discuss MRgFUS's potential role in direct tumor cell killing, opening the BBB, and modulating antitumor immunity.
Collapse
Affiliation(s)
- Huanwen Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, S-12D, 22 South Greene Street, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, S-12D, 22 South Greene Street, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center.
| |
Collapse
|
2
|
Ruger L, Langman M, Farrell R, Rossmeisl JH, Prada F, Vlaisavljevich E. Ultrasound-Guided Mechanical High-Intensity Focused Ultrasound (Histotripsy) Through an Acoustically Permeable Polyolefin-Based Cranioplasty Device. IEEE Trans Biomed Eng 2024; 71:2877-2888. [PMID: 38728123 DOI: 10.1109/tbme.2024.3399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Histotripsy is a non-thermal focused ultrasound therapy in development for the non-invasive ablation of cancerous tumors. Intracranial histotripsy has been limited by significant pressure attenuation through the skull, requiring large, complex array transducers to overcome this effect. OBJECTIVE Recently, a biocompatible, polyolefin-based cranioplasty device was developed to allow ultrasound (US) transmission into the intracranial space with minimal distortion. In this study, we investigated the in vitro feasibility of applying US-guided histotripsy procedures across the prosthesis. METHODS Pressure waveforms and beam profiles were collected for single- and multi-element histotripsy transducers. Then, high-speed optical images of the bubble cloud with and without the prosthesis were collected in water and tissue-mimicking agarose gel phantoms. Finally, red blood cell (RBC) tissue phantom and excised brain tissue experiments were completed to test the ablative efficacy across the prosthesis. RESULTS Single element tests revealed increased pressure loss with increasing transducer frequency and increasing transducer-to-prosthesis angle. Array transducer measurements at 1 MHz showed average pressure losses of >50% across the prosthesis. Aberration correction recovered up to 18% of the pressure lost, and high-speed optical imaging in water, agarose gels, and RBC phantoms demonstrated that histotripsy bubble clouds could be generated across the prosthesis at pulse repetition frequencies of 50-500 Hz. Histologic analysis revealed a complete breakdown of brain tissue treated across the prosthesis. Conclusion & Significance: Overall, the results of this study demonstrate that the cranial prosthesis may be used as an acoustic window through which intracranial histotripsy can be applied under US guidance without the need for large transcranial array transducers.
Collapse
|
3
|
Verma Y, Perera Molligoda Arachchige AS. Advances in Tumor Management: Harnessing the Potential of Histotripsy. Radiol Imaging Cancer 2024; 6:e230159. [PMID: 38639585 PMCID: PMC11148838 DOI: 10.1148/rycan.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Tissue ablation techniques have long been used in clinical settings to treat various oncologic diseases. However, many of these techniques are invasive and can cause substantial adverse effects. Histotripsy is a noninvasive, nonionizing, nonthermal tissue ablation technique that has the potential to replace surgical interventions in various clinical settings. Histotripsy works by delivering high-intensity focused ultrasound waves to target tissue. These waves create cavitation bubbles within tissues that rapidly expand and collapse, thereby mechanically fractionating the tissue into acellular debris that is subsequently absorbed by the body's immune system. Preclinical and clinical studies have demonstrated the efficacy of histotripsy in treating a range of diseases, including liver, pancreatic, renal, and prostate tumors. Safety outcomes of histotripsy have been generally favorable, with minimal adverse effects reported. However, further studies are needed to optimize the technique and understand its long-term effects. This review aims to discuss the importance of histotripsy as a noninvasive tissue ablation technique, the preclinical and clinical literature on histotripsy and its safety, and the potential applications of histotripsy in clinical practice. Keywords: Tumor Microenvironment, Ultrasound-High-Intensity Focused (HIFU), Ablation Techniques, Abdomen/GI, Genital/Reproductive, Nonthermal Tissue Ablation, Histotripsy, Clinical Trials, Preclinical Applications, Focused Ultrasound © RSNA, 2024.
Collapse
|
4
|
Verma Y, Perera Molligoda Arachchige AS. Revolutionizing brain interventions: the multifaceted potential of histotripsy. Neurosurg Rev 2024; 47:124. [PMID: 38509320 DOI: 10.1007/s10143-024-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Histotripsy, a non-thermal ultrasound technique, holds significant promise in various applications within the realm of brain interventions. While its use for treating brain tumors is somewhat limited, focused ultrasound technology has been extensively investigated for a wide range of purposes within the brain, including disrupting the blood-brain barrier, supporting immunotherapy, addressing conditions like essential tremor, Parkinson's disease, Alzheimer's disease, epilepsy, and neuropathic pain. Research findings indicate that histotripsy can reduce tumor cells with fewer pulses, minimizing the risk of bleeding and cellular injury. The use of MRI sequences such as T2 and T2* enhances the evaluation of the effects of histotripsy treatment, facilitating non-invasive assessment of treated areas. Furthermore, histotripsy displays promise in creating precise brain lesions with minimal edema and inflammation, particularly in porcine models, suggesting considerable progress in the treatment of brain lesions. Moreover, studies confirm its feasibility, safety, and effectiveness in treating intracerebral hemorrhage by safely liquefying clots without causing significant harm to surrounding brain tissue., opening exciting possibilities for clinical applications. The development of transcranial MR-guided focused ultrasound systems based on histotripsy represents a significant breakthrough in overcoming the limitations associated with thermal ablation techniques. Histotripsy's ability to efficiently liquefy clots, minimize skull heating, and target shallow lesions near the skull establishes it as a promising alternative for various brain treatments. In conclusion, histotripsy offers diverse potential in the field of brain interventions, encompassing applications ranging from tumor treatment to the management of intracerebral hemorrhage. While challenges such as accurate monitoring and differentiation of treatment effects persist, ongoing research efforts and technological advancements continue to expand the role of histotripsy in both neurology and neurosurgery.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
5
|
Jiang Z, Cudeiro-Blanco J, Ilbilgi Yildiz B, Sujarittam K, Dickinson RJ, Guasch L, Tang M, Hall TL, Choi JJ. An Ultrasound Array of Emitter-Receiver Stacks for Microbubble-Based Therapy. IEEE Trans Biomed Eng 2024; 71:467-476. [PMID: 37607156 DOI: 10.1109/tbme.2023.3307462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Most therapeutic ultrasound devices place emitters and receivers in separate locations, so that the long therapeutic pulses (>1 ms) can be emitted while receivers monitor the procedure. However, with such placement, emitters and receivers are competing for the same space, producing a trade-off between emission efficiency and reception sensitivity. Taking advantage of recent studies demonstrating that short-pulse ultrasound can be used therapeutically, we aimed to develop a device that overcomes such trade-offs. The array was composed of emitter-receiver stacks, which enabled both emission and reception from the same location. Each element was made of a lead zirconate titanate (PZT)-polyvinylidene fluoride (PVDF) stack. The PZT (frequency: 500 kHz, diameter: 16 mm) was used for emission and the PVDF (thickness: 28 μm, diameter: 16 mm) for broadband reception. 32 elements were assembled in a 3D-printed dome-shaped frame (focal length: 150 mm; [Formula: see text]-number: 1) and was tested in free-field and through an ex-vivo human skull. In free-field, the array had a 4.5 × 4.5 × 32 mm focus and produced a peak-negative pressure (PNP) of 2.12 MPa at its geometric center. The electronic steering range was ±15 mm laterally and larger than ±15 mm axially. Through the skull, the array produced a PNP of 0.63 MPa. The PVDF elements were able to localize broadband microbubble emissions across the skull. We built the first multi-element array for short-pulse and microbubble-based therapeutic applications. Stacked arrays overcome traditional trade-offs between the transmission and reception quality and have the potential to create a step change in treatment safety and efficacy.
Collapse
|
6
|
Worlikar T, Hall T, Zhang M, Mendiratta-Lala M, Green M, Cho CS, Xu Z. Insights from in vivo preclinical cancer studies with histotripsy. Int J Hyperthermia 2024; 41:2297650. [PMID: 38214171 PMCID: PMC11102041 DOI: 10.1080/02656736.2023.2297650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technique that mechanically fractionates target tissue into acellular homogenate via controlled acoustic cavitation. Histotripsy has been evaluated for various preclinical applications requiring noninvasive tissue removal including cancer, brain surgery, blood clot and hematoma liquefaction, and correction of neonatal congenital heart defects. Promising preclinical results including local tumor suppression, improved survival outcomes, local and systemic anti-tumor immune responses, and histotripsy-induced abscopal effects have been reported in various animal tumor models. Histotripsy is also being investigated in veterinary patients with spontaneously arising tumors. Research is underway to combine histotripsy with immunotherapy and chemotherapy to improve therapeutic outcomes. In addition to preclinical cancer research, human clinical trials are ongoing for the treatment of liver tumors and renal tumors. Histotripsy has been recently approved by the FDA for noninvasive treatment of liver tumors. This review highlights key learnings from in vivo shock-scattering histotripsy, intrinsic threshold histotripsy, and boiling histotripsy cancer studies treating cancers of different anatomic locations and discusses the major considerations in planning in vivo histotripsy studies regarding instrumentation, tumor model, study design, treatment dose, and post-treatment tumor monitoring.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiation Oncology, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Edsall C, Fergusson A, Davis RM, Meyer CH, Allen SP, Vlaisavljevich E. Probability of Cavitation in a Custom Iron-Based Coupling Medium for Transcranial Magnetic Resonance-Guided Focused Ultrasound Procedures. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2519-2526. [PMID: 37730478 PMCID: PMC10591864 DOI: 10.1016/j.ultrasmedbio.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE A coupling bath of circulating, chilled, degassed water is essential to safe and precise acoustic transmittance during transcranial magnetic resonance-guided focused ultrasound (tMRgFUS) procedures, but the circulating water impairs the critical real-time magnetic resonance imaging (MRI). An iron-based coupling medium (IBCM) using iron oxide nanoparticles previously developed by our group increased the relaxivity of the coupling bath such that it appears to be invisible on MRI compared with degassed water. However, the nanoparticles also reduced the pressure threshold for cavitation. To address this concern for prefocal cavitation, our group recently developed an IBCM of electrosterically stabilized and aggregation-resistant poly(methacrylic acid)-coated iron oxide nanoparticles (PMAA-FeOX) with a similar capability to reduce the MR signal of degassed water. This study examines the effect of the PMAA-FeOX IBCM on the cavitation threshold. METHODS Increasing concentrations of PMAA-FeOX nanoparticles in degassed, deionized water were placed at the focus of two different transducers to assess low and high duty-cycle pulsing parameters which are representative of two modes of focused ultrasound being investigated for tMRgFUS. Passive cavitation detection and high-speed optical imaging were used to measure cavitation threshold pressures. RESULTS The mean cavitation threshold was determined in both cases to be indistinguishable from the degassed water control, between 6-8 MPa for high duty-cycle pulsing (CW) and between 25.5-26.5 MPa for very low duty-cycle pulsing. CONCLUSION The findings of this study indicate that an IBCM of PMAA-FeOX nanoparticles is a possible solution to reducing MRI interference from the coupling bath without increasing the risk of prefocal cavitation.
Collapse
Affiliation(s)
- Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Austin Fergusson
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig H Meyer
- Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, Pandey A, Xu Z. Histotripsy Treatment of Murine Brain and Glioma: Temporal Profile of Magnetic Resonance Imaging and Histological Characteristics Post-treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1882-1891. [PMID: 37277304 DOI: 10.1016/j.ultrasmedbio.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Currently, there is a knowledge gap in our understanding of the magnetic resonance imaging (MRI) characteristics of brain tumors treated with histotripsy to evaluate treatment response as well as treatment-related injuries. Our aim was to bridge this gap by investigating and correlating MRI with histological analysis after histotripsy treatment of mouse brain with and without brain tumors and evaluating the evolution of the histotripsy ablation zone on MRI over time. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat orthotopic glioma-bearing mice and normal mice. The tumor burden at the time of treatment was ∼5 mm3. T2, T2*, T1 and T1-gadolinium (Gd) MR images and histology of the brain were acquired on days 0, 2 and 7 for tumor-bearing mice and days 0, 2, 7, 14, 21 and 28 post-histotripsy for normal mice. RESULTS T2 and T2* sequences most accurately correlated with histotripsy treatment zone. The treatment-induced blood products, T1 along with T2, revealed blood product evolution from oxygenated, de-oxygenated blood and methemoglobin to hemosiderin. And T1-Gd revealed the state of the blood-brain barrier arising from the tumor or histotripsy ablation. Histotripsy leads to minor localized bleeding, which resolves within the first 7 d as evident on hematoxylin and eosin staining. By day 14, the ablation zone could be distinguished only by the macrophage-laden hemosiderin, which resides around the ablation zone, rendering the treated zone hypo-intense on all MR sequences. CONCLUSION These results provide a library of radiological features on MRI sequences correlated to histology, thus allowing for non-invasive evaluation of histotripsy treatment effects in in vivo experiments.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Johansen PM, Hansen PY, Mohamed AA, Girshfeld SJ, Feldmann M, Lucke-Wold B. Focused ultrasound for treatment of peripheral brain tumors. EXPLORATION OF DRUG SCIENCE 2023; 1:107-125. [PMID: 37171968 PMCID: PMC10168685 DOI: 10.37349/eds.2023.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Collapse
Affiliation(s)
| | - Payton Yerke Hansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah J. Girshfeld
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marc Feldmann
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
12
|
Wagner MG, Periyasamy S, Kutlu AZ, Pieper AA, Swietlik JF, Ziemlewicz TJ, Hall TL, Xu Z, Speidel MA, Jr FTL, Laeseke PF. An X-Ray C-Arm Guided Automatic Targeting System for Histotripsy. IEEE Trans Biomed Eng 2023; 70:592-602. [PMID: 35984807 PMCID: PMC9929026 DOI: 10.1109/tbme.2022.3198600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Histotripsy is an emerging noninvasive, nonionizing and nonthermal focal cancer therapy that is highly precise and can create a treatment zone of virtually any size and shape. Current histotripsy systems rely on ultrasound imaging to target lesions. However, deep or isoechoic targets obstructed by bowel gas or bone can often not be treated safely using ultrasound imaging alone. This work presents an alternative x-ray C-arm based targeting approach and a fully automated robotic targeting system. METHODS The approach uses conventional cone beam CT (CBCT) images to localize the target lesion and 2D fluoroscopy to determine the 3D position and orientation of the histotripsy transducer relative to the C-arm. The proposed pose estimation uses a digital model and deep learning-based feature segmentation to estimate the transducer focal point relative to the CBCT coordinate system. Additionally, the integrated robotic arm was calibrated to the C-arm by estimating the transducer pose for four preprogrammed transducer orientations and positions. The calibrated system can then automatically position the transducer such that the focal point aligns with any target selected in a CBCT image. RESULTS The accuracy of the proposed targeting approach was evaluated in phantom studies, where the selected target location was compared to the center of the spherical ablation zones in post-treatment CBCTs. The mean and standard deviation of the Euclidean distance was 1.4 ±0.5 mm. The mean absolute error of the predicted treatment radius was 0.5 ±0.5 mm. CONCLUSION CBCT-based histotripsy targeting enables accurate and fully automated treatment without ultrasound guidance. SIGNIFICANCE The proposed approach could considerably decrease operator dependency and enable treatment of tumors not visible under ultrasound.
Collapse
|
13
|
Duclos S, Golin A, Fox A, Chaudhary N, Camelo-Piragua S, Pandey A, Xu Z. Transcranial histotripsy parameter study in primary and metastatic murine brain tumor models. Int J Hyperthermia 2023; 40:2237218. [PMID: 37495214 PMCID: PMC10410615 DOI: 10.1080/02656736.2023.2237218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE This study investigated the effect of various histotripsy dosages on tumor cell kill and associated bleeding in two murine brain tumor models (glioma [Gl261] and lung metastasis [LL/2-Luc2]). METHODS AND MATERIALS GL261 or LL/2-Luc2 cells were cultured and implanted into the brains of C57BL/6 mice. Histotripsy (1-cycle pulses, 5 Hz PRF, 30 MPa-P) was performed using a 1 MHz transducer for five different dosages for each cell line: 5, 20 or 200 pulses per location (PPL) at a single treatment point, or 5 or 10-20 PPL at multiple treatment points. MRI, bioluminescence imaging and histology were used to assess tumor ablation and treatment effects within 4-6 h post-treatment. RESULTS All treatment groups resulted in a reduction of BLI intensity for the LL/2-Luc2 tumors, with significant signal reductions for the multi-point groups. The average pre-/post-treatment BLI flux (photons/s, ×108) for the different treatment groups were: 4.39/2.19 (5 PPL single-point), 5.49/1.80 (20 PPL single-point), 3.86/1.73 (200 PPL single-point), 2.44/1.11 (5 PPL multi-point) and 5.85/0.80 (10 PPL multi-point). MRI and H&E staining showed increased tumor damage and hemorrhagic effects with increasing histotripsy dose for both GL261 and LL/2-Luc2 tumors, but the increase in tumor damage was diminished beyond 10-20 PPL for single-point treatments and outweighed by increased hemorrhage. In general, hemorrhage was confined to be within 1 mm of the treatment boundary for all groups. CONCLUSIONS Our results suggest that a lower number of histotripsy pulses at fewer focal locations can achieve substantial tumor kill while minimizing hemorrhage.
Collapse
Affiliation(s)
- Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Golin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Adam Fox
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Stocker GE, Lundt JE, Sukovich JR, Miller RM, Duryea AP, Hall TL, Xu Z. A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2766-2775. [PMID: 35617178 PMCID: PMC9594968 DOI: 10.1109/tuffc.2022.3178291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm. The aperture was segmented into 260 arc-shaped modular elements, each approximately 11.5 mm ×11.5 mm, arranged in concentric rings. The resulting aperture utilization was 92%. The full-width-half-maximum (FWHM) focal zone of the array was measured to be 1.6 mm ×1.1 mm ×4.5 mm, and the FWHM electrical steering range was measured to be 38.5 mm ×33 mm 40 mm. The array was estimated to be capable of generating approximately 120-MPa peak negative pressure at the geometric focus. In addition, the array was used to ablate a 5-cm3 volume of tissue with electric focal steering.
Collapse
Affiliation(s)
- Greyson E. Stocker
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | - Jonathan R. Sukovich
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | | | - Timothy L. Hall
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | - Zhen Xu
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Ruger LN, Hay AN, Gannon JM, Sheppard HO, Coutermarsh-Ott SL, Daniel GB, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Histotripsy Ablation of Spontaneously Occurring Canine Bone Tumors In Vivo. IEEE Trans Biomed Eng 2022; PP:10.1109/TBME.2022.3191069. [PMID: 35834467 PMCID: PMC9921194 DOI: 10.1109/tbme.2022.3191069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. INTRODUCTION Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. METHODS Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. RESULTS Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.
Collapse
|
17
|
Lu N, Hall TL, Sukovich JR, Choi SW, Snell J, McDannold N, Xu Z. Two-step aberration correction: application to transcranial histotripsy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac72ed. [PMID: 35609619 PMCID: PMC9234948 DOI: 10.1088/1361-6560/ac72ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Objective: Phase aberration correction is essential in transcranial histotripsy to compensate for focal distortion caused by the heterogeneity of the intact skull bone. This paper improves the 2-step aberration correction (AC) method that has been previously presented and develops an AC workflow that fits in the clinical environment, in which the computed tomography (CT)-based analytical approach was first implemented, followed by a cavitation-based approach using the shockwaves from the acoustic cavitation emission (ACE).Approach:A 700 kHz, 360-element hemispherical transducer array capable of transmit-and-receive on all channels was used to transcranially generate histotripsy-induced cavitation and acquire ACE shockwaves. For CT-AC, two ray-tracing models were investigated: a forward ray-tracing model (transducer-to-focus) in the open-source software Kranion, and an in-house backward ray-tracing model (focus-to-transducer) accounting for refraction and the sound speed variation in skulls. Co-registration was achieved by aligning the skull CT data to the skull surface map reconstructed using the acoustic pulse-echo method. For ACE-AC, the ACE signals from the collapses of generated bubbles were aligned by cross-correlation to estimate the corresponding time delays.Main results:The performance of the 2-step method was tested with 3 excised human calvariums placed at 2 different locations in the transducer array. Results showed that the 2-step AC achieved 90 ± 7% peak focal pressure compared to the gold standard hydrophone correction. It also reduced the focal shift from 0.84 to 0.30 mm and the focal volume from 10.6 to 2.0 mm3on average compared to the no AC cases.Significance:The 2-step AC yielded better refocusing compared to either CT-AC or ACE-AC alone and can be implemented in real-time for transcranial histotripsy brain therapy.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, United States of America
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
18
|
Woodacre JK, Landry TG, Brown JA. Fabrication and Characterization of a 5 mm × 5 mm Aluminum Lens-Based Histotripsy Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1442-1451. [PMID: 35171768 DOI: 10.1109/tuffc.2022.3152174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two 5 mm by 5 mm square aluminum lenses with a 6 mm depth of focus were machined and tested for histotripsy with a 40% volume fraction 1-3 PZT-5A composite and a Meggitt Pz-39 porous ceramics lapped to 315 [Formula: see text] as the piezoelectric elements. The devices were air-backed, and an 89 [Formula: see text] layer of Parylene-C was deposited on the lens, matching aluminum to water. Both devices were driven single-ended at 5.8 MHz, their optimal frequency after bonding to the lens, with ten cycles at a PRF of 1 kHz. The composite-based device showed no sign of free-field cavitation in water up to a drive level of 600 V, whereas the Pz39-based device was able to cavitate in water at a drive level of 220 V. In vivo ablation of a rat brain tissue was demonstrated through an opening in the skull and required the drive voltage be increased to 280 V. The ablation was monitored using B-mode imaging with an endoscopic 30 MHz ultrasound phased array and power Doppler overlay. Ablation was maintained for 12 s and, in the power Doppler image, the ablation zone grew steadily over this time to 1.9 mm by 3.4 mm. Immediately after treatment, the ablated area appeared anechoic, slowly filling with specular material.
Collapse
|
19
|
Lu N, Gupta D, Daou BJ, Fox A, Choi D, Sukovich JR, Hall TL, Camelo-Piragua S, Chaudhary N, Snell J, Pandey AS, Noll DC, Xu Z. Transcranial Magnetic Resonance-Guided Histotripsy for Brain Surgery: Pre-clinical Investigation. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:98-110. [PMID: 34615611 PMCID: PMC9404674 DOI: 10.1016/j.ultrasmedbio.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 05/25/2023]
Abstract
Histotripsy has been previously applied to target various cranial locations in vitro through an excised human skull. Recently, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, enabling pre-clinical investigations of tcMRgHt for brain surgery. To determine the feasibility of in vivo transcranial histotripsy, tcMRgHt treatment was delivered to eight pigs using a 700-kHz, 128-element, MR-compatible phased-array transducer inside a 3-T magnetic resonance imaging (MRI) scanner. After craniotomy to open an acoustic window to the brain, histotripsy was applied through an excised human calvarium to target the inside of the pig brain based on pre-treatment MRI and fiducial markers. MR images were acquired pre-treatment, immediately post-treatment and 2-4 h post-treatment to evaluate the acute treatment outcome. Successful histotripsy ablation was observed in all pigs. The MR-evident lesions were well confined within the targeted volume, without evidence of excessive brain edema or hemorrhage outside of the target zone. Histology revealed tissue homogenization in the ablation zones with a sharp demarcation between destroyed and unaffected tissue, which correlated well with the radiographic treatment zones on MRI. These results are the first to support the in vivo feasibility of tcMRgHt in the pig brain, enabling further investigation of the use of tcMRgHt for brain surgery.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Badih J Daou
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Fox
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Dave Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Arnold L, Hendricks-Wenger A, Coutermarsh-Ott S, Gannon J, Hay AN, Dervisis N, Klahn S, Allen IC, Tuohy J, Vlaisavljevich E. Histotripsy Ablation of Bone Tumors: Feasibility Study in Excised Canine Osteosarcoma Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3435-3446. [PMID: 34462159 PMCID: PMC8578360 DOI: 10.1016/j.ultrasmedbio.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 05/29/2023]
Abstract
Osteosarcoma (OS) is a primary bone tumor affecting both dogs and humans. Histotripsy is a non-thermal, non-invasive focused ultrasound method using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the feasibility of treating primary OS tumors with histotripsy using a 500-kHz transducer on excised canine OS samples harvested after surgery at the Veterinary Teaching Hospital at Virginia Tech. Samples were embedded in gelatin tissue phantoms and treated with the 500-kHz histotripsy system using one- or two-cycle pulses at a pulse repetition frequency of 250 Hz and a dosage of 4000 pulses/point. Separate experiments also assessed histotripsy effects on normal canine bone and nerve using the same pulsing parameters. After treatment, histopathological evaluation of the samples was completed. To determine the feasibility of treating OS through intact skin/soft tissue, additional histotripsy experiments assessed OS with overlying tissues. Generation of bubble clouds was achieved at the focus in all tumor samples at peak negative pressures of 26.2 ± 4.5 MPa. Histopathology revealed effective cell ablation in treated areas for OS tumors, with no evidence of cell death or tissue damage in normal tissues. Treatment through tissue/skin resulted in generation of well-confined bubble clouds and ablation zones inside OS tumors. Results illustrate the feasibility of treating OS tumors with histotripsy.
Collapse
Affiliation(s)
- Lauren Arnold
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Alissa Hendricks-Wenger
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
21
|
Serres-Creixams X, Vidal-Jove J, Ziemlewicz TJ, Cannata JM, Escudero-Fernandez JM, Uriarte I, Alemany-Botelho C, Roson N, Escobar M. Contrast-Enhanced Ultrasound: A Useful Tool to Study and Monitor Hepatic Tumors Treated With Histotripsy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2853-2860. [PMID: 33856989 DOI: 10.1109/tuffc.2021.3073540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Histotripsy is a novel noninvasive nonthermal, nonionizing, and precise treatment technique for tissue destruction. Contrast-enhanced ultrasound (CEUS) improves the detection, characterization, and follow-up of hepatic lesions because it depicts accurately the vascular perfusion of both normal hepatic tissue and hepatic tumors. We present the spectrum of imaging findings of CEUS after histotripsy treatment of hepatic tumors. CEUS provides real-time information, a close approximation to the dimension of the lesion, and a clear definition of its margins. Hepatic tumors detected by ultrasound can be potentially treated using B-mode ultrasound-guided histotripsy and characterized and monitored with CEUS. CEUS has shown to be very useful after tissue treatment to monitor and assess the evolution of the treated zone. Histotripsy treated zones are practically isoechogenic and slightly heterogeneous, and their limits are difficult to establish using standard B-mode ultrasound. The use of CEUS after histotripsy showing uptake of contrast protruding into the treated zone is clinically relevant to identify residual tumors and establish the most appropriate management strategy avoiding unnecessary treatments. We here describe CEUS findings after histotripsy for hepatic tumors.
Collapse
|
22
|
Mallay MG, Woodacre JK, Landry TG, Campbell NA, Brown JA. A Dual-Frequency Lens-Focused Endoscopic Histotripsy Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2906-2916. [PMID: 33961553 DOI: 10.1109/tuffc.2021.3078326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A forward-looking miniature histotripsy transducer has been developed that incorporates an acoustic lens and dual-frequency stacked transducers. An acoustic lens is used to increase the peak negative pressure through focal gain and the dual-frequency transducers are designed to increase peak negative pressure by summing the pressure generated by each transducer individually. Four lens designs, each with an f -number of approximately 1, were evaluated in a PZT5A composite transducer. The finite-element model (FEM) predicted axial beamwidths of 1.61, 2.40, 2.84, and 2.36 mm for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively; the measured axial beamwidths were 1.30, 2.28, 2.71, and 2.11 mm, respectively. Radial beamwidths from the model were between 0.32 and 0.35 mm, while measurements agreed to within 0.2 mm. The measured peak negative was 0.150, 0.124, 0.160, and 0.160 MPa/V for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively. For the dual-frequency device, the 5-MHz (therapy) transducer had a measured peak negative pressure of 0.136 MPa/V for the PZT5A composite and 0.163 MPa/V for the PMN-PT composite. The 1.2-MHz (pump) transducer had a measured peak negative pressure of 0.028 MPa/V. The pump transducer significantly lowered the cavitation threshold of the therapy transducer. The dual-frequency device was tested on an ex vivo rat brain, ablating tissue at up to 4-mm depth, with lesion sizes as small as [Formula: see text].
Collapse
|
23
|
Lu N, Hall TL, Choi D, Gupta D, Daou BJ, Sukovich JR, Fox A, Gerhardson TI, Pandey AS, Noll DC, Xu Z. Transcranial MR-Guided Histotripsy System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2917-2929. [PMID: 33755563 PMCID: PMC8428576 DOI: 10.1109/tuffc.2021.3068113] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro. In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.
Collapse
|
24
|
Stocker GE, Zhang M, Xu Z, Hall TL. Endocavity Histotripsy for Efficient Tissue Ablation-Transducer Design and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2896-2905. [PMID: 33507869 PMCID: PMC8451243 DOI: 10.1109/tuffc.2021.3055138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A 34-mm aperture transducer was designed and tested for proof of concept to ablate tissues using an endocavity histotripsy device. Several materials and two drivers were modeled and tested to determine an effective piezoelectric-matching layer combination and driver design. The resulting transducer was fabricated using 1.5 MHz porous PZT and PerFORM 3-D printed acoustic lenses and was driven with a multicycle class-D amplifier. The lower frequency, compared to previously developed small form factor histotripsy transducers, was selected to allow for more efficient volume ablation of tissue. The transducer was characterized and tested by measuring pressure field maps in the axial and lateral planes and pressure output as a function of driving voltage. The axial and lateral full-width-half-maximums of the focus were found to be 6.1 and 1.1 mm, respectively. The transducer was estimated to generate 34.5-MPa peak negative focal pressure with a peak-to-peak driving voltage of 1345 V. Performance testing was done by ablating volumes of bovine liver tissues ( n = 3 ). The transducer was found to be capable of ablating tissues at its full working distance of 17 mm.
Collapse
|
25
|
D’Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, Durando G, Pellegatta S, Prada F. Sonodynamic Therapy for the Treatment of Intracranial Gliomas. J Clin Med 2021; 10:1101. [PMID: 33800821 PMCID: PMC7961476 DOI: 10.3390/jcm10051101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are the most common and aggressive malignant primary brain tumors. Current therapeutic schemes include a combination of surgical resection, radiotherapy and chemotherapy; even if major advances have been achieved in Progression Free Survival and Overall Survival for patients harboring high-grade gliomas, prognosis still remains poor; hence, new therapeutic options for malignant gliomas are currently researched. Sonodynamic Therapy (SDT) has proven to be a promising treatment combining the effects of low-intensity ultrasound waves with various sound-sensitive compounds, whose activation leads to increased immunogenicity of tumor cells, increased apoptotic rates and decreased angiogenetic potential. In addition, this therapeutic technique only exerts its cytotoxic effects on tumor cells, while both ultrasound waves and sensitizing compound are non-toxic per se. This review summarizes the present knowledge regarding mechanisms of action of SDT and currently available sonosensitizers and focuses on the preclinical and clinical studies that have investigated its efficacy on malignant gliomas. To date, preclinical studies implying various sonosensitizers and different treatment protocols all seem to confirm the anti-tumoral properties of SDT, while first clinical trials will soon start recruiting patients. Accordingly, it is crucial to conduct further investigations regarding the clinical applications of SDT as a therapeutic option in the management of intracranial gliomas.
Collapse
Affiliation(s)
- Antonio D’Ammando
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
| | - Luca Raspagliesi
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Matteo Gionso
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Faculty of Medicine and Surgery, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
| | - Edoardo Porto
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Francesco Di Meco
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Giovanni Durando
- Istituto Nazionale di Ricerca Metrologica I.N.Ri.M., 10135 Torino, Italy;
| | - Serena Pellegatta
- Laboratory of Immunotherapy of Brain Tumors, Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.D.); (L.R.); (M.G.)
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| |
Collapse
|
26
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
27
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
28
|
Choi SW, Gerhardson TI, Duclos SE, Surowiec RK, Scheven UM, Galban S, Lee FT, Greve JM, Balter JM, Hall TL, Xu Z. Stereotactic Transcranial Focused Ultrasound Targeting System for Murine Brain Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:154-163. [PMID: 32746229 PMCID: PMC7814337 DOI: 10.1109/tuffc.2020.3012303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An inexpensive, accurate focused ultrasound stereotactic targeting method guided by pretreatment magnetic resonance imaging (MRI) images for murine brain models is presented. An uncertainty of each sub-component of the stereotactic system was analyzed. The entire system was calibrated using clot phantoms. The targeting accuracy of the system was demonstrated with an in vivo mouse glioblastoma (GBM) model. The accuracy was quantified by the absolute distance difference between the prescribed and ablated points visible on the pre treatment and posttreatment MR images, respectively. A precalibration phantom study ( N = 6 ) resulted in an error of 0.32 ± 0.31, 0.72 ± 0.16, and 1.06 ± 0.38 mm in axial, lateral, and elevational axes, respectively. A postcalibration phantom study ( N = 8 ) demonstrated a residual error of 0.09 ± 0.01, 0.15 ± 0.09, and 0.47 ± 0.18 mm in axial, lateral, and elevational axes, respectively. The calibrated system showed significantly reduced ( ) error of 0.20 ± 0.21, 0.34 ± 0.24, and 0.28 ± 0.21 mm in axial, lateral, and elevational axes, respectively, in the in vivo GBM tumor-bearing mice ( N = 10 ).
Collapse
|
29
|
Franzini A, Moosa S, Prada F, Elias WJ. Ultrasound Ablation in Neurosurgery: Current Clinical Applications and Future Perspectives. Neurosurgery 2020; 87:1-10. [PMID: 31745558 DOI: 10.1093/neuros/nyz407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/21/2019] [Indexed: 11/14/2022] Open
Abstract
The concept of focusing high-intensity ultrasound beams for the purpose of cerebral ablation has interested neurosurgeons for more than 70 yr. However, the need for a craniectomy or a cranial acoustic window hindered the clinical diffusion of this technique. Recent technological advances, including the development of phased-array transducers and magnetic resonance imaging technology, have rekindled the interest in ultrasound for ablative brain surgery and have led to the development of the transcranial magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation procedure. In the last decade, this method has become increasingly popular, and its clinical applications are broadening. Despite the demonstrated efficacy of MRgFUS, transcranial thermal ablation using ultrasound is limited in that it can target exclusively the central region of the brain where the multiple acoustic beams are most optimally focused. On the contrary, lesioning of the cortex, the superficial subcortical areas, and regions close to the skull base is not possible with the limited treatment envelope of current phased-array transducers. Therefore, new ultrasound ablative techniques, which are not based on thermal mechanisms, have been developed and tested in experimental settings. This review describes the mechanisms by which these novel, nonthermal ablative techniques are based and also presents the current clinical applications of MRgFUS thermal ablation.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
30
|
Beisteiner R, Lozano AM. Transcranial Ultrasound Innovations Ready for Broad Clinical Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002026. [PMID: 33304757 PMCID: PMC7709976 DOI: 10.1002/advs.202002026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Indexed: 05/08/2023]
Abstract
Brain diseases are one of the most important problems in our rapidly ageing society. Currently, there are not many effective medications and surgical options are limited due to invasiveness and non-invasive brain stimulation techniques cannot be well targeted and cannot access deep brain areas. A novel therapy is transcranial ultrasound which allows a variety of treatments without opening of the skull. Recent technological developments generated three revolutionary options including 1) targeted non-invasive surgery, 2) highly targeted drug, antibody, or gene therapy via local opening of the blood-brain barrier, and 3) highly targeted brain stimulation to improve pathological brain functions. This progress report summarizes the current state of the art for clinical application and the results of recent patient investigations.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of NeurologyMedical University of ViennaVienna1090Austria
| | - Andres M. Lozano
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoON M5T 2S8Canada
| |
Collapse
|
31
|
Sukovich JR, Macoskey JJ, Lundt JE, Gerhardson TI, Hall TL, Xu Z. Real-Time Transcranial Histotripsy Treatment Localization and Mapping Using Acoustic Cavitation Emission Feedback. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1178-1191. [PMID: 31976885 PMCID: PMC7398266 DOI: 10.1109/tuffc.2020.2967586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cavitation events generated during histotripsy therapy generate large acoustic cavitation emission (ACE) signals that can be detected through the skull. This article investigates the feasibility of using these ACE signals, acquired using the elements of a 500-kHz, 256-element hemispherical histotripsy transducer as receivers, to localize and map the cavitation activity in real time through the human skullcap during transcranial histotripsy therapy. The locations of the generated cavitation events predicted using the ACE feedback signals in this study were found to be accurate to within <1.5 mm of the centers of masses detected by optical imaging and found to lie to within the measured volumes of the generated cavitation events in >~80 % of cases. Localization results were observed to be biased in the prefocal direction of the histotripsy array and toward its transverse origin but were only weakly affected by focal steering location. The choice of skullcap and treatment pulse repetition frequency (PRF) were both observed to affect the accuracy of the localization results in the low PRF regime (1-10 Hz), but the localization accuracy was seen to stabilize at higher PRFs (≥10 Hz). Tests of the localization algorithm in vitro, for treatment delivered to a bovine brain sample mounted within the skullcap, revealed good agreement between the ACE feedback-generated treatment map and the morphological characteristics of the treated volume of the brain sample. Localization during experiments was achieved in real time for pulses delivered at rates up to 70 Hz, but benchmark tests indicate that the localization algorithm is scalable, indicating that higher rates are possible with more powerful hardware. The results of this article demonstrate the feasibility of using ACE feedback signals to localize and map transcranially generated cavitation events during histotripsy. Such capability has the potential to greatly simplify transcranial histotripsy treatments, as it may provide a non-MRI-based method for monitoring and localizing transcranial histotripsy treatments in real time.
Collapse
|
32
|
Allen SP, Steeves T, Fergusson A, Moore D, Davis RM, Vlaisialjevich E, Meyer CH. Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery. Med Phys 2019; 46:5444-5453. [PMID: 31605643 DOI: 10.1002/mp.13863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Acoustic coupling baths, nominally composed of degassed water, play important roles during transcranial focused ultrasound surgery. However, this large water bolus also degrades the quality of intraoperative magnetic resonance (MR) guidance imaging. In this study, we test the feasibility of using dilute, aqueous magnetite nanoparticle suspensions to suppress these image degradations while preserving acoustic compatibility. We examine the effects of these suspensions on metrics of image quality and acoustic compatibility for two types of transcranial focused ultrasound insonation regimes: low-duty cycle histotripsy procedures and high-duty cycle thermal ablation procedures. METHODS Magnetic resonance guidance imaging was used to monitor thermal ablations of in vitro gel targets using a coupling bath composed of various concentrations of aqueous, suspended, magnetite nanoparticles in a clinical transcranial transducer under stationary and flowing conditions. Thermal deposition was monitored using MR thermometry simultaneous to insonation. Then, using normal degassed water as a coupling bath, various concentrations of aqueous, suspended, magnetite nanoparticles were placed at the center of this same transducer and insonated using high-duty cycle pulsing parameters. Passive cavitation detectors recorded cavitation emissions, which were then used to estimate the relative number of cavitation events per insonation (cavitation duty cycle) and the cavitation dose estimates of each nanoparticle concentration. Finally, the nanoparticle mixtures were exposed to low-duty cycle, histotripsy pulses. Passive cavitation detectors monitored cavitation emissions, which were used to estimate cavitation threshold pressures. RESULTS The nanoparticles reduced the MR signal of the coupling bath by 90% in T2- and T2*-weighted images and also removed almost all imaging artifacts caused by coupling bath motion. The coupling baths caused <5% changes in peak temperature change achieved during sonication, as observed via MR thermometry. At low duty cycle insonations, the nanoparticles decreased the cavitation threshold pressure by about 15 ± 7% in a manner uncorrelated with nanoparticle concentration. At high duty cycle insonations, the 0.5 cavitation duty cycle acoustic power threshold varied linearly with nanoparticle concentration. CONCLUSIONS Dilute aqueous magnetite nanoparticle suspensions effectively reduced MR imaging artifacts caused by the acoustic coupling bath. They also attenuated acoustic power deposition by <5%. For low duty cycle insonation regimes, the nanoparticles decreased the cavitation threshold by 15 ± 7%. However, for high-duty cycle regimes, the nanoparticles decreased the threshold for cavitation in proportion to nanoparticle concentration.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tom Steeves
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Austin Fergusson
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dave Moore
- The Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Eli Vlaisialjevich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
33
|
Sukovich JR, Cain CA, Pandey AS, Chaudhary N, Camelo-Piragua S, Allen SP, Hall TL, Snell J, Xu Z, Cannata JM, Teofilovic D, Bertolina JA, Kassell N, Xu Z. In vivo histotripsy brain treatment. J Neurosurg 2019; 131:1331-1338. [PMID: 30485186 PMCID: PMC6925659 DOI: 10.3171/2018.4.jns172652] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Histotripsy is an ultrasound-based treatment modality relying on the generation of targeted cavitation bubble clouds, which mechanically fractionate tissue. The purpose of the current study was to investigate the in vivo feasibility, including dosage requirements and safety, of generating well-confined destructive lesions within the porcine brain utilizing histotripsy technology. METHODS Following a craniectomy to open an acoustic window to the brain, histotripsy pulses were delivered to generate lesions in the porcine cortex. Large lesions with a major dimension of up to 1 cm were generated to demonstrate the efficacy of histotripsy lesioning in the brain. Gyrus-confined lesions were generated at different applied dosages and under ultrasound imaging guidance to ensure that they were accurately targeted and contained within individual gyri. Clinical evaluation as well as MRI and histological outcomes were assessed in the acute (≤ 6 hours) and subacute (≤ 72 hours) phases of recovery. RESULTS Histotripsy was able to generate lesions with a major dimension of up to 1 cm in the cortex. Histotripsy lesions were seen to be well demarcated with sharp boundaries between treated and untreated tissues, with histological evidence of injuries extending ≤ 200 µm from their boundaries in all cases. In animals with lesions confined to the gyrus, no major hemorrhage or other complications resulting from treatment were observed. At 72 hours, MRI revealed minimal to no edema and no radiographic evidence of inflammatory changes in the perilesional area. Histological evaluation revealed the histotripsy lesions to be similar to subacute infarcts. CONCLUSIONS Histotripsy can be used to generate sharply defined lesions of arbitrary shapes and sizes in the swine cortex. Lesions confined to within the gyri did not lead to significant hemorrhage or edema responses at the treatment site in the acute or subacute time intervals.
Collapse
Affiliation(s)
- Jonathan R. Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Charles A. Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aditya S. Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | - Steven P. Allen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, Virginia
- University of Virginia, Department of Neurosurgery, Charlottesville, Virginia
| | - Zhiyuan Xu
- University of Virginia, Department of Neurosurgery, Charlottesville, Virginia
| | | | | | | | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
34
|
Xu S, Ye D, Wan L, Shentu Y, Yue Y, Wan M, Chen H. Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2758-2766. [PMID: 31378549 DOI: 10.1016/j.ultrasmedbio.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/15/2019] [Accepted: 07/05/2019] [Indexed: 05/24/2023]
Abstract
Focused ultrasound (FUS)-induced cavitation-mediated brain therapies have become emerging therapeutic modalities for neurologic diseases. Cavitation monitoring is essential to ensure the safety of all cavitation-mediated therapeutic techniques as inertial cavitation can be associated with tissue damage. The objective of this study was to reveal the correlation between the inertial cavitation dose, quantified by passive cavitation imaging (PCI), and brain tissue histologic-level damage induced by FUS in combination with microbubbles. An ultrasound image-guided FUS system consisting of a single-element FUS transducer (1.5 MHz) and a co-axially aligned 128-element linear ultrasound imaging array was used to perform FUS treatment of mice. Mice were sonicated by FUS with different peak negative pressures (0.5 MPa, 1.1 MPa, 4.0 MPa and 6.5 MPa) in the presence of systemically injected microbubbles. The acoustic emissions from the FUS-activated microbubbles were passively detected by the imaging array. The pre-beamformed channel data were acquired and processed offline using the frequency-domain delay, sum and integration algorithm to generate inertial cavitation maps. All the mice were sacrificed after the FUS treatment, and their brains were harvested and processed for hematoxylin and eosin staining. The obtained inertial cavitation maps revealed the dynamic changes of microbubble behaviors during FUS treatment at different pressure levels. It was found that the inertial cavitation dose quantified based on PCI had a linear correlation with the scale of histologic-level tissue damage. Findings from this study suggested that PCI can be used to predict histologic-level tissue damage associated with the FUS-induced cavitation.
Collapse
Affiliation(s)
- Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leighton Wan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yujia Shentu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
35
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
36
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
37
|
Woodacre JK, Landry TG, Brown JA. A Low-Cost Miniature Histotripsy Transducer for Precision Tissue Ablation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2131-2140. [PMID: 30222557 DOI: 10.1109/tuffc.2018.2869689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A miniature, 10 mm aperture histotripsy transducer with an f-number of 0.7 was fabricated using an elliptically shaped aluminum lens, which was epoxy-bonded to an air-backed 5.0 MHz, PTZ-5A, 1-3 dice-and-fill piezoelectric composite, and the lens coupled to water using a quarter-wavelength matching layer of Parylene-C. A Krimholtz-Leedom-Matthaei model of the device and curved lens was developed. The epoxy layer resulted in an increased power output at 6.8 MHz compared to the 5 MHz composite design. Cavitation was observed in water by driving the composite with a 173 V single-cycle, unipolar 6.8 MHz pulse at a pulse repetition frequency of 50 Hz, and a bubble cloud 264 long by 124 wide was measured. A coregistered imaging and ablation device was also fabricated and characterized. The coregistered device was modified to include a mm square hole through the center, allowing access for a high-frequency imaging array, and both imaging and ablation are demonstrated in cerebral tissue with this device. Radial -3 dB beam widths were measured as 0.145 and 0.116 mm, and axial -3 dB depths of field were 0.698 and 0.752 mm for the noncoregistered and coregistered transducers, respectively. Total material cost for the transducer and pulser board is below $200 USD.
Collapse
|
38
|
Macoskey JJ, Hall TL, Sukovich JR, Choi SW, Ives K, Johnsen E, Cain CA, Xu Z. Soft-Tissue Aberration Correction for Histotripsy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2073-2085. [PMID: 30281443 PMCID: PMC6277030 DOI: 10.1109/tuffc.2018.2872727] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Acoustic aberrations caused by natural heterogeneities of biological soft tissue are a substantial problem for histotripsy, a therapeutic ultrasound technique that uses acoustic cavitation to mechanically fractionate and destroy unwanted target tissue without damaging surrounding tissue. These aberrations, primarily caused by sound speed variations, result in severe defocusing of histotripsy pulses, thereby decreasing treatment efficacy. The gold standard for aberration correction (AC) is to place a hydrophone at the desired focal location to directly measure phase aberrations, which is a method that is infeasible in vivo. We hypothesized that the acoustic cavitation emission (ACE) shockwaves from the initial expansion of inertially cavitating microbubbles generated by histotripsy can be used as a point source for AC. In this study, a 500-kHz, 112-element histotripsy phased array capable of transmitting and receiving ultrasound on all channels was used to acquire ACE shockwaves. These shockwaves were first characterized optically and acoustically. It was found that the shockwave pressure increases significantly as the source changes from a single bubble to a dense cavitation cloud. The first arrival of the shockwave received by the histotripsy array was from the outer-most cavitation bubbles located closest to the histotripsy array. Hydrophone and ACE AC methods were then tested on ex vivo porcine abdominal tissue samples. Without AC, the focal pressure is reduced by 49.7% through the abdominal tissue. The hydrophone AC approach recovered 55.5% of the lost pressure. Using the ACE AC method, over 20% of the lost pressure was recovered, and the array power required to induce cavitation was reduced by approximately 31.5% compared to without AC. These results supported our hypothesis that the ACE shockwaves coupled with a histotripsy array with transmit and receive capability can be used for AC for histotripsy through soft tissue.
Collapse
|
39
|
Bader KB. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability. Phys Med Biol 2018; 63:095010. [PMID: 29553049 PMCID: PMC5959013 DOI: 10.1088/1361-6560/aab79b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and the Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
40
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1684-1697. [PMID: 28880166 PMCID: PMC5681355 DOI: 10.1109/tuffc.2017.2748050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.
Collapse
|
41
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Effect of Frequency and Focal Spacing on Transcranial Histotripsy Clot Liquefaction, Using Electronic Focal Steering. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2302-2317. [PMID: 28716432 PMCID: PMC5580808 DOI: 10.1016/j.ultrasmedbio.2017.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 05/08/2023]
Abstract
This in vitro study investigated the effects of ultrasound frequency and focal spacing on blood clot liquefaction via transcranial histotripsy. Histotripsy pulses were delivered using two 256-element hemispherical transducers of different frequency (250 and 500 kHz) with 30-cm aperture diameters. A 4-cm diameter spherical volume of in vitro blood clot was treated through 3 excised human skullcaps by electronically steering the focus with frequency proportional focal spacing: λ/2, 2 λ/3 and λ with 50 pulses per location. The pulse repetition frequency across the volume was 200 Hz, corresponding to a duty cycle of 0.08% (250 kHz) and 0.04% (500 kHz) for each focal location. Skull heating during treatment was monitored. Liquefied clot was drained via catheter and syringe in the range of 6-59 mL in 0.9-42.4 min. The fastest rate was 16.6 mL/min. The best parameter combination was λ spacing at 500 kHz, which produced large liquefaction through 3 skullcaps (23.1 ± 4.0, 37.1 ± 16.9 and 25.4 ± 16.9 mL) with the fast rates (3.2 ± 0.6, 5.1 ± 2.3 and 3.5 ± 0.4 mL/min). The temperature rise through the 3 skullcaps remained below 4°C.
Collapse
Affiliation(s)
- Tyler Gerhardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurologic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Allen SP, Vlaisavljevich E, Shi J, Hernandez-Garcia L, Cain CA, Xu Z, Hall TL. The response of MRI contrast parameters in in vitro tissues and tissue mimicking phantoms to fractionation by histotripsy. Phys Med Biol 2017; 62:7167-7180. [PMID: 28741596 DOI: 10.1088/1361-6560/aa81ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histotripsy is a non-invasive, focused ultrasound lesioning technique that can ablate precise volumes of soft tissue using a novel mechanical fractionation mechanism. Previous research suggests that magnetic resonance imaging (MRI) may be a sensitive image-based feedback mechanism for histotripsy. However, there are insufficient data to form some unified understanding of the response of the MR contrast mechanisms in tissues to histotripsy. In this paper, we investigate the response of the MR contrast parameters R1, R2, and the apparent diffusion coefficient (ADC) to various treatment levels of histotripsy in in vitro porcine liver, kidney, muscle, and blood clot as well in formulations of bovine red blood cells suspended in agar gel. We also make a histological analysis of histotripsy lesions in porcine liver. We find that R2 and the ADC are both sensitive to ablation in all materials tested here, and the degree of response varies with tissue type. Correspondingly, under histologic analysis, the porcine liver exhibited various levels of mechanical disruption and necrotic debris that are characteristic of histotripsy. While the area of intact red blood cells and nuclei found within these lesions both decreased with increasing amounts of treatment, the area of red blood cells decreased much more rapidly than the area of intact nuclei. Additionally, the decrease in area of intact red blood cells saturated at the same treatment levels at which the response of the R2 saturated while the area of intact nuclei appeared to vary linearly with the response of the ADC.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, MI 48109, United States of America
| | | | | | | | | | | | | |
Collapse
|
43
|
Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|