1
|
Li P, Tan X, Dan Q, Hu A, Hu Z, Yang X, Bai J, Chen X, Li B, Cheng G, Liu L, Chen Y, Sun D, Shuai X, Zheng T. MnO 2/Ce6 microbubble-mediated hypoxia modulation for enhancing sono-photodynamic therapy against triple negative breast cancer. Biomater Sci 2024; 12:1465-1476. [PMID: 38318975 DOI: 10.1039/d3bm00931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Sono-photodynamic therapy (SPDT) has emerged as a promising treatment modality for triple negative breast cancer (TNBC). However, the hypoxic tumor microenvironment hinders the application of SPDT. Herein, in this study, a multifunctional platform (MnO2/Ce6@MBs) was designed to address this issue. A sono-photosensitizer (Ce6) and a hypoxia modulator (MnO2) were loaded into microbubbles and precisely released within tumor tissues under ultrasound irradiation. MnO2in situ reacted with the excess H2O2 and H+ and produced O2 within the TNBC tumor, which alleviated hypoxia and augmented SPDT by increasing ROS generation. Meanwhile, the reaction product Mn2+ was able to achieve T1-weighted MRI for enhanced tumor imaging. Additionally, Ce6 and microbubbles served as a fluorescence imaging contrast agent and a contrast-enhanced ultrasound imaging agent, respectively. In in vivo anti-tumor studies, under the FL/US/MR imaging guidance, MnO2/Ce6@MBs combined with SPDT significantly reversed tumor hypoxia and inhibited tumor growth in 4T1-tumor bearing mice. This work presents a theragnostic system for reversing tumor hypoxia and enhancing TNBC treatment.
Collapse
Affiliation(s)
- Ping Li
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiao Tan
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
- Zunyi Medical University, Zunyi 563000, P.R. China
| | - Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Azhen Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Zhengming Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiaoting Yang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Jianhua Bai
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiaoyu Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Bowei Li
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xintao Shuai
- Sun Yat-sen University, Guangzhou 510000, P.R. China.
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| |
Collapse
|
2
|
Koo B, Liu Y, Abboud M, Qin B, Wu Y, Choi S, Kozak D, Zheng J. Characterizing how size distribution and concentration affect echogenicity of ultrasound contrast agents. ULTRASONICS 2023; 127:106827. [PMID: 36063769 DOI: 10.1016/j.ultras.2022.106827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/28/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effects of UCA gas bubble size distribution and concentration on the generated ultrasound echogenicity signal. Gas bubble size characterization using Coulter Counter and cryogenic-SEM revealed the hollow structure and rare presence of microbubbles >10 µm in a commercial UCA product, Lumason™. Volume-weighed size and concentration were observed to be more sensitive to changes in UCA bubble stability than number-weighted size and concentration. Size distribution measurements showed that the force (e.g., shaking/agitation energy) used to redisperse the sample did not affect the size distribution, concentration, or echogenicity of the UCA sample. The ultrasound backscattering coefficient (BSC) of size fractionated and serial diluted microbubbles showed that the echogenicity signal correlates most with UCA bubble concentration, especially volume-weighted concentration. Findings from this study may be used to support demonstrating the equivalence of a generic UCA product to the reference listed drug.
Collapse
Affiliation(s)
- Bonhye Koo
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States; Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Monica Abboud
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Bin Qin
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Stephanie Choi
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Darby Kozak
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, United States.
| |
Collapse
|
3
|
Wahyulaksana G, Wei L, Schoormans J, Voorneveld J, van der Steen AFW, de Jong N, Vos HJ. Independent Component Analysis Filter for Small Vessel Contrast Imaging During Fast Tissue Motion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2282-2292. [PMID: 35594222 DOI: 10.1109/tuffc.2022.3176742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing tissue clutter is an essential step in blood flow estimation and visualization, even when using ultrasound contrast agents. Blind source separation (BSS)-based clutter filter for high-framerate ultrasound imaging has been reported to perform better in tissue clutter suppression than the conventional frequency-based wall filter and nonlinear contrast pulsing schemes. The most notable BSS technique, singular value decomposition (SVD) has shown compelling results in cases of slow tissue motion. However, its performance degrades when the tissue motion is faster than the blood flow speed, conditions that are likely to occur when imaging the small vessels, such as in the myocardium. Independent component analysis (ICA) is another BSS technique that has been implemented as a clutter filter in the spatiotemporal domain. Instead, we propose to implement ICA in the spatial domain where motion should have less impact. In this work, we propose a clutter filter with the combination of SVD and ICA to improve the contrast-to-background ratio (CBR) in cases where tissue velocity is significantly faster than the flow speed. In an in vitro study, the range of fast tissue motion velocity was 5-25 mm/s and the range of flow speed was 1-12 mm/s. Our results show that the combination of ICA and SVD yields 7-10 dB higher CBR than SVD alone, especially in the tissue high-velocity range. The improvement is crucial for cardiac imaging where relatively fast myocardial motions are expected.
Collapse
|
4
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|
5
|
Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model. Cancers (Basel) 2022; 14:cancers14030561. [PMID: 35158829 PMCID: PMC8833694 DOI: 10.3390/cancers14030561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Bowel cancer is the fourth most common cancer in the UK. Treatment is dominated by major surgery because current imaging modalities cannot accurately determine lymph node involvement or vascular invasion. Although potentially curative, surgery carries a high risk of short- and long-term morbidity, including stoma formation. Optimized pre-treatment imaging would decrease the number of bowel cancer patients requiring major surgery. Such imaging would also be equally applicable to other cancers where local resection could significantly improve patient quality of life without compromising long-term outcomes (e.g., melanoma, head and neck cancers, gastro-esophageal, bladder). In this study, we created two mouse models (tumor and control) and used the resolution of high-frequency ultrasound imaging and parameters calculated from dynamically contrast-enhanced ultrasound to predict the likelihood of draining lymph nodes to be involved in the disease. Abstract Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.
Collapse
|
6
|
Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms. Int J Pharm 2021; 609:121154. [PMID: 34624449 DOI: 10.1016/j.ijpharm.2021.121154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0-12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.
Collapse
|
7
|
Nappi F, Iervolino A, Avtaar Singh SS, Chello M. MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets. Int J Mol Sci 2021; 22:12132. [PMID: 34830016 PMCID: PMC8618095 DOI: 10.3390/ijms222212132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
miRNAs have recently attracted investigators' interest as regulators of valvular diseases pathogenesis, diagnostic biomarkers, and therapeutical targets. Evidence from in-vivo and in-vitro studies demonstrated stimulatory or inhibitory roles in mitral valve prolapse development, aortic leaflet fusion, and calcification pathways, specifically osteoblastic differentiation and transcription factors modulation. Tissue expression assessment and comparison between physiological and pathological phenotypes of different disease entities, including mitral valve prolapse and mitral chordae tendineae rupture, emerged as the best strategies to address miRNAs over or under-representation and thus, their impact on pathogeneses. In this review, we discuss the fundamental intra- and intercellular signals regulated by miRNAs leading to defects in mitral and aortic valves, congenital heart diseases, and the possible therapeutic strategies targeting them. These miRNAs inhibitors are comprised of antisense oligonucleotides and sponge vectors. The miRNA mimics, miRNA expression vectors, and small molecules are instead possible practical strategies to increase specific miRNA activity. Advantages and technical limitations of these new drugs, including instability and complex pharmacokinetics, are also presented. Novel delivery strategies, such as nanoparticles and liposomes, are described to improve knowledge on future personalized treatment directions.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | | | - Massimo Chello
- Cardiovascular Surgery, University Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
8
|
Wei L, Wahyulaksana G, Meijlink B, Ramalli A, Noothout E, Verweij MD, Boni E, Kooiman K, van der Steen AFW, Tortoli P, de Jong N, Vos HJ. High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3069-3081. [PMID: 34086570 DOI: 10.1109/tuffc.2021.3086597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric ultrasound imaging of blood flow with microbubbles enables a more complete visualization of the microvasculature. Sparse arrays are ideal candidates to perform volumetric imaging at reduced manufacturing complexity and cable count. However, due to the small number of transducer elements, sparse arrays often come with high clutter levels, especially when wide beams are transmitted to increase the frame rate. In this study, we demonstrate with a prototype sparse array probe and a diverging wave transmission strategy, that a uniform transmission field can be achieved. With the implementation of a spatial coherence beamformer, the background clutter signal can be effectively suppressed, leading to a signal to background ratio improvement of 25 dB. With this approach, we demonstrate the volumetric visualization of single microbubbles in a tissue-mimicking phantom as well as vasculature mapping in a live chicken embryo chorioallantoic membrane.
Collapse
|
9
|
Carugo D, Browning RJ, Iranmanesh I, Messaoudi W, Rademeyer P, Stride E. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1577. [PMID: 34470259 DOI: 10.1121/10.0005911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Surfactant-coated gas microbubbles are widely used as contrast agents in ultrasound imaging and increasingly in therapeutic applications. The response of microbubbles to ultrasound can be strongly influenced by their size and coating properties, and hence the production method. Ultrasonic emulsification (sonication) is the most commonly employed method and can generate high concentrations of microbubbles rapidly, but with a broad size distribution, and there is a risk of contamination and/or degradation of sensitive components. Microfluidic devices provide excellent control over microbubble size, but are often challenging or costly to manufacture, offer low production rates (<106s-1), and are prone to clogging. In this study, a hybrid sonication-microfluidic or "sonofluidic" device was developed. Bubbles of ∼180 μm diameter were produced rapidly in a T-junction and subsequently exposed to ultrasound (71-73 kHz) within a microchannel, generating microbubbles (mean diameter: 1-2 μm) at a rate of >108s-1 using a single device. Microbubbles were prepared using either the sonofluidic device or conventional sonication, and their size, concentration, and stability were comparable. The mean diameter, concentration, and stability were found to be comparable between techniques, but the microbubbles produced by the sonofluidic device were all <5 μm in diameter and thus did not require any post-production fractionation.
Collapse
Affiliation(s)
- Dario Carugo
- Department of Pharmaceutics, UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Richard J Browning
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ida Iranmanesh
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Walid Messaoudi
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul Rademeyer
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
12
|
Abou-Saleh RH, Armistead FJ, Batchelor DVB, Johnson BRG, Peyman SA, Evans SD. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:074105. [PMID: 34340422 DOI: 10.1063/5.0040213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument "Horizon," which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 μm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100-600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fern J Armistead
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V B Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Soletti RC, de Britto MAP, Borges HL, Machado JC. Detection of Mice Colorectal Tumors by Endoluminal Ultrasound Biomicroscopic Images and Quantification of Image Augmented Gray Values Following Injection of VEGFR-2 Targeted Contrast Agent. Acad Radiol 2021; 28:808-816. [PMID: 32067837 DOI: 10.1016/j.acra.2020.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES Ultrasound biomicroscopy (UBM) is a noninvasive imaging technique that can be applied in detecting colonic tumors and, once associated with an ultrasound contrast agent (UCA), can identify the molecular expression of cancer-related biomarkers, such as the vascular endothelial growth factor receptor 2 (VEGFR-2). The present work aimed to detect colonic tumors and quantify augmented gray values of endoluminal UBM (eUBM) images from colonic tumors following the injection of VEGFR-2 targeted UCA (VEGFR2-UCA) into a mouse model of colorectal cancer. MATERIAL AND METHODS A 40 MHz miniprobe catheter inserted through the biopsy channel of a pediatric flexible bronchofiberscope was used to obtain colonoscopic and B-mode eUBM images simultaneously. Seventeen tumor-bearing mice had their colons inspected and six of them were subjected to a VEGFR2-UCA injection to predict VEGFR-2 expression. RESULTS All animals developed distal colon tumors and eUBM was able to detect all of them and also to characterize the tumors, with 71.4% being in situ lesions and 28.6% being tumors invading the mucosa + muscularis mucosae + submucosa layers, as confirmed by histopathology. After VEGFR2-UCA injection, gray values from the eUBM tumoral images increased significantly (p < 0.01). Tumor sites with increased eUBM image gray values corresponded to areas with increased VEGFR-2 expression, as confirmed by immunohistochemistry. CONCLUSION The results confirm eUBM as a powerful noninvasive and real-time tool for detecting colon tumor and its invasiveness and once associated with VEGFR2-UCA may become a tool for the detection of VEGFR-2 expression in colonic tumors.
Collapse
|
14
|
Jafari Sojahrood A, de Leon AC, Lee R, Cooley M, Abenojar EC, Kolios MC, Exner AA. Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity. ACS NANO 2021; 15:4901-4915. [PMID: 33683878 PMCID: PMC7992193 DOI: 10.1021/acsnano.0c09701] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.
Collapse
Affiliation(s)
- Amin Jafari Sojahrood
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Al C. de Leon
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Richard Lee
- Light
Microscopy Imaging Core, Case Western Reserve
University, Cleveland, Ohio 44106, United
States
| | - Michaela Cooley
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric C. Abenojar
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Agata A. Exner
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
15
|
Langeveld SAG, Schwieger C, Beekers I, Blaffert J, van Rooij T, Blume A, Kooiman K. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3221-3233. [PMID: 32109064 PMCID: PMC7279639 DOI: 10.1021/acs.langmuir.9b03912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 μm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
- E-mail: . Phone: +31107044041
| | - Christian Schwieger
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Institute
for Biochemistry and Biotechnology, Interdisciplinary Research Center
HALOmem, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| | - Inés Beekers
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Jacob Blaffert
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Tom van Rooij
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Alfred Blume
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Klazina Kooiman
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
16
|
Averkiou MA, Bruce MF, Powers JE, Sheeran PS, Burns PN. Imaging Methods for Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:498-517. [PMID: 31813583 DOI: 10.1016/j.ultrasmedbio.2019.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 05/23/2023]
Abstract
Microbubble contrast agents were introduced more than 25 years ago with the objective of enhancing blood echoes and enabling diagnostic ultrasound to image the microcirculation. Cardiology and oncology waited anxiously for the fulfillment of that objective with one clinical application each: myocardial perfusion, tumor perfusion and angiogenesis imaging. What was necessary though at first was the scientific understanding of microbubble behavior in vivo and the development of imaging technology to deliver the original objective. And indeed, for more than 25 years bubble science and imaging technology have evolved methodically to deliver contrast-enhanced ultrasound. Realization of the basic bubbles properties, non-linear response and ultrasound-induced destruction, has led to a plethora of methods; algorithms and techniques for contrast-enhanced ultrasound (CEUS) and imaging modes such as harmonic imaging, harmonic power Doppler, pulse inversion, amplitude modulation, maximum intensity projection and many others were invented, developed and validated. Today, CEUS is used everywhere in the world with clinical indications both in cardiology and in radiology, and it continues to mature and evolve and has become a basic clinical tool that transforms diagnostic ultrasound into a functional imaging modality. In this review article, we present and explain in detail bubble imaging methods and associated artifacts, perfusion quantification approaches, and implementation considerations and regulatory aspects.
Collapse
Affiliation(s)
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | | | - Paul S Sheeran
- Philips Ultrasound, Bothell, Washington, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Peter N Burns
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
18
|
Li DS, Schneewind S, Bruce M, Khaing Z, O’Donnell M, Pozzo L. Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents. NANO LETTERS 2019; 19:173-181. [PMID: 30543289 PMCID: PMC7970446 DOI: 10.1021/acs.nanolett.8b03585] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phase-change contrast agents are rapidly developing as an alternative to microbubbles for ultrasound imaging and therapy. These agents are synthesized and delivered as liquid droplets and vaporized locally to produce image contrast. They can be used like conventional microbubbles but with the added benefit of reduced size and improved stability. Droplet-based agents can be synthesized with diameters on the order of 100 nm, making them an ideal candidate for extravascular imaging or therapy. However, their synthesis requires low boiling point perfluorocarbons (PFCs) to achieve activation (i.e., vaporization) thresholds within FDA approved limits. Minimizing spontaneous vaporization while producing liquid droplets using conventional methods with low boiling point PFCs can be challenging. In this study, a new method to produce PFC nanodroplets using spontaneous nucleation is demonstrated using PFCs with boiling points ranging from -37 to 56 °C. Sometimes referred to as the ouzo method, the process relies on saturating a cosolvent with the PFC before adding a poor solvent to reduce solvent quality, forcing droplets to spontaneously nucleate. This approach can produce droplets ranging from under 100 nm to over 1 μm in diameter. Ternary plots showing solvent and PFC concentrations leading to droplet nucleation are presented. Additionally, acoustic activation thresholds and size distributions with varying PFC and solvent conditions are measured and discussed. Finally, ultrasound contrast imaging is demonstrated using ouzo droplets in an animal model.
Collapse
Affiliation(s)
- David S. Li
- Department of Chemical Engineering, University of
Washington, Seattle, WA
- Department of Bioengineering, University of Washington,
Seattle, WA
| | - Sarah Schneewind
- Department of Chemical Engineering, University of
Washington, Seattle, WA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied
Physics Lab, University of Washington, Seattle, WA
| | - Zin Khaing
- Department of Neurological Surgery, University of
Washington, Seattle, WA
| | | | - Lilo Pozzo
- Department of Chemical Engineering, University of
Washington, Seattle, WA
| |
Collapse
|
19
|
Yoo K, Walker WR, Williams R, Tremblay-Darveau C, Burns PN, Sheeran PS. Impact of Encapsulation on in vitro and in vivo Performance of Volatile Nanoscale Phase-Shift Perfluorocarbon Droplets. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1836-1852. [PMID: 29908752 DOI: 10.1016/j.ultrasmedbio.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/15/2023]
Abstract
Phase-shift droplets can be converted by sound from low-echogenicity, liquid-core agents into highly echogenic microbubbles. Many proposed applications in imaging and therapy take advantage of the high spatiotemporal control over this dynamic transition. Although some studies have reported increased circulation time of the droplets compared with microbubbles, few have directly explored the impact of encapsulation on droplet performance. With the goal of developing nanoscale droplets with increased circulatory persistence, we first evaluate the half-life of several candidate phospholipid encapsulations in vitro at clinical frequencies. To evaluate in vivo circulatory persistence, we develop a technique to periodically measure droplet vaporization from high-frequency B-mode scans of a mouse kidney. Results show that longer acyl chain phospholipids can dramatically reduce droplet degradation, increasing median half-life in vitro to 25.6 min-a 50-fold increase over droplets formed from phospholipids commonly used for clinical microbubbles. In vivo, the best-performing droplet formulations showed a median half-life of 18.4 min, more than a 35-fold increase in circulatory half-life compared with microbubbles with the same encapsulation in vivo. These findings also point to possible refinements that may improve nanoscale phase-shift droplet performance beyond those measured here.
Collapse
Affiliation(s)
- Kimoon Yoo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Wesley R Walker
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ross Williams
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Charles Tremblay-Darveau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Peter N Burns
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul S Sheeran
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Li Y, Chen Y, Du M, Chen ZY. Ultrasound Technology for Molecular Imaging: From Contrast Agents to Multimodal Imaging. ACS Biomater Sci Eng 2018; 4:2716-2728. [PMID: 33434997 DOI: 10.1021/acsbiomaterials.8b00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasound (US) takes advantage of ultrasound contrast agents (UCAs) to further increase the sensitivity and specificity of monitoring at the cellular level, which has had a considerable effect on the modern molecular imaging field. Gas-filled microbubbles (MBs) as UCAs in the bloodstream generate resonant volumetric oscillations in response to rapid variations in acoustic pressure, which are related to both the acoustic parameters of applied ultrasound and the physicochemical properties of the contrast agents. Nanoscale UCAs have been developed and have attracted much attention due to their utility in detecting extravascular lesions. Ultrasound molecular assessment is achieved by binding disease-specific ligands to the surface of UCAs, which have been designed to target tissue biomarkers in the area of interest, such as blood vessels, inflammation, or thrombosis. Additionally, the development of multimodal imaging technology is conducive for integration of the advantages of various imaging techniques to acquire additional diagnostic information. In this review paper, the present status and the critical issues for developing ultrasound contrast agents and multimodal imaging applications are described. Conventional MB UCAs are first introduced, including their research material, diagnostic applications, and intrinsic limitations. Then, recent progress in developing targeted UCAs and phase-inversion contrast agents for diagnostic purposes is discussed. Finally, we review the present status and the critical issues for developing ultrasound-based multimodal imaging applications and summarize the existing challenges and future prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| |
Collapse
|
21
|
Shah A, Bush N, Box G, Eccles S, Bamber J. Value of combining dynamic contrast enhanced ultrasound and optoacoustic tomography for hypoxia imaging. PHOTOACOUSTICS 2017; 8:15-27. [PMID: 28932684 PMCID: PMC5596361 DOI: 10.1016/j.pacs.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 05/09/2023]
Abstract
Optoacoustic imaging (OAI) can detect haemoglobin and assess its oxygenation. However, the lack of a haemoglobin signal need not indicate a lack of perfusion. This study uses a novel method to assist the co-registration of optoacoustic images with dynamic contrast enhanced ultrasound (DCE-US) images to demonstrate, in preclinical tumour models, the value of combining haemoglobin imaging with a perfusion imaging method, showing that a lack of a haemoglobin signal does not necessarily indicate an absence of perfusion. DCE-US was chosen for this particular experiment because US is extremely sensitive to microbubble contrast agents and because microbubbles, like red blood cells but unlike currently available optical contrast agents, do not extravasate. Significant spatial correlations were revealed between the DCE-US properties and tumour blood-oxygen saturation and haemoglobin, as estimated using OAI. It is speculated that DCE-US properties could be applied as surrogate biomarkers for hypoxia when planning clinical radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Anant Shah
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Nigel Bush
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Gary Box
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Suzanne Eccles
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Jeffrey Bamber
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| |
Collapse
|
22
|
Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: In Vitro Feasibility. Biophys J 2017; 112:1894-1907. [PMID: 28494960 DOI: 10.1016/j.bpj.2017.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
Polymeric microcapsules with a light-absorbing dye incorporated in their shell can generate vapor microbubbles that can be spatiotemporally controlled by pulsed laser irradiation. These contrast agents of 6-8 μm in diameter can circulate through the vasculature, offering possibilities for ultrasound (molecular) imaging and targeted therapies. Here, we study the impact of such vapor bubbles on human endothelial cells in terms of cell poration and cell viability to establish the imaging and therapeutic windows. Two capsule formulations were used: the first one consisted of a high boiling point oil (hexadecane), whereas the second was loaded with a low boiling point oil (perfluoropentane). Poration probability was already 40% for the smallest bubbles that were formed (<7.5 μm diameter), and reached 100% for the larger bubbles. The hexadecane-loaded capsules also produced bubbles while their shell remained intact. These encapsulated bubbles could therefore be used for noninvasive ultrasound imaging after laser activation without inducing any cell damage. The controlled and localized cell destruction achieved by activation of both capsule formulations may provide an innovative approach for specifically inducing cell death in vivo, e.g., for cancer therapy.
Collapse
|