1
|
Meijlink B, Collado-Lara G, Bishard K, Conboy JP, Langeveld SAG, Koenderink GH, van der Steen AFW, de Jong N, Beekers I, Trietsch SJ, Kooiman K. Characterizing Microbubble-Mediated Permeabilization in a Vessel-on-a-Chip Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407550. [PMID: 39648449 DOI: 10.1002/smll.202407550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Indexed: 12/10/2024]
Abstract
Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, spatial distribution, and amount of vascular permeability increase. Accurate models are necessary for insights into the mechanism so a microvessel-on-a-chip is developed with a membrane-free extravascular space. Using these microvessels-on-a-chip, distinct differences between 2 MHz ultrasound treatments are shown with 10 or 1000 cycles. The onset rate is slower for 10 than 1000 cycles, while both cycle lengths increase the permeability in spot-wise patterns without affecting microvessel viability. Significantly less vascular permeability increase and sonoporation are induced for 10 versus 1000 cycles at 750 kPa (i.e., the highest studied peak negative acoustic pressure (PNP)). The PNP threshold for vascular permeability increases is 750 versus 550 kPa for 10 versus 1000 cycles, while this is 750 versus 220 kPa for sonoporation. Vascular permeability increases do not correlate with αvβ3-targeted microbubble behavior, while sonoporation correlates with αvβ3-targeted microbubble clustering. In conclusion, the further mechanistic unraveling of vascular permeability increase by ultrasound-activated microbubbles in a developed microvessel-on-a-chip model aids the safe and efficient development of microbubble-mediated drug transport.
Collapse
Affiliation(s)
- Bram Meijlink
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | | | - James P Conboy
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Simone A G Langeveld
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Inés Beekers
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Health, ORTEC B.V., Houtsingel 5, Zoetermeer, 2719 EA, The Netherlands
| | | | - Klazina Kooiman
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
2
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
3
|
Nawijn CL, Segers T, Lajoinie G, Berg S, Snipstad S, Davies CDL, Versluis M. High-Speed Optical Characterization of Protein-and-Nanoparticle-Stabilized Microbubbles for Ultrasound-Triggered Drug Release. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1099-1107. [PMID: 38851940 DOI: 10.1016/j.ultrasmedbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Ultrasound-triggered bubble-mediated local drug delivery has shown potential to increase therapeutic efficacy and reduce systemic side effects, by loading drugs into the microbubble shell and triggering delivery of the payload on demand using ultrasound. Understanding the behavior of the microbubbles in response to ultrasound is crucial for efficient and controlled release. METHODS In this work, the response of microbubbles with a coating consisting of poly(2-ethyl-butyl cyanoacrylate) (PEBCA) nanoparticles and denatured casein was characterized. High-speed recordings were taken of single microbubbles, in both bright field and fluorescence. RESULTS The nanoparticle-loaded microbubbles show resonance behavior, but with a large variation in response, revealing a substantial interbubble variation in mechanical shell properties. The probability of shell rupture and the probability of nanoparticle release were found to strongly depend on microbubble size, and the most effective size was inversely proportional to the driving frequency. The probabilities of both rupture and release increased with increasing driving pressure amplitude. Rupture of the microbubble shell occurred after fewer cycles of ultrasound as the driving pressure amplitude or driving frequency was increased. CONCLUSION The results highlight the importance of careful selection of the driving frequency, driving pressure amplitude and duration of ultrasound to achieve the most efficient ultrasound-triggered shell rupture and nanoparticle release of protein-and-nanoparticle-stabilized microbubbles.
Collapse
Affiliation(s)
- Charlotte L Nawijn
- Physics of Fluids Group, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands.
| | - Tim Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - Sigrid Berg
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Pakdaman Zangabad R, Li H, Kouijzer JJP, Langeveld SAG, Beekers I, Verweij M, De Jong N, Kooiman K. Ultrasonic Characterization of Ibidi μ-Slide I Luer Channel Slides for Studies With Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:422-429. [PMID: 37027575 DOI: 10.1109/tuffc.2023.3250202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding and controlling the ultrasound contrast agent (UCA)'s response to an applied ultrasound pressure field are crucial when investigating ultrasound imaging sequences and therapeutic applications. The magnitude and frequency of the applied ultrasonic pressure waves affect the oscillatory response of the UCA. Therefore, it is important to have an ultrasound compatible and optically transparent chamber in which the acoustic response of the UCA can be studied. The aim of our study was to determine the in situ ultrasound pressure amplitude in the ibidi μ -slide I Luer channel, an optically transparent chamber suitable for cell culture, including culture under flow, for all microchannel heights (200, 400, 600, and [Formula: see text]). First, the in situ pressure field in the 800- [Formula: see text] high channel was experimentally characterized using Brandaris 128 ultrahigh-speed camera recordings of microbubbles (MBs) and a subsequent iterative processing method, upon insonification at 2 MHz, 45° incident angle, and 50-kPa peak negative pressure (PNP). Control studies in another cell culture chamber, the CLINIcell, were compared with the obtained results. The pressure amplitude was -3.7 dB with respect to the pressure field without the ibidi μ -slide. Second, using finite-element analysis, we determined the in situ pressure amplitude in the ibidi with the 800- [Formula: see text] channel (33.1 kPa), which was comparable to the experimental value (34 kPa). The simulations were extended to the other ibidi channel heights (200, 400, and [Formula: see text]) with either 35° or 45° incident angle, and at 1 and 2 MHz. The predicted in situ ultrasound pressure fields were between -8.7 and -1.1 dB of the incident pressure field depending on the listed configurations of ibidi slides with different channel heights, applied ultrasound frequencies, and incident angles. In conclusion, the determined ultrasound in situ pressures demonstrate the acoustic compatibility of the ibidi μ -slide I Luer for different channel heights, thereby showing its potential for studying the acoustic behavior of UCAs for imaging and therapy.
Collapse
|
5
|
Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022; 189:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.
Collapse
|
6
|
Sun C, Zhang M, Huang G, Zhang P, Lin R, Wang X, You H. A Microfluidic System of Gene Transfer by Ultrasound. MICROMACHINES 2022; 13:1126. [PMID: 35888943 PMCID: PMC9318161 DOI: 10.3390/mi13071126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 01/29/2023]
Abstract
Ultrasonic gene transfer has advantages beyond other cell transfer techniques because ultrasound does not directly act on cells, but rather pushes the gene fragments around the cells into cells through an acoustic hole effect. Most examples reported were carried out in macro volumes with conventional ultrasonic equipment. In the present study, a MEMS focused ultrasonic transducer based on piezoelectric thin film with flexible substrate was integrated with microchannels to form a microfluidic system of gene transfer. The core part of the system is a bowl-shaped curved piezoelectric film structure that functions to focus ultrasonic waves automatically. Therefore, the low input voltage and power can obtain the sound pressure exceeding the cavitation threshold in the local area of the microchannel in order to reduce the damage to cells. The feasibility of the system is demonstrated by finite element simulation and an integrated system of MEMS ultrasonic devices and microchannels are developed to successfully carry out the ultrasonic gene transfection experiments for HeLa cells. The results show that having more ultrasonic transducers leads a higher transfection rate. The system is of great significance to the development of single-cell biochip platforms for early cancer diagnosis and assessment of cancer treatment.
Collapse
Affiliation(s)
- Cuimin Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
- Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing, Nanning 530004, China
| | - Menghua Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
| | - Guangyong Huang
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Ping Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Ronghui Lin
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Xiangjun Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Hui You
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| |
Collapse
|
7
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
8
|
Akarapipad P, Kaarj K, Liang Y, Yoon JY. Environmental Toxicology Assays Using Organ-on-Chip. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:155-183. [PMID: 33974806 DOI: 10.1146/annurev-anchem-091620-091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
| | - Kattika Kaarj
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Yan Liang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
9
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
10
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt SC, Lentacker I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials 2019; 217:119250. [DOI: 10.1016/j.biomaterials.2019.119250] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
13
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
14
|
Beekers I, van Rooij T, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. Acoustic Characterization of the CLINIcell for Ultrasound Contrast Agent Studies. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:244-246. [PMID: 30452354 DOI: 10.1109/tuffc.2018.2881724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound contrast agents consist of gas-filled coated microbubbles that oscillate upon ultrasound insonification. Their characteristic oscillatory response provides contrast enhancement for imaging and has the potential to locally enhance drug delivery. Since microbubble response depends on the local acoustic pressure, an ultrasound compatible chamber is needed to study their behavior and the underlying drug delivery pathways. In this study, we determined the amplitude of the acoustic pressure in the CLINIcell, an optically transparent chamber suitable for cell culture. The pressure field was characterized based on microbubble response recorded using the Brandaris 128 ultrahigh-speed camera and an iterative processing method. The results were compared to a control experiment performed in an OptiCell, which is conventionally used in microbubble studies. Microbubbles in the CLINIcell responded in a controlled manner, comparable to those in the OptiCell. For frequencies from 1 to 4 MHz, the mean pressure amplitude was -5.4 dB with respect to the externally applied field. The predictable ultrasound pressure demonstrates the potential of the CLINIcell as an optical, ultrasound, and cell culture compatible device to study microbubble oscillation behavior and ultrasound-mediated drug delivery.
Collapse
|