1
|
Ponomarchuk E, Tsysar S, Kadrev A, Kvashennikova A, Chupova D, Pestova P, Papikyan L, Karzova M, Danilova N, Malkov P, Chernyaev A, Buravkov S, Sapozhnikov O, Khokhlova V. Boiling Histotripsy in Ex Vivo Human Brain: Proof-of-concept. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:312-320. [PMID: 39482208 DOI: 10.1016/j.ultrasmedbio.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE Non-invasive surgical approaches, including boiling histotripsy (BH), are currently being developed for the treatment of brain disorders aiming to avoid craniotomy and exposure of intervening tissues, and, thus, minimize associated complications. This work aimed to demonstrate the feasibility of BH for mechanical fractionation of human brain tissues ex vivo under B-mode guidance, with preliminary measurements of tissue stiffness via shear wave elastography. METHODS Young's moduli of 25 human autopsy brain samples obtained from de-identified patients of 51-91 y old (median 77 y old) were measured via shear wave elastography prior to BH sonication. Seventeen volumetric BH lesions (1-4 layers of 5 × 5 points with a 1- mm step) were produced near brain surface (n = 10), in white matter (n = 3), in thalamus (n = 2), and globus pallidus (n = 2) using 12 element 1.5 MHz sector transducer under B-mode guidance with 10 ms or 2 ms pulses delivered 10 or 15 times per sonication point with 1% duty cycle. After treatment, the lesions were evaluated grossly through bisection, histologically with hematoxylin and eosin staining, and ultrastructurally via scanning and transmission electron microscopy. RESULTS Young's moduli of autopsy brain samples were lower in older patients (from 32.9 ± 6.6 kPa in 51 y olds to 10 ± 2 kPa in 91 y olds) and at higher temperature (6%-50% lower at 37°С vs 23°С), and were within the range observed clinically. All tested BH treatments performed near the brain surface (i.e., mostly in gray matter) resulted in formation of well-demarcated rectangular lesions with homogenized content and sharp boundaries, with majority of residual fragments below 100 microns. The use of shorter pulses (2 ms vs 10 ms) accelerated the treatment at least threefold, and the highest liquefaction rate was 568 mm3/min. White matter was more resistant to BH vs gray matter: at least 15 pulses of 2 ms duration were required per each sonication point, and the liquefaction rate was three times lower. The ability of BH to produce lesions in thalamus and globus pallidus was also confirmed. CONCLUSION This work presents the first demonstration of BH proof-of-concept in human brain tissues ex vivo under B-mode guidance with clinically relevant treatment rates.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Kadrev
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia; Diagnostic Ultrasound Division, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Liliya Papikyan
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Karzova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Malkov
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | | | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Oleg Sapozhnikov
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Zhou J, Guo Y, Sun Q, Lin F, Jiang C, Xu K, Ta D. Transcranial ultrafast ultrasound Doppler imaging: A phantom study. ULTRASONICS 2024; 144:107430. [PMID: 39173276 DOI: 10.1016/j.ultras.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Ultrafast ultrasound Doppler imaging facilitates the assessment of cerebral hemodynamics with high spatio-temporal resolution. However, the significant acoustic impedance mismatch between the skull and soft tissue results in phase aberrations, which can compromise the quality of transcranial imaging and introduce biases in velocity and direction quantification of blood flow. This paper proposed an aberration correction method that combines deep learning-based skull sound speed modelling with ray theory to realize transcranial plane-wave imaging and ultrafast Doppler imaging. The method was validated through phantom experiments using a linear array with a center frequency of 6.25 MHz, 128 elements, and a pitch of 0.3 mm. The results demonstrated an improvement in the imaging quality of intracranial targets when using the proposed method. After aberration correction, the average locating deviation decreased from 1.40 mm to 0.27 mm in the axial direction, from 0.50 mm to 0.20 mm in the lateral direction, and the average full-width-at-half-maximum (FWHM) decreased from 1.37 mm to 0.97 mm for point scatterers. For circular inclusions, the average contrast-to-noise ratio (CNR) improved from 8.1 dB to 11.0 dB, and the average eccentricity decreased from 0.36 to 0.26. Furthermore, the proposed method was applied to transcranial ultrafast Doppler flow imaging. The results showed a significant improvement in accuracy and quality for blood Doppler flow imaging. The results in the absence of the skull were considered as the reference, and the average normalized root-mean-square errors of the axial velocity component on the five selected axial profiles were reduced from 17.67% to 8.02% after the correction.
Collapse
Affiliation(s)
- Jiangjin Zhou
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Yuanyang Guo
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Qiandong Sun
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Fanglue Lin
- Ultrasound BU, Wuhan United Imaging Healthcare Co., Ltd., Wuhan 430206, China
| | - Chen Jiang
- Yiwu Research Institute of Fudan University, Zhejiang 322000, China.
| | - Kailiang Xu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China; PodaMed Medical Technology Co., Ltd., Shanghai 200433, China.
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China
| |
Collapse
|
3
|
Pan Y, Qiang Y, Liang W, Huang W, Wang N, Wang X, Zhang Z, Qiu W, Zheng H. A transcranial multiple waves suppression method for plane wave imaging based on Radon transform. ULTRASONICS 2024; 143:107405. [PMID: 39059257 DOI: 10.1016/j.ultras.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Transcranial ultrasound imaging presents a significant challenge due to the intricate interplay between ultrasound waves and the heterogeneous human skull. The skull's presence induces distortion, refraction, multiple scattering, and reflection of ultrasound signals, thereby complicating the acquisition of high-quality images. Extracting reflections from the entire waveform is crucial yet exceedingly challenging, as intracranial reflections are often obscured by strong amplitude direct waves and multiple scattering. In this paper, a multiple wave suppression method for ultrasound plane wave imaging is proposed to mitigate the impact of skull interference. Drawing upon prior research, we developed an enhanced high-resolution linear Radon transform using the maximum entropy principle and Bayesian method, facilitating wavefield separation. We detailed the process of wave field separation in the Radon domain through simulation of a model with a high velocity layer. When plane waves emitted at any steering angles, both multiple waves and first arrival waves manifested as distinct energy points. In the brain simulation, we contrasted the characteristic differences between skull reflection and brain-internal signal in Radon domain, and demonstrated that multiples suppression method reduces side and grating lobe levels by approximately 30 dB. Finally, we executed in vitro experiments using a monkey skull to separate weak intracranial reflection signals from strong skull reflections, enhancing the contrast-to-noise ratio by 85 % compared to conventional method using full waveform. This study deeply explores the effect of multiples on effective signal separation, addresses the complexity of wavefield separation, and verifies its efficacy through imaging, thereby significantly advancing ultrasound transcranial imaging techniques.
Collapse
Affiliation(s)
- Yue Pan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Qiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjie Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenyue Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ningyuan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xingying Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
McCall JR, Chavignon A, Couture O, Dayton PA, Pinton GF. Element Position Calibration for Matrix Array Transducers with Multiple Disjoint Piezoelectric Panels. ULTRASONIC IMAGING 2024; 46:139-150. [PMID: 38334055 DOI: 10.1177/01617346241227900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.
Collapse
Affiliation(s)
- Jacob R McCall
- Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Arthur Chavignon
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Olivier Couture
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Paul A Dayton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Gianmarco F Pinton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Zarader P, Francois Q, Coudert A, Duplat B, Haliyo S, Couture O. Proof of Concept of an Affordable, Compact and Transcranial Submillimeter Accurate Ultrasound-Based Tracking System. IEEE Trans Biomed Eng 2024; 71:893-903. [PMID: 37796674 DOI: 10.1109/tbme.2023.3322302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In neurosurgery, a current challenge is to provide localized therapy in deep and difficult-to-access brain areas with millimeter accuracy. In this prospect, new surgical devices such as microrobots are being developed, which require controlled inbrain navigation to ensure the safety and efficiency of the intervention. In this context, the device tracking technology has to answer a three-sided challenge: invasiveness, performance, and facility of use. Although ultrasound seems appropriate for transcranial tracking, the skull remains an obstacle because of its significant acoustic perturbations. A compact and affordable ultrasound-based tracking system that minimizes skull-related disturbances is proposed here. This system consists of three emitters fixed on the patient's head and a one-millimeter receiver embedded in the surgical device. The 3D position of the receiver is obtained by trilateration based on time of flight measurements. The system demonstrates a submillimeter tracking accuracy through an 8.9 mm thick skull plate phantom. This result opens multiple perspectives in terms of millimeter accurate navigation for a large number of neurobiomedical devices.
Collapse
|
6
|
Riis T, Feldman D, Mickey B, Kubanek J. Controlled noninvasive modulation of deep brain regions in humans. COMMUNICATIONS ENGINEERING 2024; 3:13. [PMCID: PMC10956068 DOI: 10.1038/s44172-023-00146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/29/2023] [Indexed: 10/06/2024]
Abstract
Transcranial focused ultrasound provides noninvasive and reversible approaches for precise and personalized manipulations of brain circuits, with the potential to transform our understanding of brain function and treatments of brain dysfunction. However, effective applications in humans have been limited by the human head, which attenuates and distorts ultrasound severely and unpredictably. This has led to uncertain ultrasound intensities delivered into the brain. Here, we address this lingering barrier using a direct measurement approach that can be repeatedly applied to the human brain. The approach uses an ultrasonic scan of the head to measure and compensate for the attenuation of the ultrasound by all obstacles within the ultrasound path. No other imaging modality is required and the method is parameter-free and personalized to each subject. The approach accurately restores operators’ intended intensities inside ex-vivo human skulls. Moreover, the approach is critical for effective modulation of deep brain regions in humans. When applied, the approach modulates fMRI Blood Oxygen Level Dependent (BOLD) activity in disease-relevant deep brain regions. This tool unlocks the potential of emerging approaches based on low-intensity ultrasound for controlled manipulations of neural circuits in humans. Transcranial focused ultrasound has had limited applications in humans due to the unpredictable distortions of ultrasound by the human head. Thomas Riis and colleagues report an approach which enables direct correction for the attenuation of ultrasound by the skull and hair, thus enabling controlled ultrasound therapies in humans.
Collapse
Affiliation(s)
- Thomas Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| | - Daniel Feldman
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Brian Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
7
|
Jiang C, Li B, Xie L, Liu C, Xu K, Zhan Y, Ta D. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations. ULTRASONICS 2023; 135:107124. [PMID: 37541030 DOI: 10.1016/j.ultras.2023.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Compounded plane wave imaging (CPWI) allows high-frame-rate measurement and has been one of the most promising modalities for real-time brain imaging. However, ultrasonic brain imaging using the CPWI modality is usually performed with a worn thin or removal of the skull layer. Otherwise, the skull layer is expected to distort the ultrasonic wavefronts and significantly decrease intracranial imaging quality. The motivation of this study is to investigate a CPWI method for transcranial brain imaging with the skull layer. A coordinate transformation ray-tracing (CTRT) approach was proposed to track the distorted ultrasonic wavefronts and calculate the time delays for the ultrasound plane wave passing through the skull layer. With an accurate correction for the time delays in beamforming, the CTRT-based CPWI could achieve high-quality intracranial images with the presence of skulls. The proposed CTRT-based CPWI method was verified using a simplified three-layer transcranial model. The full-wave simulation demonstrated that CTRT could accurately (i.e., relative percentage error less than0.18%) track the distorted transmitting wavefront through skull. Compared with the CPWI without aberration correction, the CTRT-based CPWI provided high-quality intracranial imaging and could accurately localize intracranial point scatterers; specifically, positioning error decreases from 0.5 mm to 0.1 mm on average in the axial direction and from 0.7 mm to 0.1 mm on average in the lateral direction. As the compounded angles increased in the CTRT-based CPWI, the contrast improved by 16.2 dB on average for the region of interest, and the array performance indicator (representing resolution) decreased by 4.0 on average for the intracranial point scatterers. The CTRT is of low computational cost compared with full wave simulation. This study suggested that the proposed CTRT-based CPWI might have the potential for real-time and non-invasive transcranial aberration-corrected imaging.
Collapse
Affiliation(s)
- Chen Jiang
- Micro-nano System Center, School of Information Science and Technology, Fudan University, 200438, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China
| | - Linru Xie
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 200438, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China.
| | - Yiqiang Zhan
- Micro-nano System Center, School of Information Science and Technology, Fudan University, 200438, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 200438, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
8
|
Bureau F, Robin J, Le Ber A, Lambert W, Fink M, Aubry A. Three-dimensional ultrasound matrix imaging. Nat Commun 2023; 14:6793. [PMID: 37880210 PMCID: PMC10600255 DOI: 10.1038/s41467-023-42338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.
Collapse
Affiliation(s)
- Flavien Bureau
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Justine Robin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Physics for Medicine, ESPCI Paris, PSL University, INSERM, CNRS, Paris, France
| | - Arthur Le Ber
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Hologic / SuperSonic Imagine, 135 Rue Emilien Gautier, 13290, Aix-en-Provence, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
9
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
10
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
11
|
Tong J, Wang X, Ren J, Lin M, Li J, Sun H, Yin F, Liang L, Liu Y. Transcranial Ultrasound Imaging With Decomposition Descent Learning-Based Full Waveform Inversion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3297-3307. [PMID: 36288231 DOI: 10.1109/tuffc.2022.3217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noninvasive brain diagnosis is extremely important because of its efficiency, low cost, and painless nature in the prediction of stroke, cerebral hemorrhage, and other brain research. At present, achieving full 3-D quantitative ultrasonic imaging of the human brain is a cutting-edge challenge due to the complex structures of the human brain and the strong scattering caused by the skulls. In this article, we achieved quantitative ultrasonic imaging of inside-brain anomalies with our proposed method, the decomposition descent learning-based full waveform inversion (DDL-FWI). The proposed method adopts a linear residual decomposing technique to greatly alleviate the computation burden in fast inversion tomography (FIT) with enhanced convergence guaranteed by residual functions. Testing results in both simulation and laboratory experiments demonstrated that our method can achieve high-quality quantitative imaging of brain soft tissues and skulls even starting from homogeneous water background in 2-D, and this method is capable of reconstructing both complex brain tissues and clots in 2-D and 3-D cases using either clean or noisy signals, with a robust 3-D clot resolution as small as 18 mm and 2-D reconstruction speed in 11.20 s. Combined with advanced ultrasonic hardware, DDL-FWI can be easily trained and used for brain imaging efficiently that frees patients from harmful influences from traditional imaging techniques, e.g., ionization radiations from X-ray computed tomography (CT).
Collapse
|
12
|
Zhang G, Lei YM, Li N, Yu J, Jiang XY, Yu MH, Hu HM, Zeng SE, Cui XW, Ye HR. Ultrasound super-resolution imaging for differential diagnosis of breast masses. Front Oncol 2022; 12:1049991. [PMID: 36408165 PMCID: PMC9669901 DOI: 10.3389/fonc.2022.1049991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE Ultrasound imaging has been widely used in breast cancer screening. Recently, ultrasound super-resolution imaging (SRI) has shown the capability to break the diffraction limit to display microvasculature. However, the application of SRI on differential diagnosis of breast masses remains unknown. Therefore, this study aims to evaluate the feasibility and clinical value of SRI for visualizing microvasculature and differential diagnosis of breast masses. METHODS B mode, color-Doppler flow imaging (CDFI) and contrast-enhanced ultrasound (CEUS) images of 46 patients were collected respectively. SRI were generated by localizations of each possible contrast signals. Micro-vessel density (MVD) and microvascular flow rate (MFR) were calculated from SRI and time to peak (TTP), peak intensity (PI) and area under the curve (AUC) were obtained by quantitative analysis of CEUS images respectively. Pathological results were considered as the gold standard. Independent chi-square test and multivariate logistic regression analysis were performed using these parameters to examine the correlation. RESULTS The results showed that SRI technique could be successfully applied on breast masses and display microvasculature at a significantly higher resolution than the conventional CDFI and CEUS images. The results showed that the PI, AUC, MVD and MFR of malignant breast masses were significantly higher than those of benign breast masses, while TTP was significantly lower than that of benign breast masses. Among all five parameters, MVD showed the highest positive correlation with the malignancy of breast masses. CONCLUSIONS SRI is able to successfully display the microvasculature of breast masses. Compared with CDFI and CEUS, SRI can provide additional morphological and functional information for breast masses. MVD has a great potential in assisting the differential diagnosis of breast masses as an important imaging marker.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Nan Li
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xian-Yang Jiang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Mei-Hui Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Shu-E Zeng
- Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zhang G, Yu J, Lei YM, Hu JR, Hu HM, Harput S, Guo ZZ, Cui XW, Ye HR. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Front Oncol 2022; 12:978164. [PMID: 36387122 PMCID: PMC9647016 DOI: 10.3389/fonc.2022.978164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
Objective Ultrasound imaging provides a fast and safe examination of thyroid nodules. Recently, the introduction of super-resolution imaging technique shows the capability of breaking the Ultrasound diffraction limit in imaging the micro-vessels. The aim of this study was to evaluate its feasibility and value for the differentiation of thyroid nodules. Methods In this study, B-mode, contrast-enhanced ultrasound, and color Doppler flow imaging examinations were performed on thyroid nodules in 24 patients. Super-resolution imaging was performed to visualize the microvasculature with finer details. Microvascular flow rate (MFR) and micro-vessel density (MVD) within thyroid nodules were computed. The MFR and MVD were used to differentiate the benign and malignant thyroid nodules with pathological results as a gold standard. Results Super-resolution imaging (SRI) technique can be successfully applied on human thyroid nodules to visualize the microvasculature with finer details and obtain the useful clinical information MVD and MFR to help differential diagnosis. The results suggested that the mean value of the MFR within benign thyroid nodule was 16.76 ± 6.82 mm/s whereas that within malignant thyroid was 9.86 ± 4.54 mm/s. The mean value of the MVD within benign thyroid was 0.78 while the value for malignant thyroid region was 0.59. MFR and MVD within the benign thyroid nodules were significantly higher than those within the malignant thyroid nodules respectively (p < 0.01). Conclusions This study demonstrates the feasibility of ultrasound super-resolution imaging to show micro-vessels of human thyroid nodules via a clinical ultrasound platform. The important imaging markers, such as MVD and MFR, can be derived from SRI to provide more useful clinical information. It has the potential to be a new tool for aiding differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Rui Hu
- Department of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London, United Kingdom
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
15
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
16
|
Intensity distribution segmentation in ultrafast Doppler combined with scanning laser confocal microscopy for assessing vascular changes associated with ageing in murine hippocampi. Sci Rep 2022; 12:6784. [PMID: 35473942 PMCID: PMC9042937 DOI: 10.1038/s41598-022-10457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
The hippocampus plays an important role in learning and memory, requiring high-neuronal oxygenation. Understanding the relationship between blood flow and vascular structure—and how it changes with ageing—is physiologically and anatomically relevant. Ultrafast Doppler (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μDoppler) and scanning laser confocal microscopy (SLCM) are powerful imaging modalities that can measure in vivo cerebral blood volume (CBV) and post mortem vascular structure, respectively. Here, we apply both imaging modalities to a cross-sectional and longitudinal study of hippocampi vasculature in wild-type mice brains. We introduce a segmentation of CBV distribution obtained from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μDoppler and show that this mice-independent and mesoscopic measurement is correlated with vessel volume fraction (VVF) distribution obtained from SLCM—e.g., high CBV relates to specific vessel locations with large VVF. Moreover, we find significant changes in CBV distribution and vasculature due to ageing (5 vs. 21 month-old mice), highlighting the sensitivity of our approach. Overall, we are able to associate CBV with vascular structure—and track its longitudinal changes—at the artery-vein, venules, arteriole, and capillary levels. We believe that this combined approach can be a powerful tool for studying other acute (e.g., brain injuries), progressive (e.g., neurodegeneration) or induced pathological changes.
Collapse
|
17
|
Mozaffarzadeh M, Verschuur E, Verweij MD, Daeichin V, De Jong N, Renaud G. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1191-1203. [PMID: 35100111 DOI: 10.1109/tuffc.2022.3148121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.
Collapse
|
18
|
Riis TS, Webb TD, Kubanek J. Acoustic properties across the human skull. ULTRASONICS 2022; 119:106591. [PMID: 34717144 PMCID: PMC8642838 DOI: 10.1016/j.ultras.2021.106591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 05/11/2023]
Abstract
Transcranial ultrasound is emerging as a noninvasive tool for targeted treatments of brain disorders. Transcranial ultrasound has been used for remotely mediated surgeries, transient opening of the blood-brain barrier, local drug delivery, and neuromodulation. However, all applications have been limited by the severe attenuation and phase distortion of ultrasound by the skull. Here, we characterized the dependence of the aberrations on specific anatomical segments of the skull. In particular, we measured ultrasound propagation properties throughout the perimeter of intact human skulls at 500 kHz. We found that the parietal bone provides substantially higher transmission (average pressure transmission 31 ± 7%) and smaller phase distortion (242 ± 44 degrees) than frontal (13 ± 2%, 425 ± 47 degrees) and occipital bone regions (16 ± 4%, 416 ± 35 degrees). In addition, we found that across skull regions, transmission strongly anti-correlated (R=-0.79) and phase distortion correlated (R=0.85) with skull thickness. This information guides the design, positioning, and skull correction functionality of next-generation devices for effective, safe, and reproducible transcranial focused ultrasound therapies.
Collapse
Affiliation(s)
- Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| | - Taylor D Webb
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| |
Collapse
|
19
|
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep 2022; 12:619. [PMID: 35022482 PMCID: PMC8755738 DOI: 10.1038/s41598-021-04712-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Aging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Wei Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Wuhan City, Hubei Province, China
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
Chandrasekaran S, Santibanez F, Tripathi BB, DeRuiter R, Bruegge RV, Pinton G. In situ ultrasound imaging of shear shock waves in the porcine brain - 3453 words. J Biomech 2022; 134:110913. [DOI: 10.1016/j.jbiomech.2021.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
21
|
Jones RM, Caskey CF, Dayton PA, Oralkan O, Pinton GF. Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:261-272. [PMID: 34460372 DOI: 10.1109/tuffc.2021.3108448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design. Using 3-D Fullwave simulations, we have designed an ultrasound neuromodulation array for nonhuman primates that: 1) can simultaneously focus on multiple targets and 2) include an imaging aperture for additional functional imaging. This design is based on a spherical array, with 128 15-mm elements distributed in a spherical helix pattern. It is shown that clustering the elements tightly around the 65-mm imaging aperture located at the top of the array improves targeting at shallow depths, near the skull surface. Spherical arrays have good focusing capabilities through the skull at the center of the array, but focusing on off-center locations is more challenging due to the natural geometric configuration and the angle of incidence with the skull. In order to mitigate this, the 64 elements closest to the aperture were rotated toward and focusing on a shallow target, and the 64 elements farthest from the aperture were rotated toward and focusing on a deeper target. Data illustrated that this array produced focusing on the somatosensory cortex with a gain of 4.38 and to the thalamus with a gain of 3.82. To improve upon this, the array placement was optimized based on phase aberration simulations, allowing for the elements with the largest impact on the gain at each focal point to be found. This optimization resulted in an array design that can focus on the somatosensory cortex with a gain of 5.19 and the thalamus with a gain of 4.45. Simulations were also performed to evaluate the ability of the array to focus on 28 additional brain regions, showing that off-center target regions can be stimulated, but those closer to the skull will require corrective steps to deliver the same amount of energy to those locations. This simulation and design process can be adapted to an individual monkey or human skull morphologies and specific target locations within individuals by using orientable 3-D printing of the transducer case and by electronic phase aberration correction.
Collapse
|
22
|
McCall JR, Dayton PA, Pinton GF. Characterization of the Ultrasound Localization Microscopy Resolution Limit in the Presence of Image Degradation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:124-134. [PMID: 34524957 DOI: 10.1109/tuffc.2021.3112074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasound localization microscopy (ULM) has been able to overcome the diffraction limit of ultrasound imaging. The resolution limit of ULM has been previously modeled using the Cramér-Rao lower bound (CRLB). While this model has been validated in a homogeneous medium, it estimates a resolution limit, which has not yet been achieved in vivo. In this work, we investigated the effects of three sources of image degradation on the resolution limit of ULM. The Fullwave simulation tool was used to simulate acquisitions of transabdominal contrast-enhanced data at depth. The effects of reverberation clutter, trailing clutter, and phase aberration were studied. The resolution limit, in the presence of reverberation clutter alone, was empirically measured to be up to 39 times worse in the axial dimension and up to 2.1 times worse in the lateral dimension than the limit predicted by the CRLB. While reverberation clutter had an isotropic impact on the resolution, trailing clutter had a constant impact on both dimensions across all signal-to-trailing-clutter ratios (STCR). Phase aberration had a significant impact on the resolution limit over the studied analysis ranges. Phase aberration alone degraded the resolution limit up to 70 and 160 [Formula: see text] in the lateral and axial dimensions, respectively. These results illustrate the importance of phase aberration correction and clutter filtering in ULM postprocessing. The analysis results were demonstrated through the simulation of the ULM process applied to a cross-tube model that was degraded by each of the three aforementioned sources of degradation.
Collapse
|
23
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
24
|
Batts A, Ji R, Kline-Schoder A, Noel R, Konofagou E. Transcranial Theranostic Ultrasound for Pre-Planning and Blood-Brain Barrier Opening: A Feasibility Study Using an Imaging Phased Array In Vitro and In Vivo. IEEE Trans Biomed Eng 2021; 69:1481-1490. [PMID: 34665716 DOI: 10.1109/tbme.2021.3120919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Focused ultrasound (FUS) for blood-brain barrier (BBB) opening is a safe, reversible and non-invasive strategy for targeted drug delivery to the brain, however extensive pre-planning strategies are necessary for successful FUS-mediated BBB opening through the structurally complex primate skull. OBJECTIVE This work aims to demonstrate a pre-planning pipeline consisting of transcranial simulations and in vitro experimentation used to inform synchronous BBB opening and power cavitation imaging (PCI) with a single theranostic ultrasound (TUS) phased array. METHODS Acoustic wave propagation simulation readouts of pressure attenuation and focal shift through clinical-CT and micro-CT-based primate skull models were compared, while the latter were used to determine the impact of beam steering angle on focal shift and pressure attenuation. In vitro experimentation with a channel phantom enabled characterization of skull-induced receive focal shift (RFS), while in vivo BBB opening and PCI using in silico and in vitro pre-planning information was conducted using a custom Verasonics/MATLAB script. RESULTS Simulations confirmed steering angle dependent transcranial focal shift and pressure attenuation, while in vitro experiments revealed minimal (0.30-1.50 mm) skull-induced RFS. In vivo rodent experiments with overlaid primate skull fragments demonstrated successful TUS-mediated BBB opening and spatially correlated power cavitation images (PCI) with regions of BBB opening on T1-weighted magnetic resonance images (MRI). CONCLUSION Herein, we demonstrate the feasibility for TUS-mediated BBB opening in vivo using in silico and in vitro pre-planning information. SIGNIFICANCE TUS as an ultrasound-guided modality for BBB opening could be a promising alternative to current FUS-mediated BBB opening configurations in the clinic.
Collapse
|
25
|
Jing B, Lindsey BD. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2734-2748. [PMID: 34140169 DOI: 10.1016/j.ultrasmedbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of aberration correction techniques, transcranial ultrasound imaging has exhibited great potential in applications such as imaging neurological function and guiding therapeutic ultrasound. However, the feasibility of transcranial imaging varies among individuals because of the differences in skull acoustic properties. To better understand the fundamental mechanisms underlying the variation in imaging performance, the effect of the structure of the porous trabecular bone on transcranial imaging performance (i.e., target localization errors and resolution) was investigated for the first time through the use of elastic wave simulations and experiments. Simulation studies using high-resolution computed tomography data from ex vivo skull samples revealed that imaging at large incidence angles reduced the target localization error for skulls having low porosity; however, as skull porosity increased, large angles of incidence resulted in degradation of resolution and increased target localization errors. Experimental results indicate that imaging at normal incidence introduced a localization error of 1.85 ± 0.10 mm, while imaging at a large incidence angle (40°) resulted in an increased localization error of 6.54 ± 1.33 mm and caused a single point target to no longer appear as a single, coherent target in the resulting image, which is consistent with simulation results. This first investigation of the effects of skull microstructure on transcranial ultrasound imaging indicates that imaging performance is highly dependent on the porosity of the skull, particularly at non-normal angles of incidence.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
26
|
Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren F. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng 2021; 5:219-228. [PMID: 33723412 PMCID: PMC7610356 DOI: 10.1038/s41551-021-00697-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022]
Abstract
Changes in cerebral blood flow are associated with stroke, aneurysms, vascular cognitive impairment, neurodegenerative diseases and other pathologies. Brain angiograms, typically performed via computed tomography or magnetic resonance imaging, are limited to millimetre-scale resolution and are insensitive to blood-flow dynamics. Here we show that ultrafast ultrasound localization microscopy of intravenously injected microbubbles enables transcranial imaging of deep vasculature in the adult human brain at microscopic resolution and the quantification of haemodynamic parameters. Adaptive speckle tracking to correct for micrometric brain-motion artefacts and ultrasonic-wave aberrations induced during transcranial propagation allowed us to map the vascular network of tangled arteries to functionally characterize blood-flow dynamics at a resolution of up to 25 μm and to detect blood vortices in a small deep-seated aneurysm in a patient. Ultrafast ultrasound localization microscopy may facilitate the understanding of brain haemodynamics and of how vascular abnormalities in the brain are related to neurological pathologies.
Collapse
Affiliation(s)
- Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France.,Department of Clinical Neurosciences, HUG, LUNIC Laboratory Geneva Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Justine Robin
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France.,Department of Clinical Neurosciences, HUG, LUNIC Laboratory Geneva Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Dizeux
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France
| | - Baptiste Heiles
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris, France.
| | - Fabienne Perren
- Department of Clinical Neurosciences, HUG, LUNIC Laboratory Geneva Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Chandrasekaran S, Tripathi BB, Espindola D, Pinton GF. Modeling Ultrasound Propagation in the Moving Brain: Applications to Shear Shock Waves and Traumatic Brain Injury. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:201-212. [PMID: 32894713 DOI: 10.1109/tuffc.2020.3022567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traumatic brain injury (TBI) studies on the living human brain are experimentally infeasible due to ethical reasons and the elastic properties of the brain degrade rapidly postmortem. We present a simulation approach that models ultrasound propagation in the human brain, while it is moving due to the complex shear shock wave deformation from a traumatic impact. Finite difference simulations can model ultrasound propagation in complex media such as human tissue. Recently, we have shown that the fullwave finite difference approach can also be used to represent displacements that are much smaller than the grid size, such as the motion encountered in shear wave propagation from ultrasound elastography. However, this subresolution displacement model, called impedance flow, was only implemented and validated for acoustical media composed of randomly distributed scatterers. Herein, we propose a generalization of the impedance flow method that describes the continuous subresolution motion of structured acoustical maps, and in particular of acoustical maps of the human brain. It is shown that the average error in simulating subresolution displacements using impedance flow is small when compared to the acoustical wavelength ( λ /1702). The method is then applied to acoustical maps of the human brain with a motion that is imposed by the propagation of a shear shock wave. This motion is determined numerically with a custom piecewise parabolic method that is calibrated to ex vivo observations of shear shocks in the porcine brain. Then the fullwave simulation tool is used to model transmit-receive imaging sequences based on an L7-4 imaging transducer. The simulated radio frequency data are beamformed using a conventional delay-and-sum method and a normalized cross-correlation method designed for shock wave tracking is used to determine the tissue motion. This overall process is an in silico reproduction of the experiments that were previously performed to observe shear shock waves in fresh porcine brain. It is shown that the proposed generalized impedance flow method accurately captures the shear wave motion in terms of the wave profile, shock front characteristics, odd harmonic spectrum generation, and acceleration at the shear shock front. We expect that this approach will lead to improvements in image sequence design that takes into account the aberration and multiple reflections from the brain and in the design of tracking algorithms that can more accurately capture the complex brain motion that occurs during a traumatic impact. These methods of modeling ultrasound propagation in moving media can also be applied to other displacements, such as those generated by shear wave elastography or blood flow.
Collapse
|
28
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
29
|
Davies HJ, Morse SV, Copping MJ, Sujarittam K, Bourgin VD, Tang MX, Choi JJ. Imaging With Therapeutic Acoustic Wavelets-Short Pulses Enable Acoustic Localization When Time of Arrival is Combined With Delay and Sum. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:178-190. [PMID: 32976097 DOI: 10.1109/tuffc.2020.3026165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive acoustic mapping (PAM) is an algorithm that reconstructs the location of acoustic sources using an array of receivers. This technique can monitor therapeutic ultrasound procedures to confirm the spatial distribution and amount of microbubble activity induced. Current PAM algorithms have an excellent lateral resolution but have a poor axial resolution, making it difficult to distinguish acoustic sources within the ultrasound beams. With recent studies demonstrating that short-length and low-pressure pulses-acoustic wavelets-have the therapeutic function, we hypothesized that the axial resolution could be improved with a quasi-pulse-echo approach and that the resolution improvement would depend on the wavelet's pulse length. This article describes an algorithm that resolves acoustic sources axially using time of flight and laterally using delay-and-sum beamforming, which we named axial temporal position PAM (ATP-PAM). The algorithm accommodates a rapid short pulse (RaSP) sequence that can safely deliver drugs across the blood-brain barrier. We developed our algorithm with simulations (k-wave) and in vitro experiments for one-, two-, and five-cycle pulses, comparing our resolution against that of two current PAM algorithms. We then tested ATP-PAM in vivo and evaluated whether the reconstructed acoustic sources mapped to drug delivery within the brain. In simulations and in vitro, ATP-PAM had an improved resolution for all pulse lengths tested. In vivo, experiments in mice indicated that ATP-PAM could be used to target and monitor drug delivery into the brain. With acoustic wavelets and time of flight, ATP-PAM can locate acoustic sources with a vastly improved spatial resolution.
Collapse
|
30
|
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108:93-110. [PMID: 33058769 PMCID: PMC7577369 DOI: 10.1016/j.neuron.2020.09.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 μm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hongyi Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongsun Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Jing B, Kashyap EP, Lindsey BD. Transcranial activation and imaging of low boiling point phase-change contrast agents through the temporal bone using an ultrafast interframe activation ultrasound sequence. Med Phys 2020; 47:4450-4464. [PMID: 32657429 DOI: 10.1002/mp.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE As a cavitation enhancer, low boiling point phase-change contrast agents (PCCA) offer potential for ultrasound-mediated drug delivery in applications including intracerebral hemorrhage or brain tumors. In addition to introducing cavitation, ultrasound imaging also has the ability to provide guidance and monitoring of the therapeutic process by localizing delivery events. However, the highly attenuating skull poses a challenge for achieving an image with useful contrast. In this study, the feasibility of transcranial activation and imaging of low boiling point PCCAs through the human temporal bone was investigated by using a low frequency ultrafast interframe activation ultrasound (UIAU) imaging sequence with singular value decomposition-based denoising. METHODS Lipid-shelled PCCAs filled with decafluorobutane were activated and imaged at 37°C in tissue-mimicking phantoms both without and with an ex vivo human skull using the new UIAU sequence and a low frequency diagnostic transducer array at frequencies from 1.5 to 3.5 MHz. A singular value decomposition-based denoising filter was developed and used to further enhance transcranial image contrast. The contrast-to-tissue ratio (CTR) and contrast enhancement (CE) of UIAU was quantitatively evaluated and compared with the amplitude modulation pulse inversion (AMPI) and vaporization detection imaging (VDI) approaches. RESULTS Image results demonstrate enhanced contrast in the phantom channel with suppressed background when the low boiling point PCCA was activated both without and with an ex vivo human skull using the UIAU sequence. Quantitative results show that without the skull, low frequency UIAU imaging provided significantly higher image contrast (CTR ≥ 18.56 dB and CE ≥ 18.66 dB) than that of AMPI and VDI (P < 0.05). Transcranial imaging results indicated that the CE of UIAU (≥18.80 dB) was significantly higher than AMPI for free-field activation pressures of 5 and 6 MPa. The CE of UIAU is also significantly higher than that of VDI when PCCAs were activated at 2.5 MHz and 3 MHz (P < 0.05). The CTR (23.30 [20.07-25.56] dB) of denoised UIAU increased by 12.58 dB relative to the non-denoised case and was significantly higher than that of AMPI at an activation pressure of 4 MPa (P < 0.05). CONCLUSIONS Results indicate that low boiling point PCCAs can be activated and imaged at low frequencies including imaging through the temporal bone using the UIAU sequence. The UIAU imaging approach provides higher contrast than AMPI and VDI, especially at lower activation pressures with additional removal of electronic noise.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Esha P Kashyap
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
32
|
Hingot V, Brodin C, Lebrun F, Heiles B, Chagnot A, Yetim M, Gauberti M, Orset C, Tanter M, Couture O, Deffieux T, Vivien D. Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice. Am J Cancer Res 2020; 10:7480-7491. [PMID: 32685000 PMCID: PMC7359089 DOI: 10.7150/thno.44233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In the field of ischemic cerebral injury, precise characterization of neurovascular hemodynamic is required to select candidates for reperfusion treatments. It is thus admitted that advanced imaging-based approaches would be able to better diagnose and prognose those patients and would contribute to better clinical care. Current imaging modalities like MRI allow a precise diagnostic of cerebral injury but suffer from limited availability and transportability. The recently developed ultrafast ultrasound could be a powerful tool to perform emergency imaging and long term follow-up of cerebral perfusion, which could, in combination with MRI, improve imaging solutions for neuroradiologists. Methods: In this study, in a model of in situ thromboembolic stroke in mice, we compared a control group of non-treated mice (N=10) with a group receiving the gold standard pharmacological stroke therapy (N=9). We combined the established tool of magnetic resonance imaging (7T MRI) with two innovative ultrafast ultrasound methods, ultrafast Doppler and Ultrasound Localization Microscopy, to image the cerebral blood volumes at early and late times after stroke onset and compare with the formation of ischemic lesions. Results: Our study shows that ultrafast ultrasound can be used through the mouse skull to monitor cerebral perfusion during ischemic stroke. In our data, the monitoring of the reperfusion following thrombolytic within the first 2 h post stroke onset matches ischemic lesions measured 24 h. Moreover, similar results can be made with Ultrasound Localization Microscopy which could make it applicable to human patients in the future. Conclusion: We thus provide the proof of concept that in a mouse model of thromboembolic stroke with an intact skull, early ultrafast ultrasound can be indicative of responses to treatment and cerebral tissue fates following stroke. It brings new tools to study ischemic stroke in preclinical models and is the first step prior translation to the clinical settings.
Collapse
|
33
|
Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, Kiessling F, O'Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, van Sloun RJG. Super-resolution Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:865-891. [PMID: 31973952 PMCID: PMC8388823 DOI: 10.1016/j.ultrasmedbio.2019.11.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/02/2023]
Abstract
The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.
Collapse
Affiliation(s)
- Kirsten Christensen-Jeffries
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Olivier Couture
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Yonina C Eldar
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Meaghan O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Georg Schmitz
- Chair for Medical Engineering, Faculty for Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|