1
|
Karthick Raghunath KM, Khan SB, Mahesh TR, Almusharraf A, Jeet R, Quasim MT, Irshad A, Asiri F. Integration of focused ultrasound and dynamic imaging control system for targeted neuro-modulation. J Neurosci Methods 2025; 417:110391. [PMID: 39993532 DOI: 10.1016/j.jneumeth.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these advancements, precision targeting of deep brain structures remains a challenge faced with great need of another innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Resonance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated Focused Ultrasound and Real-Time Imaging Control System (IFURTICS). PRINCIPLE RESULTS Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation parameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive networks while minimizing deleterious collateral effects. CONCLUSIONS Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved targeting accuracy by ∼18 %, reduced off-target effects by ∼55 % and enhanced therapeutic outcomes by 50 % over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.
Collapse
Affiliation(s)
- K M Karthick Raghunath
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore 562112, India.
| | - Surbhi Bhatia Khan
- School of science, engineering and environment, University of Salford, United Kingdom; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - T R Mahesh
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore 562112, India.
| | - Ahlam Almusharraf
- Department of Management, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Rubal Jeet
- Chandigarh Engineering College,Jhanjeri, Mohali, Punjab, India.
| | - Mohammad Tabrez Quasim
- Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, P.O Box 551, Bisha, Saudi Arabia.
| | - Azeem Irshad
- GGC Asghar Mall, HED, Rawalpindi, Punjab, Pakistan.
| | - Fatima Asiri
- College of Computer Science, Informatics and Computer Systems Department, King Khalid University, Saudi Arabia.
| |
Collapse
|
2
|
Huan J, Pashaei V, Majerus SJA, Bhunia S, Mandal S. A Wearable Dual-Mode Probe for Image-Guided Closed-Loop Ultrasound Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:357-373. [PMID: 38990740 DOI: 10.1109/tbcas.2024.3425858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Low-intensity focused ultrasound (FUS) is an emerging non-invasive and spatially/temporally precise method for modulating the firing rates and patterns of peripheral nerves. This paper describes an image-guided platform for chronic and patient-specific FUS neuromodulation. The system uses custom wearable probes containing separate ultrasound imaging and modulation transducer arrays realized using piezoelectric transducers assembled on a flexible printed circuit board (PCB). Dual-mode probes operating around 4 MHz (imaging) and 1.3 MHz (modulation) were fabricated and tested on tissue phantoms. The resulting B-mode images were analyzed using a template-matching algorithm to estimate the location of the target nerve and then direct the modulation beam toward the target. The ultrasound transmit voltage used to excite the modulation array was optimized in real-time by automatically regulating functional feedback signals (the average rates of emulated muscle twitches detected by an on-board motion sensor) through a proportional and integral (PI) controller, thus providing robustness to inter-subject variability and probe positioning errors. The proposed closed-loop neuromodulation paradigm was experimentally demonstrated in vitro using an active tissue phantom that integrates models of the posterior tibial nerve and nearby blood vessels together with embedded sensors and actuators.
Collapse
|
3
|
Zhou H, Li F, Lin Z, Meng L, Chen D, Zhang Q, Niu L. Holographic Ultrasound Modulates Neural Activity in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0516. [PMID: 39507404 PMCID: PMC11538569 DOI: 10.34133/research.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Ultrasound (US) has emerged as a noninvasive neurostimulation method for motor control in Parkinson's disease (PD). Previous in vivo US neuromodulation studies for PD were single-target stimulation. However, the motor symptoms of PD are linked with neural circuit dysfunction, and multi-target stimulation is conducted in clinical treatment for PD. Thus, in the present study, we achieved multi-target US stimulation using holographic lens transducer based on the Rayleigh-Sommerfeld diffraction integral and time-reversal methods. We demonstrated that holographic US stimulation of the bilateral dorsal striatum (DS) could improve the motor function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. The holographic US wave (fundamental frequency: 3 MHz, pulse repetition frequency: 500 Hz, duty cycle: 20%, tone-burst duration: 0.4 ms, sonication duration: 1 s, interstimulus interval: 4 s, spatial-peak temporal-average intensity: 180 mw/cm2) was delivered to the bilateral DS 20 min per day for consecutive 10 d after the last injection of MPTP. Immunohistochemical c-Fos staining demonstrated that holographic US significantly increased the c-Fos-positive neurons in the bilateral DS compared with the sham group (P = 0.003). Moreover, our results suggested that holographic US stimulation of the bilateral DS ameliorated motor dysfunction (P < 0.05) and protected the dopaminergic (DA) neurons (P < 0.001). The neuroprotective effect of holographic US was associated with the prevention of axon degeneration and the reinforcement of postsynaptic densities [growth associated protein-43 (P < 0.001), phosphorylated Akt (P = 0.001), β3-tubulin (P < 0.001), phosphorylated CRMP2 (P = 0.037), postsynaptic density (P = 0.023)]. These data suggested that holographic US-induced acoustic radiation force has the potential to achieve multi-target neuromodulation and could serve as a reliable tool for the treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
- Tech X Academy,
Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Dan Chen
- Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology,
Shenzhen Polytechnic University, Shenzhen, China
| | - Qingping Zhang
- School of Electronic and Communication Engineering,
Shenzhen Polytechnic University, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Hu H, Hu C, Guo W, Zhu B, Wang S. Wearable ultrasound devices: An emerging era for biomedicine and clinical translation. ULTRASONICS 2024; 142:107401. [PMID: 39004039 DOI: 10.1016/j.ultras.2024.107401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
In recent years, personalized diagnosis and treatment have gained significant recognition and rapid development in the biomedicine and healthcare. Due to the flexibility, portability and excellent compatibility, wearable ultrasound (WUS) devices have become emerging personalized medical devices with great potential for development. Currently, with the development of the ongoing advancements in materials and structural design of the ultrasound transducers, WUS devices have improved performance and are increasingly applied in the medical field. In this review, we provide an overview of the design and structure of WUS devices, focusing on their application for diagnosis and treatment of various diseases from a clinical application perspective, and then explore the issues that need to be addressed before clinical translation. Finally, we summarize the progress made in the development of WUS devices, and discuss the current challenges and the future direction of their development. In conclusion, WUS devices usher an emerging era for biomedicine with great clinical promise.
Collapse
Affiliation(s)
- Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Changhao Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Wei Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, China.
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China.
| |
Collapse
|
5
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
6
|
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, Zhao Q. Implantable Flexible Sensors for Health Monitoring. Adv Healthc Mater 2024; 13:e2302460. [PMID: 37816513 DOI: 10.1002/adhm.202302460] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.
Collapse
Affiliation(s)
- Aoxi Yu
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Congkai Chen
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Haixia Cui
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
8
|
Qiang Y, Wang X, Liu R, Han X, Zheng H, Qiu W, Zhang Z. Sub-aperture ultrafast volumetric ultrasound imaging for fully sampled dual-mode matrix array. ULTRASONICS 2024; 136:107172. [PMID: 37788535 DOI: 10.1016/j.ultras.2023.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Fully sampled dual-mode matrix array ultrasound transducer is capable of performing imaging and therapeutic ultrasound in three dimensions (3D). It is a promising tool for many clinical applications because of its precise multi-focus therapy with imaging guidance by itself. Our team previously designed a 256-element fully sampled dual-mode matrix array transducer, while its imaging quality needs to be further improved. In this work, we propose a high-contrast sub-aperture volumetric imaging strategy to improve the imaging quality of the dual-mode matrix array. We first analyzed the effect of various parameters of sub-aperture imaging on the imaging quality by Field II. Based on the optimized parameters, we compared the resolution and signal to noise ratio (SNR) of sub-aperture imaging with those of full aperture imaging on phantoms and rabbit brain. The experimental results showed the proposed sub-aperture imaging method could obtain a comparable resolution to full aperture imaging. Moreover, the average intensity of noise signal near the wire phantom decreased by about 5 dB and the SNR of tissue phantom image increased by 8 %. The proposed sub-aperture imaging method also enabled clearer and more accurate imaging of the rabbit brain. The obtained results indicate the proposed sub-aperture imaging is a promising method for practical use of a fully sampled dual-mode matrix array for volumetric ultrasound imaging.
Collapse
Affiliation(s)
- Yu Qiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingying Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Xuan Han
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
9
|
Javid A, Ilham S, Kiani M. A Review of Ultrasound Neuromodulation Technologies. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1084-1096. [PMID: 37506009 DOI: 10.1109/tbcas.2023.3299750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The invasiveness of neuromodulation technologies that require surgical implantation (e.g., electrical and optical stimulation) may limit their clinical application. Thus, alternative technologies that offer similar benefits without surgery are of paramount importance in the field of neuromodulation. Low-intensity ultrasound is an emerging modality for neural stimulation as ultrasound can be focused in deep tissues with millimeter resolution. Transcranial focused ultrasound stimulation (tFUS) has already been demonstrated in a wide range of animals and even humans at different sonication frequencies (mostly in the sub-MHz range due to the presence of the skull). This article first provides some fundamental knowledge in ultrasound, and then reviews various examples of successful tFUS experiments in animals and humans using different stimulation patterns, as well as available tFUS technologies for generating, focusing, and steering ultrasound beams in neural tissues. In particular, phased array technologies for the ultrasound stimulation application are discussed with an emphasis on the design, fabrication, and integration of ultrasound transducer arrays as well as the design and development of phased array electronics with beamformer and high-voltage driver circuitry. The challenges in tFUS, such as its underlying mechanism, indirect auditory response, and skull aberration effects, are also discussed.
Collapse
|
10
|
Liu T, Shi J, Fu Y, Zhang Y, Bai Y, He S, Deng W, Jin Q, Chen Y, Fang L, He L, Li Y, Yang Y, Zhang L, Lv Q, Wang J, Xie M. New trends in non-pharmacological approaches for cardiovascular disease: Therapeutic ultrasound. Trends Cardiovasc Med 2023; 33:431-440. [PMID: 35461990 DOI: 10.1016/j.tcm.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Significant advances in application of therapeutic ultrasound have been reported in the past decades. Therapeutic ultrasound is an emerging non-invasive stimulation technique. This approach has shown high potential for treatment of various disease including cardiovascular disease. In this review, application principle and significance of the basic parameters of therapeutic ultrasound are summarized. The effects of therapeutic ultrasound in myocardial ischemia, heart failure, myocarditis, arrhythmias, and hypertension are explored, with key focus on the underlying mechanism. Further, the limitations and challenges of ultrasound therapy on clinical translation are evaluated to promote application of the novel strategy in cardiovascular diseases.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lin He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
11
|
Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022; 16:1011699. [PMID: 36213731 PMCID: PMC9539445 DOI: 10.3389/fnins.2022.1011699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.
Collapse
Affiliation(s)
- Evgenii Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeungeun Kum
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Seung Hyun Lee
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyungmin Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Hyungmin Kim,
| |
Collapse
|
12
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Potential Goals, Challenges, and Safety of Focused Ultrasound Application for Central Nervous System Disorders. Curr Neuropharmacol 2022; 20:1807-1810. [PMID: 35105289 PMCID: PMC9886811 DOI: 10.2174/1570159x20666220201092908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Camilo Ríos
- Address correspondence to this author at the Department of Neurochemistry of the National Institute of Neurology and Neurosurgery. Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269. Mexico; E-mail:
| |
Collapse
|
13
|
Badadhe JD, Roh H, Lee BC, Kim JH, Im M. Ultrasound stimulation for non-invasive visual prostheses. Front Cell Neurosci 2022; 16:971148. [PMID: 35990889 PMCID: PMC9382087 DOI: 10.3389/fncel.2022.971148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, it is estimated there are more than 2.2 billion visually impaired people. Visual diseases such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and optic neuritis can cause irreversible profound vision loss. Many groups have investigated different approaches such as microelectronic prostheses, optogenetics, stem cell therapy, and gene therapy to restore vision. However, these methods have some limitations such as invasive implantation surgery and unknown long-term risk of genetic manipulation. In addition to the safety of ultrasound as a medical imaging modality, ultrasound stimulation can be a viable non-invasive alternative approach for the sight restoration because of its ability to non-invasively control neuronal activities. Indeed, recent studies have demonstrated ultrasound stimulation can successfully modulate retinal/brain neuronal activities without causing any damage to the nerve cells. Superior penetration depth and high spatial resolution of focused ultrasound can open a new avenue in neuromodulation researches. This review summarizes the latest research results about neural responses to ultrasound stimulation. Also, this work provides an overview of technical viewpoints in the future design of a miniaturized ultrasound transducer for a non-invasive acoustic visual prosthesis for non-surgical and painless restoration of vision.
Collapse
Affiliation(s)
- Jaya Dilip Badadhe
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Byung Chul Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jae Hun Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
14
|
Dilevicius I, Serdijn WA, Costa TL. Stent with Piezoelectric Transducers for High Spatial Resolution Ultrasound Neuromodulation- a Finite Element Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4966-4969. [PMID: 36085863 DOI: 10.1109/embc48229.2022.9871956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep brain stimulation is currently the only technique used in the clinical setting to modulate the neural activity of deep brain nuclei. Recently, low-intensity transcranial focused ultrasound (LIFU) has been shown to reversibly modulate brain activity through a transcranial pathway. Transcranial LIFU requires a low-frequency ultrasound of around 0.5 MHz due to skull attenuation, thus providing poor axial and lateral resolution. This paper proposes a new conceptual device that would use a stent to place a high-frequency ultrasound array within the brain vasculature to achieve high axial and lateral spatial resolution. The first part of this work identified the most commonly treated deep brain nuclei and examined the human brain vasculature for stent placement. Next, a finite element analysis was carried out using a piezoelectric array that follows the blood vessels curvature, and its ability to focus ultrasound waves in clinically relevant brain nuclei was evaluated. The analytical solution provided promising results for deep brain stimulation via a stent with ultrasound transducers for high spatial resolution neuromodulation.
Collapse
|
15
|
Zhuang X, He J, Wu J, Ji X, Chen Y, Yuan M, Zeng L. A Spatial Multitarget Ultrasound Neuromodulation System Using High-Powered 2-D Array Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:998-1007. [PMID: 34990356 DOI: 10.1109/tuffc.2022.3140889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial focused ultrasound (tFUS) is increasingly used in experimental neuroscience due to its neuromodulatory effectiveness in animal studies. However, achieving multitarget tFUS in small animals is typically limited by transducer size, energy transfer efficiency, and brain volume. The objective of this work was to construct an ultrasound system for multitarget neuromodulation in small animals. First, a miniaturized high-powered 2-D array transducer was developed. The phase delay of each array element was calculated based on the multifocal time-reversal method, generating multiple foci simultaneously in a 3-D field. The effects of the axial focal length, interfocus spacing (lateral distance between the two focal centers), and the number of foci on the focal properties of the pressure field were examined through numerical simulations. In-vitro ultrasonic measurements and transcranial simulations on a rat skull were conducted. The minimum interfocus spacing separating two -6-dB foci and the peak full-width at half-maximum were positively correlated with axial focal length; the relative relationship between the interfocus spacing and pressure field properties was similar for each axial focal length. The maximum acoustic pressure and spatial average intensity at focus in deionized water were 2.21 MPa and 133 W/cm2, respectively. The simulated and experimental results were compared, demonstrating agreement in both peak position and focus shape. The ultrasound system can provide a neuroscientific platform for evaluating the feasibility of multitarget ultrasound stimulation treatment protocols, thus improving the understanding of functional neuroanatomy.
Collapse
|
16
|
He J, Wu J, Zhu Y, Chen Y, Yuan M, Zeng L, Ji X. Multitarget Transcranial Ultrasound Therapy in Small Animals Based on Phase-Only Acoustic Holographic Lens. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:662-671. [PMID: 34847028 DOI: 10.1109/tuffc.2021.3131752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transcranial ultrasound therapy has become a noninvasive method for treating neurological and psychiatric disorders, and studies have further demonstrated that multitarget transcranial ultrasound therapy is a better solution. At present, multitarget transcranial ultrasound therapy in small animals can only be achieved by the multitransducer or phased array. However, multiple transducers may cause spatial interference, and the phased array system is complicated, expensive, and especially unsuitable for small animals. This study is the first to design and fabricate a miniature acoustic holography lens for multitarget transcranial ultrasound therapy in rats. The acoustic holographic lens, working at a frequency of 1.0 MHz, with a size of 10.08 mm ×10.08 mm and a pixel resolution of 0.72 mm, was designed, optimized, and fabricated. The dual-focus transcranial ultrasound generated based on the lens was measured; the full-width at half-maximum (FWHM) of the focal spots in the y -direction was 2.15 and 2.27 mm and in the z -direction was 2.3 and 2.36 mm. The focal length was 5.4 mm, and the distance between the two focuses was 5.6 mm, close to the desired values of 5.4 and 6.0 mm. Finally, the multiple-target blood-brain barrier opening in rats' bilateral secondary visual cortex (mediolateral area, V2ML) was demonstrated using the transcranial ultrasound therapy system based on the lens. These results demonstrate the good performance of the multitarget transcranial ultrasound therapy system for small animals, including high spatial resolution, small size, and low cost.
Collapse
|
17
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|
18
|
Jones RM, Caskey CF, Dayton PA, Oralkan O, Pinton GF. Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:261-272. [PMID: 34460372 DOI: 10.1109/tuffc.2021.3108448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design. Using 3-D Fullwave simulations, we have designed an ultrasound neuromodulation array for nonhuman primates that: 1) can simultaneously focus on multiple targets and 2) include an imaging aperture for additional functional imaging. This design is based on a spherical array, with 128 15-mm elements distributed in a spherical helix pattern. It is shown that clustering the elements tightly around the 65-mm imaging aperture located at the top of the array improves targeting at shallow depths, near the skull surface. Spherical arrays have good focusing capabilities through the skull at the center of the array, but focusing on off-center locations is more challenging due to the natural geometric configuration and the angle of incidence with the skull. In order to mitigate this, the 64 elements closest to the aperture were rotated toward and focusing on a shallow target, and the 64 elements farthest from the aperture were rotated toward and focusing on a deeper target. Data illustrated that this array produced focusing on the somatosensory cortex with a gain of 4.38 and to the thalamus with a gain of 3.82. To improve upon this, the array placement was optimized based on phase aberration simulations, allowing for the elements with the largest impact on the gain at each focal point to be found. This optimization resulted in an array design that can focus on the somatosensory cortex with a gain of 5.19 and the thalamus with a gain of 4.45. Simulations were also performed to evaluate the ability of the array to focus on 28 additional brain regions, showing that off-center target regions can be stimulated, but those closer to the skull will require corrective steps to deliver the same amount of energy to those locations. This simulation and design process can be adapted to an individual monkey or human skull morphologies and specific target locations within individuals by using orientable 3-D printing of the transducer case and by electronic phase aberration correction.
Collapse
|
19
|
Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, Chen Z. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract Neurological diseases associated with dysfunctions of neural circuits, including Alzheimer’s disease (AD), depression and epilepsy, have been increasingly prevalent. To tackle these issues, artificial stimulation or regulation of specific neural circuits and
nuclei are employed to alleviate or cure certain neurological diseases. In particular, ultrasound neuromodulation has been an emerging interdisciplinary approach, which integrates medicine and engineering methodologies in the treatment. With the development of medicine and engineering, ultrasound
neuromodulation has gradually been applied in the treatment of central nervous system diseases. In this review, we aimed to summarize the mechanism of ultrasound neuromodulation and the advances of focused ultrasound (FUS) in neuromodulation in recent years, with a special emphasis on its
application in central nervous system disease treatment. FUS showed great feasibility in the treatment of epilepsy, tremor, AD, depression, and brain trauma. We also suggested future directions of ultrasound neuromodulation in clinical settings, with a focus on its fusion with genetic engineering
or nanotechnology.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Gao
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhiyi Chen
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
20
|
Estrada H, Robin J, Özbek A, Chen Z, Marowsky A, Zhou Q, Beck D, le Roy B, Arand M, Shoham S, Razansky D. High-resolution fluorescence-guided transcranial ultrasound mapping in the live mouse brain. SCIENCE ADVANCES 2021; 7:eabi5464. [PMID: 34878843 PMCID: PMC8654306 DOI: 10.1126/sciadv.abi5464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/19/2021] [Indexed: 05/28/2023]
Abstract
Understanding the physiological impact of transcranial ultrasound in rodent brains may offer an important preclinical model for human scale magnetic resonance–guided focused ultrasound methods. However, precision tools for high-resolution transcranial ultrasound targeting and real-time in vivo tracking of its effects at the mouse brain scale are currently lacking. We report a versatile bidirectional hybrid fluorescence-ultrasound (FLUS) system incorporating a 0.35-mm precision spherical-phased array ultrasound emission with a fiberscope-based wide-field fluorescence imaging. We show how the marriage between cortex-wide functional imaging and targeted ultrasound delivery can be used to transcranially map previously undocumented localized fluorescence events caused by reversible thermal processes and perform high-speed large-scale recording of neural activity induced by focused ultrasound. FLUS thus naturally harnesses the extensive toolbox of fluorescent tags and ultrasound’s localized bioeffects toward visualizing and causally perturbing a plethora of normal and pathophysiological processes in the living murine brain.
Collapse
Affiliation(s)
- Hector Estrada
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Justine Robin
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ali Özbek
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Beck
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Beau le Roy
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, New York, NY 10016, USA
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Ilham SJ, Kashani Z, Kiani M. Design and Optimization of Ultrasound Phased Arrays for Large-Scale Ultrasound Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1454-1466. [PMID: 34874867 PMCID: PMC8904087 DOI: 10.1109/tbcas.2021.3133133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-intensity transcranial focused ultrasound stimulation (tFUS), as a noninvasive neuromodulation modality, has shown to be effective in animals and even humans with improved millimeter-scale spatial resolution compared to its noninvasive counterparts. But conventional tFUS systems are built with bulky single-element ultrasound (US) transducers that must be mechanically moved to change the stimulation target. To achieve large-scale ultrasound neuromodulation (USN) within a given tissue volume, a US transducer array should electronically be driven in a beamforming fashion (known as US phased array) to steer focused ultrasound beams towards different neural targets. This paper presents the theory and design methodology of US phased arrays for USN at a large scale. For a given tissue volume and sonication frequency (f), the optimal geometry of a US phased array is found with an iterative design procedure that maximizes a figure of merit (FoM) and minimizes side/grating lobes (avoiding off-target stimulation). The proposed FoM provides a balance between the power efficiency and spatial resolution of a US array in USN. A design example of a US phased array has been presented for USN in a rat's brain with an optimized linear US array. In measurements, the fabricated US phased array with 16 elements (16.7×7.7×2 mm3), driven by 150 V (peak-peak) pulses at f = 833.3 kHz, could generate a focused US beam with a lateral resolution of 1.6 mm and pressure output of 1.15 MPa at a focal distance of 12 mm. The capability of the US phased array in beam steering and focusing from -60o to 60o angles was also verified in measurements.
Collapse
|
22
|
Zhang Z, Liu R, Li G, Su M, Li F, Zheng H, Qiu W. A Dual-mode 2D Matrix Array for Ultrasound Image-guided Noninvasive Therapy. IEEE Trans Biomed Eng 2021; 68:3482-3490. [PMID: 33872140 DOI: 10.1109/tbme.2021.3073951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Focused ultrasound (FUS) lacks reliable real-time image guidance, which hinders the development of non-invasive ultrasound treatment in many important clinical applications. A dual-mode ultrasound array, capable of both imaging and therapy offers a new and reliable strategy for image-guided ultrasound therapy applications. The strategy has the advantages of real-time use, low cost, portability and inherent registration between imaging and therapeutic coordinate systems. In this work, a dual-mode two-dimensional (2D) matrix array with 1 MHz center frequency and 256 elements for ultrasound image-guided non-invasive therapy is reported. The array can provide three-dimensional (3D) volumetric ultrasound imaging and 3D focus control. Ultrasound imaging and therapeutic applications for the brain of small animals demonstrated the multi-functional capability of the dual-mode 2D matrix array. A method of rat brain positioning based on ultrasound imaging was proposed and verified. Transcranial ultrasound image-guided bloodbrain barrier (BBB) opening of multiple-targets was achieved in vivo, using the proposed dual-mode 2D array. The obtained results indicate that the dual-mode 2D matrix array is a promising method for practical use in ultrasound image-guided non-invasive therapy applications.
Collapse
|
23
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
24
|
Estrada H, Ozbek A, Robin J, Shoham S, Razansky D. Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:107-115. [PMID: 32406833 PMCID: PMC7952015 DOI: 10.1109/tuffc.2020.2994877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound can be delivered transcranially to ablate brain tissue, open the blood-brain barrier, or affect neural activity. Transcranial focused ultrasound in small rodents is typically done with low-frequency single-element transducers, which results in unspecific targeting and impedes the concurrent use of fast neuroimaging methods. In this article, we devised a wide-angle spherical array bidirectional interface for high-resolution parallelized optoacoustic imaging and transcranial ultrasound (POTUS) delivery in the same target regions. The system operates between 3 and 9 MHz, allowing to generate and steer focal spots with widths down to [Formula: see text] across a field of view covering the entire mouse brain, while the same array is used to capture high-resolution 3-D optoacoustic data in real time. We showcase the system's versatile beam-forming capacities as well as volumetric optoacoustic imaging capabilities and discuss its potential to noninvasively monitor brain activity and various effects of ultrasound emission.
Collapse
|
25
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
26
|
Zhou J, Li J, Zhong H, Shi X, Yang G, Huang J, Li Y, Ma T, Long X, Qiu W, Zheng H. Fiber-Based Clock Synchronization Method for Medical Ultrasound System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:136-142. [PMID: 32406832 DOI: 10.1109/tuffc.2020.2994097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brain ultrasound has attracted great attention recently due to its noninvasive treatment function for brain diseases. However, ultrasound is still difficult to pass through an intact skull. Phase correction is recognized as an effective method for skull compensation. Half-wavelength pitch transducer is important for the phase correction and, hence, thousands of elements array is required to cover large area human tissue. The clock synchronization between elements is crucial for the phase correction; however, the traditional clock scheme which is designed for 128- or 256-element system is not suitable for thousands of elements. In addition, the clock scheme needs to be magnetic resonance imaging (MRI) compatible since MRI-guided intervention is becoming a routine operation for the brain ultrasound. This study is the first to propose an optical fiber-based clock synchronization method for MRI-guided ultrasound array system. The optical fiber not only distributes the clock but also sets up a link to transmit the data for ultrasound beamformer. The link is full-duplex so both the clock and the data can be transmitted and received simultaneously. The precision of clock synchronization is less than 557 ps when using 50 MHz clock, and the period jitter of the clock is less than 10 ps (rms). Multiple 128- or 256-channel ultrasonic systems can be synchronized, and the error between the channels can be less than 10 ns when using 1-MHz ultrasound transducer. The system can work in an MRI scanning room and communicate with a console via only one fiber. In vivo primate animal study has been achieved, and it has been proven that the proposed clock scheme is suitable for MRI-guided large-scale ultrasound array system.
Collapse
|
27
|
Lo PA, Huang K, Zhou Q, Humayun MS, Yue L. Ultrasonic Retinal Neuromodulation and Acoustic Retinal Prosthesis. MICROMACHINES 2020; 11:mi11100929. [PMID: 33066085 PMCID: PMC7600354 DOI: 10.3390/mi11100929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Ultrasound is an emerging method for non-invasive neuromodulation. Studies in the past have demonstrated that ultrasound can reversibly activate and inhibit neural activities in the brain. Recent research shows the possibility of using ultrasound ranging from 0.5 to 43 MHz in acoustic frequency to activate the retinal neurons without causing detectable damages to the cells. This review recapitulates pilot studies that explored retinal responses to the ultrasound exposure, discusses the advantages and limitations of the ultrasonic stimulation, and offers an overview of engineering perspectives in developing an acoustic retinal prosthesis. For comparison, this article also presents studies in the ultrasonic stimulation of the visual cortex. Despite that, the summarized research is still in an early stage; ultrasonic retinal stimulation appears to be a viable technology that exhibits enormous therapeutic potential for non-invasive vision restoration.
Collapse
Affiliation(s)
- Pei-An Lo
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyana Huang
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
| | - Qifa Zhou
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Yue
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
28
|
Jin Y, Li Y, Ye Y, Zou J, Guo T, Bian T, Wang C, Xiao Y, Niu L, Ma T, Zheng H. Development of Multi-Layer Lateral-Mode Ultrasound Needle Transducer for Brain Stimulation in Mice. IEEE Trans Biomed Eng 2019; 67:1982-1988. [PMID: 31796386 DOI: 10.1109/tbme.2019.2953295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrasound, a non-invasive stimulation method, has proved effective in neurostimulation. Previous studies have demonstrated that low-frequency ultrasound (less than 1 MHz) is preferable owing to better penetrability through tissue and skull. However, the large size of low-frequency transducers, which are used in ultrasound neurostimulation studies, makes it difficult to perform multiple-target neurostimulation, especially in small animals such as mice. In this paper, a proposed low-frequency ultrasound needle transducer based on the multi-layer lateral-mode coupling method with a miniature aperture of 0.6 mm × 0.6 mm and a thickness of 1.65 mm was designed and fabricated. The measured electrical impedance of the fabricated 8-layer lateral-mode PZT-5H ceramic was 50.76 Ω at a resonant frequency of 866 kHz. The -6 dB bandwidth of 8-layer lateral-mode transducer was 29% at a center frequency of 876 kHz. The maximum ultrasound peak pressure amplitude at 820 kHz reached approximately 300 kPa, 4-5 times higher than that of the single-layer thickness-mode transducer with 200 V input voltage. The ultrasound beam showed no attenuation and low shift through mouse skull. To verify the feasibility of using the needle transducer to perform multiple-target nerve stimulation in mice brains, we constructed an ultrasound stimulus system to simultaneously stimulate two areas (M2 and V1) of the mouse brain in vivo and detected the c-Fos expression by immunofluorescence to evaluate the effect of stimulation. The results showed that a high ultrasound peak pressure amplitude with this transducer configuration is useful for ultrasound neurostimulation and multiple-target stimulation in mice.
Collapse
|
29
|
A Novel Racing Array Transducer for Noninvasive Ultrasonic Retinal Stimulation: A Simulation Study. SENSORS 2019; 19:s19081825. [PMID: 30999576 PMCID: PMC6514975 DOI: 10.3390/s19081825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Neurostimulation has proved to be an effective method for the restoration of visual perception lost due to retinal diseases. However, the clinically available retinal neurostimulation method is based on invasive electrodes, making it a high-cost and high-risk procedure. Recently, ultrasound has been demonstrated to be an effective way to achieve noninvasive neurostimulation. In this work, a novel racing array transducer with a contact lens shape is proposed for ultrasonic retinal stimulation. The transducer is flexible and placed outside the eyeball, similar to the application of a contact lens. Ultrasound emitted from the transducer can reach the retina without passing through the lens, thus greatly minimizing the acoustic absorption in the lens. The discretized Rayleigh–Sommerfeld method was employed for the acoustic field simulation, and patterned stimulation was achieved. A 5 MHz racing array transducer with different element numbers was simulated to optimize the array configuration. The results show that a 512-element racing array is the most appropriate configuration considering the necessary tradeoff between the element number and the stimulation resolution. The stimulation resolution at a focus of 24 mm is about 0.6 mm. The obtained results indicate that the proposed racing array design of the ultrasound transducer can improve the feasibility of an ultrasound retinal prosthesis.
Collapse
|