1
|
Huang C, Lok UW, Zhang J, Zhu XY, Krier JD, Stern A, Knoll KM, Petersen KE, Robinson KA, Hesley GK, Bentall AJ, Atwell TD, Rule AD, Lerman LO, Chen S. Optimizing in vivodata acquisition for robust clinical microvascular imaging using ultrasound localization microscopy. Phys Med Biol 2025; 70:10.1088/1361-6560/adc0de. [PMID: 40086078 PMCID: PMC12010384 DOI: 10.1088/1361-6560/adc0de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Objective. Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature. This pilot study aims to investigate the temporal changes in MB signals during bolus injections in both pig and human models to optimize data acquisition for clinical ULM.Approach.Quantitative indices, mainly including individual MB SNR, normalized cross-correlation (NCC) of the MB signal with the point-spread function, and the number of localizable MBs, were developed to evaluate MB signal quality and guide the selection of acquisition timing. The effects of transmitted voltage and dosage on signal quality for MB localization were also explored.Main results. In both pig and human studies, MB localization quality (primarily indicated by NCC) reached a minimum at peak MB concentration, then improved as MB counts decreased during the wash-out phase. An optimal acquisition window was identified by balancing localization quality (empirically, NCC > 0.57) and MB concentration. In the pig model, a relatively short time window (approximately 10 s) for optimal acquisition was identified during the rapid wash-out phase, highlighting the need for real-time MB signal monitoring during data acquisition. The slower wash-out phase in humans allowed for a more flexible imaging window of 1-2 min, while trade-offs were observed between localization quality and MB density (or acquisition length) at different wash-out phase timings. Guided by these findings, robust ULM imaging was achieved in both pig and human kidneys using a short period of data acquisition (3.6 s and 9.6 s of data), demonstrating its feasibility in clinical practice.Significance.This study provides insights into optimizing data acquisition for consistent and reproducible ULM, paving the way for its standardization and broader clinical applications.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amy Stern
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kate M. Knoll
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kendra E. Petersen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathryn A. Robinson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gina K. Hesley
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew J. Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
2
|
Ghosh D, Hoyt K. Advancements in Three-Dimensional Super-Resolution Ultrasound Imaging: A Narrative Review. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 40071846 DOI: 10.1002/jum.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The lack of sensibility of traditional ultrasound (US) imaging to the slow blood flow in small vessels resulted in the development of microbubble (MB) contrast agents. These MBs are given intravenously, and US imaging can detect them quite effectively. This noninvasive imaging method, known as contrast-enhanced US (CEUS), now makes it possible to accurately assess tissue perfusion and blood flow. Though CEUS offers several benefits, diffraction restricts the spatial resolution of all US imaging systems to length scales equal to roughly half the wavelength of the transmitted US beam. Based on individual MB detection and localization, the recently developed super-resolution US (SRUS) imaging method has shown unprecedentedly high spatial resolution exceeding the physical diffraction limit. It is now possible to visualize the microvasculature beyond the diffraction-limited resolution by localizing spatially isolated MBs across several frames. The highest resolution possible at clinical US frequencies can be on the order of several micrometers when tissue and probe motion are not present. Enhancing the functional study of tissue microvascular networks with structural data could lead to improved disease management. Through the localization and tracking of MBs, SRUS may reconstruct images of the microvasculature with resolution exceeding the diffraction limit in both 2-dimensional (2D) and 3-dimensional (3D) space. In contrast to the 2D approach, 3D SRUS imaging does not suffer from out-of-plane motion and can offer volumetric coverage with super-resolution in all three dimensions. Research has used two primary methods for 3D SRUS imaging including arrays that can electronically gather volumetric information or mechanically scanning the volume with a linear probe to produce a stack of 2D SRUS images. This manuscript aims to offer a comprehensive review of 3D SRUS imaging, clarifying methodologies, clinical applications, and notable challenges that could motivate future research and help facilitate clinical translation.
Collapse
Affiliation(s)
- Debabrata Ghosh
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Kenneth Hoyt
- Department of Biomedical Engineering, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Zhang J, Huang C, Lok UW, Dong Z, Liu H, Gong P, Song P, Chen S. Enhancing Row-Column Array (RCA)-Based 3D Ultrasound Vascular Imaging With Spatial-Temporal Similarity Weighting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:297-309. [PMID: 39106128 DOI: 10.1109/tmi.2024.3439615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ultrasound vascular imaging (UVI) is a valuable tool for monitoring the physiological states and evaluating the pathological diseases. Advancing from conventional two-dimensional (2D) to three-dimensional (3D) UVI would enhance the vasculature visualization, thereby improving its reliability. Row-column array (RCA) has emerged as a promising approach for cost-effective ultrafast 3D imaging with a low channel count. However, ultrafast RCA imaging is often hampered by high-level sidelobe artifacts and low signal-to-noise ratio (SNR), which makes RCA-based UVI challenging. In this study, we propose a spatial-temporal similarity weighting (St-SW) method to overcome these challenges by exploiting the incoherence of sidelobe artifacts and noise between datasets acquired using orthogonal transmissions. Simulation, in vitro blood flow phantom, and in vivo experiments were conducted to compare the proposed method with existing orthogonal plane wave imaging (OPW), row-column-specific frame-multiply-and-sum beamforming (RC-FMAS), and XDoppler techniques. Qualitative and quantitative results demonstrate the superior performance of the proposed method. In simulations, the proposed method reduced the sidelobe level by 31.3 dB, 20.8 dB, and 14.0 dB, compared to OPW, XDoppler, and RC-FMAS, respectively. In the blood flow phantom experiment, the proposed method significantly improved the contrast-to-noise ratio (CNR) of the tube by 26.8 dB, 25.5 dB, and 19.7 dB, compared to OPW, XDoppler, and RC-FMAS methods, respectively. In the human submandibular gland experiment, it not only reconstructed a more complete vasculature but also improved the CNR by more than 15 dB, compared to OPW, XDoppler, and RC-FMAS methods. In summary, the proposed method effectively suppresses the side-lobe artifacts and noise in images collected using an RCA under low SNR conditions, leading to improved visualization of 3D vasculatures.
Collapse
|
4
|
Huang C, Lok UW, Zhang J, Zhu XY, Krier JD, Stern A, Knoll KM, Petersen KE, Robinson KA, Hesley GK, Bentall AJ, Atwell TD, Rule AD, Lerman LO, Chen S. Optimizing In Vivo Data Acquisition for Robust Clinical Microvascular Imaging Using Ultrasound Localization Microscopy. ARXIV 2024:arXiv:2412.18077v1. [PMID: 39764396 PMCID: PMC11703319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature. This pilot study investigated temporal changes in MB signals during bolus injections in both pig and human models to optimize data acquisition for clinical ULM. Quantitative indices were developed to evaluate MB signal quality, guiding selection of acquisition timing that balances the MB localization quality and adequate MB counts. The effects of transmitted voltage and dosage were also explored. In the pig model, a relatively short window (approximately 10 seconds) for optimal acquisition was identified during the rapid wash-out phase, highlighting the need for real-time MB signal monitoring during data acquisition. The slower wash-out phase in humans allowed for a more flexible imaging window of 1-2 minutes, while trade-offs were observed between localization quality and MB density (or acquisition length) at different wash-out phase timings. Guided by these findings, robust ULM imaging was achieved in both pig and human kidneys using a short period of data acquisition, demonstrating its feasibility in clinical practice. This study provides insights into optimizing data acquisition for consistent and reproducible ULM, paving the way for its standardization and broader clinical applications.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amy Stern
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kate M. Knoll
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kendra E. Petersen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathryn A. Robinson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gina K. Hesley
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew J. Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
5
|
Lei YM, Liu C, Hu HM, Li N, Zhang N, Wang Q, Zeng SE, Ye HR, Zhang G. Combined use of super-resolution ultrasound imaging and shear-wave elastography for differential diagnosis of breast masses. Front Oncol 2024; 14:1497140. [PMID: 39759128 PMCID: PMC11695221 DOI: 10.3389/fonc.2024.1497140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Objectives Shear-wave elastography (SWE) provides valuable stiffness within breast masses, making it a useful supplement to conventional ultrasound imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular visualization, aiding in the differential diagnosis of breast masses. Current clinical ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound. The combined diagnostic potential of tissue stiffness and microvascular characteristics, two critical tumor biomarkers, remains insufficiently explored. This study aims to evaluate the correlation between the elastic modulus, assessed using SWE, and microvascular characteristics captured through SRUS, in order to evaluate the effectiveness of combining these techniques in distinguishing between benign and malignant breast masses. Materials and methods In this single-center prospective study, 97 patients underwent SWE to obtain parameters including maximum elasticity (Emax), minimum elasticity (Emin), mean elasticity (Emean), standard deviation of elasticity (Esd), and elasticity ratio. SRUS was used to calculate the microvascular flow rate and microvessel density (MVD) within the breast masses. Spearman correlation analysis was used to explore correlations between Emax and MVD. Receiver operating characteristic curves and nomogram were employed to assess the diagnostic efficacy of combining SRUS with SWE, using pathological results as the gold standard. Results Emax, Emean, Esd, and MVD were significantly higher in malignant breast masses compared to benign ones (p < 0.001), while Emin was significantly lower in malignant masses (p < 0.05). In Spearman correlation analysis, Emax was significantly positively correlated with MVD (p < 0.01). The area under the curve for SRUS combined with SWE (0.924) was significantly higher than that for SWE (0.883) or SRUS (0.830) alone (p < 0.001), thus indicating improved diagnostic accuracy. The decision curve analysis of the nomogram indicated that SWE combined with SRUS model had a higher net benefit in predicting breast cancer. Conclusions The MVD of the breast mass shows a significant positive correlation with Emax. By integrating SRUS with SWE, this study proposes a novel diagnostic approach designed to improve specificity and accuracy in breast cancer detection, surpassing the limitations of current ultrasound-based methods. This approach shows promise for early breast cancer detection, with the potential to reduce the need for unnecessary biopsies and improve patient outcomes.
Collapse
Affiliation(s)
- Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chen Liu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Nan Li
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ning Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Shu-E Zeng
- Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Cardiovascular Medicine, Wuhan Asia Heart Hospital, Wuhan, China
| |
Collapse
|
6
|
Amin Naji M, Taghavi I, Vilain Thomsen E, Bent Larsen N, Arendt Jensen J. Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1844-1854. [PMID: 38896528 DOI: 10.1109/tuffc.2024.3416512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% % (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% %. Moreover, the results of vessel diameters, ranging from FWHMy to FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.
Collapse
|
7
|
Tan Q, Riemer K, Hansen-Shearer J, Yan J, Toulemonde M, Taylor L, Yan S, Dunsby C, Weinberg PD, Tang MX. Transcutaneous Imaging of Rabbit Kidney Using 3-D Acoustic Wave Sparsely Activated Localization Microscopy With a Row-Column-Addressed Array. IEEE Trans Biomed Eng 2024; 71:3446-3456. [PMID: 38990741 DOI: 10.1109/tbme.2024.3426487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
OBJECTIVE Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required. METHOD This study proposed 3-D acoustic wave sparsely activated localization microscopy (AWSALM) using PCCAs and a 128+128 row-column-addressed (RCA) array, which offers ultrafast acquisition with over 6 times larger FOV and 4 times reduction in hardware complexity than a 1024-element matrix array. We first validated this method on an in-vitro microflow phantom and subsequently demonstrated non-invasively on a rabbit kidney in-vivo. RESULTS Our results show that 3-D AWSALM images of the phantom covering a mm volume can be generated under 5 seconds with an 8 times resolution improvement over the system point spread function. The full volume of the rabbit kidney can be covered to generate 3-D microvascular structure, flow speed and direction super-resolution maps under 15 seconds, combining the large FOV of RCA with the high resolution of SRUS. Additionally, 3-D AWSALM is selective and can visualize the microvasculature within the activation volume and downstream vessels in isolation. Sub-sets of the kidney microvasculature can be imaged through selective activation of PCCAs. CONCLUSION Our study demonstrates large FOV 3-D AWSALM using an RCA probe. SIGNIFICANCE 3-D AWSALM offers an unique in-vivo imaging tool for fast, selective and large FOV vascular flow mapping.
Collapse
|
8
|
Parra Raad J, Lock D, Liu YY, Solomon M, Peralta L, Christensen-Jeffries K. Optically Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1833-1843. [PMID: 39475744 DOI: 10.1109/tuffc.2024.3484770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Super-resolution ultrasound (SRUS) visualizes microvasculature beyond the ultrasound (US) diffraction limit (wavelength( )/2) by localizing and tracking spatially isolated microbubble (MB) contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane (PDMS) to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to m ( ; m). SRUS imaging was performed and validated with optical measurements. The average SRUS error was m ( ) with a standard deviation error of m. The average error decreased to m ( ) once the number of localized MBs surpassed 1000 per estimated diameter. In addition, less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
Collapse
|
9
|
Denis L, Chabouh G, Heiles B, Couture O. Volumetric Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1643-1656. [PMID: 39453807 DOI: 10.1109/tuffc.2024.3485556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Super-resolution ultrasound (SRUS) has evolved significantly with the advent of ultrasound localization microscopy (ULM). This technique enables subwavelength resolution imaging using microbubble contrast agents. Initially confined to 2-D imaging, ULM has progressed toward volumetric approaches, allowing for comprehensive 3-D visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2-D ULM, including dependence on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allows motion correction in all directions, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.
Collapse
|
10
|
Dencks S, Lisson T, Oblisz N, Kiessling F, Schmitz G. Ultrasound Localization Microscopy Precision of Clinical 3-D Ultrasound Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1677-1689. [PMID: 39321018 DOI: 10.1109/tuffc.2024.3467391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Ultrasound localization microscopy (ULM) is becoming well established in preclinical applications. For its translation into clinical practice, the localization precision achievable with commercial ultrasound (US) scanners is crucial-especially with volume imaging, which is essential for dealing with out-of-plane motion. Here, we propose an easy-to-perform method to estimate the localization precision of 3-D US scanners. With this method, we evaluated imaging sequences of the Philips Epiq 7 US device using the X5-1 and the XL14-3 matrix transducers and also tested different localization methods. For the X5-1 transducer, the best lateral, elevational, and axial precision was 109, 95, and m for one contrast mode, and 29, 22, and m for the other. The higher frequency XL14-3 transducer yielded precisions of 17, 38, and m using the harmonic imaging mode. Although the center of mass was the most robust localization method also often providing the best precision, the localization method has only a minor influence on the localization precision compared to the impact by the imaging sequence and transducer. The results show that with one of the imaging modes of the X5-1 transducer, precisions comparable to the XL14-3 transducer can be achieved. However, due to localization precisions worse than m, reconstruction of the microvasculature at the capillary level will not be possible. These results show the importance of evaluating the localization precision of imaging sequences from different US transducers or scanners in all directions before using them for in vivo measurements.
Collapse
|
11
|
Coudert A, Chavignon A, Denis L, Couture O. Volumetric Ultrasound Localization Microscopy With Diverging Cylindrical Waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1657-1665. [PMID: 38466586 DOI: 10.1109/tuffc.2024.3375896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Transcranial ultrasound plays a limited role in neuroradiology due to its lack of resolution, planar imaging, and user dependency. By breaching the diffraction limit using injected microbubbles, volumetric ultrasound localization microscopy (ULM) could help alleviate those issues. However, performing 3-D ultrasound imaging at a high frame rate with sufficient signal-to-noise ratio (SNR) to track individual microbubbles through the skull remains a challenge, especially with a portable scanner. In this study, we describe a ULM sequence suitable for volumetric transcranial imaging exploiting cylindrical emissions on multiplexed matrix probes, through simulations, hydrophone measurements, and flow phantoms. This geometry leads to a doubling of the peak acoustic pressure, up to 400 kPa, with respect to spherical emission and improved volume rate, up to 180 Hz. Cylindrical emissions also improve the ULM saturation rate by 60% through a skull phantom. The assessment of microbubble velocity was also improved from a 33% error in the average flow measured with spherical waves to a 5% error with cylindrical waves. Conversely, we demonstrate the detrimental impacts of cylindrical waves toward the field of view and isotropic sensitivity. Nevertheless, due to its enhanced SNR and 3-D nature, such a cylindrical volumetric sequence could be beneficial for ULM as a diagnostic tool in humans, especially when portability is a necessity.
Collapse
|
12
|
Masoumi MH, Kaddoura T, Zemp R. TOBE-Costas Arrays for Fast High-Resolution 3-D Power Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:648-658. [PMID: 38743556 DOI: 10.1109/tuffc.2024.3400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two-dimensional sparse arrays and row-column arrays are both alternatives to 2-D fully addressed arrays with lower channel counts. Row-column arrays have recently demonstrated fast 3-D structural and flow imaging but commonly suffer from high grating lobes or require multiplexing to achieve better quality. Two-dimensional sparse arrays enable full-volume acquisitions for each transmit event, but plane-wave transmissions with them usually lack quality in terms of uniformity of wavefronts. Here, we propose a novel architecture that combines both types of these arrays in one aperture, enabling imaging using row-column or sparse arrays alone or a hybrid imaging scheme where the row-column array is used in transmission and a 2-D sparse array in reception. This hybrid imaging scheme can potentially solve the shortcomings of each of these approaches. The sparse array layout chosen is a Costas array, characterized by having only one element per row and column, facilitating its integration with row-column arrays. We simulate images acquired with TOBE-Costas arrays using the hybrid imaging scheme and compare them to row-column and sparse spiral arrays of equivalent aperture size (128λ × 128λ at 7.5 MHz) in ultrafast plane-wave imaging of point targets and 3-D power Doppler imaging of synthetic flow phantoms. Our simulation results show that TOBE-Costas arrays exhibit superior resolution and lower sidelobe levels compared with plane-wave compounding with row-column arrays. Compared with density-tapered spiral arrays, they provide a larger field of view and finer resolution.
Collapse
|
13
|
McCall JR, Chavignon A, Couture O, Dayton PA, Pinton GF. Element Position Calibration for Matrix Array Transducers with Multiple Disjoint Piezoelectric Panels. ULTRASONIC IMAGING 2024; 46:139-150. [PMID: 38334055 DOI: 10.1177/01617346241227900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.
Collapse
Affiliation(s)
- Jacob R McCall
- Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Arthur Chavignon
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Olivier Couture
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Paul A Dayton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Gianmarco F Pinton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Chen Y, Fang B, Meng F, Luo J, Luo X. Competitive Swarm Optimized SVD Clutter Filtering for Ultrafast Power Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:459-473. [PMID: 38319765 DOI: 10.1109/tuffc.2024.3362967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ultrafast power Doppler imaging (uPDI) can significantly increase the sensitivity of resolving small vascular paths in ultrasound. While clutter filtering is a fundamental and essential method to realize uPDI, it commonly uses singular value decomposition (SVD) to suppress clutter signals and noise. However, current SVD-based clutter filters using two cutoffs cannot ensure sufficient separation of tissue, blood, and noise in uPDI. This article proposes a new competitive swarm-optimized SVD clutter filter to improve the quality of uPDI. Specifically, without using two cutoffs, such a new filter introduces competitive swarm optimization (CSO) to search for the counterparts of blood signals in each singular value. We validate the CSO-SVD clutter filter on public in vivo datasets. The experimental results demonstrate that our method can achieve higher contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and blood-to-clutter ratio (BCR) than the state-of-the-art SVD-based clutter filters, showing a better balance between suppressing clutter signals and preserving blood signals. Particularly, our CSO-SVD clutter filter improves CNR by 0.99 ± 0.08 dB, SNR by 0.79 ± 0.08 dB, and BCR by 1.95 ± 0.03 dB when comparing a spatial-similarity-based SVD clutter filter in the in vivo dataset of rat brain bolus.
Collapse
|
15
|
Wang N, Qiang Y, Qiu C, Chen Y, Wang X, Pan Y, Liu R, Wu W, Zheng H, Qiu W, Zhang Z. A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging. IEEE Trans Biomed Eng 2024; 71:831-840. [PMID: 37756181 DOI: 10.1109/tbme.2023.3319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.
Collapse
|
16
|
Wang B, Riemer K, Toulemonde M, Yan J, Zhou X, Smith CAB, Tang MX. Broad Elevation Projection Super-Resolution Ultrasound (BEP-SRUS) Imaging With a 1-D Unfocused Linear Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:255-265. [PMID: 38109244 DOI: 10.1109/tuffc.2023.3343992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.
Collapse
|
17
|
Bhatti A, Ishii T, Saijo Y. Superficial Bifurcated Microflow Phantom for High-Frequency Ultrasound Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:158-164. [PMID: 37872032 DOI: 10.1016/j.ultrasmedbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To evaluate and optimize high-frequency ultrasound (HFUS) imaging techniques that visualize the morphology of microscale vasculatures, many studies have used flow phantoms with straight channels. However, the previous phantoms lack the complexity of microvessels to simulate a realistic vascular environment in a shallow depth. This study was aimed at devising a new protocol for fabrication of a microflow phantom with bifurcated geometry at a superficial region. METHODS The proposed protocol involved the following features: (i) a bifurcated flow tract model 300 µm in diameter was debossed on the surface of a tissue slab made of polyvinyl alcohol cryogel, and (ii) a wall-less lumen was created via bonding tissue slabs to put a lid on the debossed flow tract. The structure of the created microflow phantom was evaluated using 2-D and 3-D power Doppler imaging with a 30 MHz HFUS modality. RESULTS Ultrasound imaging revealed that the desired flow tract with bifurcation was successfully created in the phantom at a depth of 2-5 mm from the ultrasound probe. The diameters of the flow tract measured in the axial direction were 307 ± 3.7 µm in the parent branch and 232 ± 18.2 and 256 ± 23.3 µm in the two daughter branches, respectively. CONCLUSION The experiments revealed that the proposed protocol for creating a microscale intricate flow tract with desired dimensions and depth is valid. This new phantom will facilitate further improvement in the ultrasound technologies for the precise visualization of superficial complex vasculatures such as those in skin layers.
Collapse
Affiliation(s)
- Anam Bhatti
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takuro Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Deng L, Lea-Banks H, Jones RM, O’Reilly MA, Hynynen K. Three-dimensional super resolution ultrasound imaging with a multi-frequency hemispherical phased array. Med Phys 2023; 50:7478-7497. [PMID: 37702919 PMCID: PMC10872837 DOI: 10.1002/mp.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND High resolution imaging of the microvasculature plays an important role in both diagnostic and therapeutic applications in the brain. However, ultrasound pulse-echo sonography imaging the brain vasculatures has been limited to narrow acoustic windows and low frequencies due to the distortion of the skull bone, which sacrifices axial resolution since it is pulse length dependent. PURPOSE To overcome the detect limit, a large aperture 256-module sparse hemispherical transmit/receive array was used to visualize the acoustic emissions of ultrasound-vaporized lipid-coated decafluorobutane nanodroplets flowing through tube phantoms and within rabbit cerebral vasculature in vivo via passive acoustic mapping and super resolution techniques. METHODS Nanodroplets were vaporized with 55 kHz burst-mode ultrasound (burst length = 145 μs, burst repetition frequency = 9-45 Hz, peak negative acoustic pressure = 0.10-0.22 MPa), which propagates through overlying tissues well without suffering from severe distortions. The resulting emissions were received at a higher frequency (612 or 1224 kHz subarray) to improve the resulting spatial resolution during passive beamforming. Normal resolution three-dimensional images were formed using a delay, sum, and integrate beamforming algorithm, and super-resolved images were extracted via Gaussian fitting of the estimated point-spread-function to the normal resolution data. RESULTS With super resolution techniques, the mean lateral (axial) full-width-at-half-maximum image intensity was 16 ± 3 (32 ± 6) μm, and 7 ± 1 (15 ± 2) μm corresponding to ∼1/67 of the normal resolution at 612 and 1224 kHz, respectively. The mean positional uncertainties were ∼1/350 (lateral) and ∼1/180 (axial) of the receive wavelength in water. In addition, a temporal correlation between nanodroplet vaporization and the transmit waveform shape was observed, which may provide the opportunity to enhance the signal-to-noise ratio in future studies. CONCLUSIONS Here, we demonstrate the feasibility of vaporizing nanodroplets via low frequency ultrasound and simultaneously performing spatial mapping via passive beamforming at higher frequencies to improve the resulting spatial resolution of super resolution imaging techniques. This method may enable complete four-dimensional vascular mapping in organs where a hemispherical array could be positioned to surround the target, such as the brain, breast, or testicles.
Collapse
Affiliation(s)
- Lulu Deng
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Meaghan A. O’Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| |
Collapse
|
19
|
Wei L, Wahyulaksana G, Te Lintel Hekkert M, Beurskens R, Boni E, Ramalli A, Noothout E, Duncker DJ, Tortoli P, van der Steen AFW, de Jong N, Verweij M, Vos HJ. High-Frame-Rate Volumetric Porcine Renal Vasculature Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2476-2482. [PMID: 37704558 DOI: 10.1016/j.ultrasmedbio.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. METHODS Transcutaneous freehand in vivo imaging of two healthy porcine kidneys was performed according to three protocols with different microbubble concentrations and transmission sequences. Combining high-frame-rate transmission sequences with our previously described spatial coherence beamformer, we determined the ability to produce detailed volumetric images of the vasculature. We also determined power, color and spectral Doppler, as well as super-resolved microvasculature in a volume. The results were compared against a clinical 2-D ultrasound machine. RESULTS Three-dimensional visualization of the kidney vasculature structure and blood flow was possible with our method. Good structural agreement was found between the visualized vasculature structure and the 2-D reference. Microvasculature patterns in the kidney cortex were visible with super-resolution processing. Blood flow velocity estimations were within a physiological range and pattern, also in agreement with the 2-D reference results. CONCLUSION Volumetric imaging of the kidney vasculature was possible using a prototype sparse spiral array. Reliable structural and temporal information could be extracted from these imaging results.
Collapse
Affiliation(s)
- Luxi Wei
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Geraldi Wahyulaksana
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Robert Beurskens
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Enrico Boni
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Emile Noothout
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin Verweij
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
20
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
21
|
Dencks S, Schmitz G. Ultrasound localization microscopy. Z Med Phys 2023; 33:292-308. [PMID: 37328329 PMCID: PMC10517400 DOI: 10.1016/j.zemedi.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound Localization Microscopy (ULM) is an emerging technique that provides impressive super-resolved images of microvasculature, i.e., images with much better resolution than the conventional diffraction-limited ultrasound techniques and is already taking its first steps from preclinical to clinical applications. In comparison to the established perfusion or flow measurement methods, namely contrast-enhanced ultrasound (CEUS) and Doppler techniques, ULM allows imaging and flow measurements even down to the capillary level. As ULM can be realized as a post-processing method, conventional ultrasound systems can be used for. ULM relies on the localization of single microbubbles (MB) of commercial, clinically approved contrast agents. In general, these very small and strong scatterers with typical radii of 1-3 µm are imaged much larger in ultrasound images than they actually are due to the point spread function of the imaging system. However, by applying appropriate methods, these MBs can be localized with sub-pixel precision. Then, by tracking MBs over successive frames of image sequences, not only the morphology of vascular trees but also functional information such as flow velocities or directions can be obtained and visualized. In addition, quantitative parameters can be derived to describe pathological and physiological changes in the microvasculature. In this review, the general concept of ULM and conditions for its applicability to microvessel imaging are explained. Based on this, various aspects of the different processing steps for a concrete implementation are discussed. The trade-off between complete reconstruction of the microvasculature and the necessary measurement time as well as the implementation in 3D are reviewed in more detail, as they are the focus of current research. Through an overview of potential or already realized preclinical and clinical applications - pathologic angiogenesis or degeneration of vessels, physiological angiogenesis, or the general understanding of organ or tissue function - the great potential of ULM is demonstrated.
Collapse
Affiliation(s)
- Stefanie Dencks
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany.
| | - Georg Schmitz
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
22
|
Lei S, Zhang C, Zhu B, Gao Z, Zhang Q, Liu J, Li Y, Zheng H, Ma T. In vivo ocular microvasculature imaging in rabbits with 3D ultrasound localization microscopy. ULTRASONICS 2023; 133:107022. [PMID: 37178486 DOI: 10.1016/j.ultras.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Morphological and hemodynamic changes in the ocular vasculature are important signs of various ocular diseases. The evaluation of the ocular microvasculature with high resolution is valuable in comprehensive diagnoses. However, it is difficult for current optical imaging techniques to visualize the posterior segment and retrobulbar microvasculature due to the limited penetration depth of light, particularly when the refractive medium is opaque. Thus, we have developed a 3D ultrasound localization microscopy (ULM) imaging method to visualize the ocular microvasculature in rabbits with micron-scale resolution. We used a 32 × 32 matrix array transducer (center frequency: 8 MHz) with a compounding plane wave sequence and microbubbles. Block-wise singular value decomposition spatiotemporal clutter filtering and block-matching 3D denoising were implemented to extract the flowing microbubble signals at different imaging depths with high signal-to-noise ratios. The center points of microbubbles were localized and tracked in 3D space to achieve the micro-angiography. The in vivo results demonstrate the ability of 3D ULM to visualize the microvasculature of the eye in rabbits, where vessels down to 54 μm were successfully revealed. Moreover, the microvascular maps indicated the morphological abnormalities in the eye with retinal detachment. This efficient modality shows potential for use in the diagnosis of ocular diseases.
Collapse
Affiliation(s)
- Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeping Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China.
| |
Collapse
|
23
|
Masoumi MH, Kaddoura T, Zemp RJ. Costas Sparse 2-D Arrays for High-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:460-472. [PMID: 37028300 DOI: 10.1109/tuffc.2023.3256339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two-dimensional arrays enable volumetric ultrasound imaging but have been limited to small aperture size and hence low resolution due to the high cost and complexity of fabrication, addressing, and processing associated with large fully addressed arrays. Here, we propose Costas arrays as a gridded sparse 2-D array architecture for volumetric ultrasound imaging. Costas arrays have exactly one element for every row and column, such that the vector displacement between any pair of elements is unique. These properties ensure aperiodicity, which helps eliminate grating lobes. Compared with previously reported works, we studied the distribution of active elements based on an order-256 Costas layout on a wider aperture ( 96 λ×96 λ at 7.5 MHz center frequency) for high-resolution imaging. Our investigations with focused scanline imaging of point targets and cyst phantoms showed that Costas arrays exhibit lower peak sidelobe levels compared with random sparse arrays of the same size and offer comparable performance in terms of contrast compared with Fermat spiral arrays. In addition, Costas arrays are gridded, which could ease the manufacturing and has one element for each row/column, which enables simple interconnection strategies. Compared with state-of-the-art matrix probes, which are commonly 32×32 , the proposed sparse arrays achieve higher lateral resolution and a wider field of view.
Collapse
|
24
|
Denis L, Bodard S, Hingot V, Chavignon A, Battaglia J, Renault G, Lager F, Aissani A, Hélénon O, Correas JM, Couture O. Sensing ultrasound localization microscopy for the visualization of glomeruli in living rats and humans. EBioMedicine 2023; 91:104578. [PMID: 37086650 PMCID: PMC10149190 DOI: 10.1016/j.ebiom.2023.104578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Estimation of glomerular function is necessary to diagnose kidney diseases. However, the study of glomeruli in the clinic is currently done indirectly through urine and blood tests. A recent imaging technique called Ultrasound Localization Microscopy (ULM) has appeared. It is based on the ability to record continuous movements of individual microbubbles in the bloodstream. Although ULM improved the resolution of vascular imaging up to tenfold, the imaging of the smallest vessels had yet to be reported. METHODS We acquired ultrasound sequences from living humans and rats and then applied filters to divide the data set into slow-moving and fast-moving microbubbles. We performed a double tracking to highlight and characterize populations of microbubbles with singular behaviors. We decided to call this technique "sensing ULM" (sULM). We used post-mortem micro-CT for side-by-side confirmation in rats. FINDINGS In this study, we report the observation of microbubbles flowing in the glomeruli in living humans and rats. We present a set of analysis tools to extract quantitative information from individual microbubbles, such as remanence time or normalized distance. INTERPRETATION As glomeruli play a key role in kidney function, it would be possible that their observation yields a deeper understanding of the kidney. It could also be a tool to diagnose kidney diseases in patients. More generally, it will bring imaging capabilities closer to the functional units of organs, which is a key to understand most diseases, such as cancer, diabetes, or kidney failures. FUNDING This study was funded by the European Research Council under the European Union Horizon H2020 program (ERC Consolidator grant agreement No 772786-ResolveStroke).
Collapse
Affiliation(s)
- Louise Denis
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France.
| | - Sylvain Bodard
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Vincent Hingot
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Arthur Chavignon
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Jacques Battaglia
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Franck Lager
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Abderrahmane Aissani
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Olivier Hélénon
- AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Jean-Michel Correas
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| |
Collapse
|
25
|
Peralta L, Mazierli D, Gomez A, Hajnal JV, Tortoli P, Ramalli A. 3-D Coherent Multitransducer Ultrasound Imaging With Sparse Spiral Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:197-206. [PMID: 37022372 DOI: 10.1109/tuffc.2023.3241774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coherent multitransducer ultrasound (CoMTUS) creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. The subwavelength localization accuracy of the multiple transducers required to coherently beamform the data is achieved by using the echoes backscattered from targeted points. In this study, CoMTUS is implemented and demonstrated for the first time in 3-D imaging using a pair of 256-element 2-D sparse spiral arrays, which keep the channel count low and limit the amount of data to be processed. The imaging performance of the method was investigated using both simulations and phantom tests. The feasibility of free-hand operation is also experimentally demonstrated. Results show that, in comparison with a single dense array system using the same total number of active elements, the proposed CoMTUS system improves spatial resolution (up to ten times) in the direction where both arrays are aligned, contrast-to-noise ratio (CNR; up to 46%), and generalized CNR (gCNR; up to 15%). Overall, CoMTUS shows a narrower main lobe and higher CNR, which results in an increased dynamic range and better target detectability.
Collapse
|
26
|
De Hoop H, Vermeulen M, Schwab HM, Lopata RGP. Coherent Bistatic 3-D Ultrasound Imaging Using Two Sparse Matrix Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:182-196. [PMID: 37027570 DOI: 10.1109/tuffc.2022.3233158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the last decade, many advances have been made in high frame rate 3-D ultrasound imaging, including more flexible acquisition systems, transmit (TX) sequences, and transducer arrays. Compounding multiangle transmits of diverging waves has shown to be fast and effective for 2-D matrix arrays, where heterogeneity between transmits is key in optimizing the image quality. However, the anisotropy in contrast and resolution remains a drawback that cannot be overcome with a single transducer. In this study, a bistatic imaging aperture is demonstrated that consists of two synchronized matrix ( 32×32 ) arrays, allowing for fast interleaved transmits with a simultaneous receive (RX). First, for a single array, the aperture efficiency for high volume rate imaging was evaluated between sparse random arrays and fully multiplexed arrays. Second, the performance of the bistatic acquisition scheme was analyzed for various positions on a wire phantom and was showcased in a dynamic setup mimicking the human abdomen and aorta. Sparse array volume images were equal in resolution and lower in contrast compared to fully multiplexed arrays but can efficiently minimize decorrelation during motion for multiaperture imaging. The dual-array imaging aperture improved the spatial resolution in the direction of the second transducer, reducing the average volumetric speckle size with 72% and the axial-lateral eccentricity with 8%. In the aorta phantom, the angular coverage increased by a factor of 3 in the axial-lateral plane, raising the wall-lumen contrast with 16% compared to single-array images, despite accumulation of thermal noise in the lumen.
Collapse
|
27
|
McCall JR, Santibanez F, Belgharbi H, Pinton GF, Dayton PA. Non-invasive transcranial volumetric ultrasound localization microscopy of the rat brain with continuous, high volume-rate acquisition. Theranostics 2023; 13:1235-1246. [PMID: 36923540 PMCID: PMC10008741 DOI: 10.7150/thno.79189] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 02/15/2023] Open
Abstract
Rationale: Structure and function of the microvasculature provides critical information about disease state, can be used to identify local regions of pathology, and has been shown to be an indicator of response to therapy. Improved methods of assessing the microvasculature with non-invasive imaging modalities such as ultrasound will have an impact in biomedical theranostics. Ultrasound localization microscopy (ULM) is a new technology which allows processing of ultrasound data for visualization of microvasculature at a resolution better than allowed by acoustic diffraction with traditional ultrasound systems. Previous application of this modality in brain imaging has required the use of invasive procedures, such as a craniotomy, skull-thinning, or scalp removal, all of which are not feasible for the purpose of longitudinal studies. Methods: The impact of ultrasound localization microscopy is expanded using a 1024 channel matrix array ultrasonic transducer, four synchronized programmable ultrasound systems with customized high-performance hardware and software, and high-performance GPUs for processing. The potential of the imaging hardware and processing approaches are demonstrated in-vivo. Results: Our unique implementation allows asynchronous acquisition and data transfer for uninterrupted data collection at an ultra-high fixed frame rate. Using these methods, the vasculature was imaged using 100,000 volumes continuously at a volume acquisition rate of 500 volumes per second. With ULM, we achieved a resolution of 31 µm, which is a resolution improvement on conventional ultrasound imaging by nearly a factor of ten, in 3-D. This was accomplished while imaging through the intact skull with no scalp removal, which demonstrates the utility of this method for longitudinal studies. Conclusions: The results demonstrate new capabilities to rapidly image and analyze complex vascular networks in 3-D volume space for structural and functional imaging in disease assessment, targeted therapeutic delivery, monitoring response to therapy, and other theranostic applications.
Collapse
Affiliation(s)
- Jacob R. McCall
- The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University
- Electrical and Computer Engineering, NC State University
| | - Francisco Santibanez
- The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University
| | - Hatim Belgharbi
- The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University
| | - Gianmarco F. Pinton
- The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University
| | - Paul A. Dayton
- The Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University
| |
Collapse
|
28
|
Tai H, Basavarajappa L, Hoyt K. 3-D H-scan ultrasound imaging of relative scatterer size using a matrix array transducer and sparse random aperture compounding. Comput Biol Med 2022; 151:106316. [PMID: 36442278 PMCID: PMC9749370 DOI: 10.1016/j.compbiomed.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
H-scan ultrasound (US) is a high-resolution imaging technique for soft tissue characterization. By acquiring data in volume space, H-scan US can provide insight into subtle tissue changes or heterogenous patterns that might be missed using traditional cross-sectional US imaging approaches. In this study, we introduce a 3-dimensional (3-D) H-scan US imaging technology for voxel-level tissue characterization in simulation and experimentation. Using a matrix array transducer, H-scan US imaging was developed to evaluate the relative size of US scattering aggregates in volume space. Experimental data was acquired using a programmable US system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with a 1024-element (32 × 32) matrix array transducer (Vermon Inc, Tours, France). Imaging was performed using the full array in transmission. Radiofrequency (RF) data sequences were collected using a sparse random aperture compounding technique with 6 different data compounding approaches. Plane wave imaging at five angles was performed at a center frequency of 8 MHz. Scan conversion and attenuation correction were applied. To generate the 3-D H-scan US images, a convolution filter bank (N = 256) was then used to process the RF data sequences and measure the spectral content of the backscattered US signals before volume reconstruction. Preliminary experimental studies were conducted using homogeneous phantom materials embedded with spherical US scatterers of varying diameter, i.e., 27 to 45, 63 to 75, or 106-126 μm. Both simulated and experimental results revealed that 3-D H-scan US images have a low spatial variance when tested with homogeneous phantom materials. Furthermore, H-scan US is considerably more sensitive than traditional B-mode US imaging for differentiating US scatterers of varying size (p = 0.001 and p = 0.93, respectively). Overall, this study demonstrates the feasibility of 3-D H-scan US imaging using a matrix array transducer for tissue characterization in volume space.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
29
|
Lok UW, Huang C, Trzasko JD, Kim Y, Lucien F, Tang S, Gong P, Song P, Chen S. Three-Dimensional Ultrasound Localization Microscopy with Bipartite Graph-Based Microbubble Pairing and Kalman-Filtering-Based Tracking on a 256-Channel Verasonics Ultrasound System with a 32 × 32 Matrix Array. J Med Biol Eng 2022; 42:767-779. [PMID: 36712192 PMCID: PMC9881453 DOI: 10.1007/s40846-022-00755-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) ultrasound localization microscopy (ULM) using a 2-D matrix probe and microbubbles (MBs) has been recently proposed to visualize microvasculature beyond the ultrasound diffraction limit in three spatial dimensions. However, 3D ULM suffers from several limitations: (1) high system complexity due to numerous channel counts, (2) complex MB flow dynamics in 3D, and (3) extremely long acquisition time. To reduce the system complexity while maintaining high image quality, we used a sub-aperture process to reduce received channel counts. To address the second issue, a 3D bipartite graph-based method with Kalman filtering-based tracking was used in this study for MB tracking. An MB separation approach was incorporated to separate high concentration MB data into multiple, sparser MB datasets, allowing better MB localization and tracking for a limited acquisition time. The proposed method was first validated in a flow channel phantom, showing improved spatial resolutions compared with the contrasted enhanced power Doppler image. Then the proposed method was evaluated with an in vivo chicken embryo brain dataset. Results showed that the reconstructed 3D super-resolution image achieved a spatial resolution of around 52 μm (smaller than the wavelength of around 200 μm). Microvessels that cannot be resolved clearly using localization only, can be well identified with the tailored 3D pairing and tracking algorithms. To sum up, the feasibility of the 3D ULM is shown, indicating the great possibility in clinical applications.
Collapse
Affiliation(s)
- U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Shigao Chen
- Corresponding Author: Dr. Shigao Chen, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905,
| |
Collapse
|
30
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
31
|
Zhang G, Yu J, Lei YM, Hu JR, Hu HM, Harput S, Guo ZZ, Cui XW, Ye HR. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Front Oncol 2022; 12:978164. [PMID: 36387122 PMCID: PMC9647016 DOI: 10.3389/fonc.2022.978164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
Objective Ultrasound imaging provides a fast and safe examination of thyroid nodules. Recently, the introduction of super-resolution imaging technique shows the capability of breaking the Ultrasound diffraction limit in imaging the micro-vessels. The aim of this study was to evaluate its feasibility and value for the differentiation of thyroid nodules. Methods In this study, B-mode, contrast-enhanced ultrasound, and color Doppler flow imaging examinations were performed on thyroid nodules in 24 patients. Super-resolution imaging was performed to visualize the microvasculature with finer details. Microvascular flow rate (MFR) and micro-vessel density (MVD) within thyroid nodules were computed. The MFR and MVD were used to differentiate the benign and malignant thyroid nodules with pathological results as a gold standard. Results Super-resolution imaging (SRI) technique can be successfully applied on human thyroid nodules to visualize the microvasculature with finer details and obtain the useful clinical information MVD and MFR to help differential diagnosis. The results suggested that the mean value of the MFR within benign thyroid nodule was 16.76 ± 6.82 mm/s whereas that within malignant thyroid was 9.86 ± 4.54 mm/s. The mean value of the MVD within benign thyroid was 0.78 while the value for malignant thyroid region was 0.59. MFR and MVD within the benign thyroid nodules were significantly higher than those within the malignant thyroid nodules respectively (p < 0.01). Conclusions This study demonstrates the feasibility of ultrasound super-resolution imaging to show micro-vessels of human thyroid nodules via a clinical ultrasound platform. The important imaging markers, such as MVD and MFR, can be derived from SRI to provide more useful clinical information. It has the potential to be a new tool for aiding differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Rui Hu
- Department of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London, United Kingdom
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Ramalli A, Boni E, Roux E, Liebgott H, Tortoli P. Design, Implementation, and Medical Applications of 2-D Ultrasound Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2739-2755. [PMID: 35333714 DOI: 10.1109/tuffc.2022.3162419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasound sparse array consists of a sparse distribution of elements over a 2-D aperture. Such an array is typically characterized by a limited number of elements, which in most cases is compatible with the channel number of the available scanners. Sparse arrays represent an attractive alternative to full 2-D arrays that may require the control of thousands of elements through expensive application-specific integrated circuits (ASICs). However, their massive use is hindered by two main drawbacks: the possible beam profile deterioration, which may worsen the image contrast, and the limited signal-to-noise ratio (SNR), which may result too low for some applications. This article reviews the work done for three decades on 2-D ultrasound sparse arrays for medical applications. First, random, optimized, and deterministic design methods are reviewed together with their main influencing factors. Then, experimental 2-D sparse array implementations based on piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) technologies are presented. Sample applications to 3-D (Doppler) imaging, super-resolution imaging, photo-acoustic imaging, and therapy are reported. The final sections discuss the main shortcomings associated with the use of sparse arrays, the related countermeasures, and the next steps envisaged in the development of innovative arrays.
Collapse
|
33
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
34
|
Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The spread of high frame rate and 3-D imaging techniques has raised pressing requirements for ultrasound systems. In particular, the processing power and data transfer rate requirements may be so demanding to hinder the real-time (RT) implementation of such techniques. This paper first analyzes the general requirements involved in RT ultrasound systems. Then, it identifies the main bottlenecks in the receiving section of a specific RT scanner, the ULA-OP 256, which is one of the most powerful available open scanners and may therefore be assumed as a reference. This case study has evidenced that the “star” topology, used to digitally interconnect the system’s boards, may easily saturate the data transfer bandwidth, thus impacting the achievable frame/volume rates in RT. The architecture of the digital scanner was exploited to tackle the bottlenecks by enabling a new “ring“ communication topology. Experimental 2-D and 3-D high-frame-rate imaging tests were conducted to evaluate the frame rates achievable with both interconnection modalities. It is shown that the ring topology enables up to 4400 frames/s and 510 volumes/s, with mean increments of +230% (up to +620%) compared to the star topology.
Collapse
|
35
|
Demeulenaere O, Bertolo A, Pezet S, Ialy-Radio N, Osmanski B, Papadacci C, Tanter M, Deffieux T, Pernot M. In vivo whole brain microvascular imaging in mice using transcranial 3D Ultrasound Localization Microscopy. EBioMedicine 2022; 79:103995. [PMID: 35460988 PMCID: PMC9048085 DOI: 10.1016/j.ebiom.2022.103995] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Non-invasive high-resolution imaging of the cerebral vascular anatomy and function is key for the study of intracranial aneurysms, stenosis, arteriovenous malformations, and stroke, but also neurological pathologies, such as degenerative diseases. Direct visualization of the microvascular networks in the whole brain remains however challenging in vivo. Methods In this work, we performed 3D ultrafast ultrasound localization microscopy (ULM) using a 2D ultrasound matrix array and mapped the whole-brain microvasculature and flow at microscopic resolution in C57Bl6 mice in vivo. Findings We demonstrated that the mouse brain vasculature can be imaged directly through the intact skull at a spatial resolution of 20 µm and over the whole brain depth and at high temporal resolution (750 volumes.s−1). Individual microbubbles were tracked to estimate the flow velocities that ranged from 2 mm.s−1 in arterioles and venules up to 100 mm.s−1 in large vessels. The vascular maps were registered automatically with the Allen atlas in order to extract quantitative vascular parameters such as local flow rates and velocities in regions of interest. Interpretation We show the potential of 3D ULM to provide new insights into whole-brain vascular flow in mice models at unprecedented vascular scale for an in vivo technique. This technology is highly translational and has the potential to become a major tool for the clinical investigation of the cerebral microcirculation. Funding This study was supported by the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n° 311025 and by the Fondation Bettencourt-Schueller under the program “Physics for Medicine”. We acknowledge the ART (Technological Research Accelerator) biomedical ultrasound program of INSERM.
Collapse
Affiliation(s)
- Oscar Demeulenaere
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Adrien Bertolo
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France; Iconeus, Paris 75014, France
| | - Sophie Pezet
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Nathalie Ialy-Radio
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | | | - Clément Papadacci
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Mickael Tanter
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Thomas Deffieux
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Mathieu Pernot
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
36
|
Ultrasound Localization Microscopy in Liquid Metal Flows. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liquid metal convection plays an important role in natural and technical processes. In experimental studies, an instrumentation with a sub-millimeter spatial resolution is required in an opaque fluid to resolve the flow field near the boundary layer. Using ultrasound methods, the trade-off between the frequency and imaging depth of typical laboratory experiments limits the spatial resolution. Therefore, the method of ultrasound localization microscopy (ULM) was introduced in liquid metal experiments for the first time in this study. To isolate the intrinsic scattering particles, an adaptive nonlinear beamformer was applied. As a result, an average spatial resolution of 188 μm could be achieved, which corresponded to a fraction of the ultrasound wavelength of 0.28. A convection experiment was measured using ULM. Due to the increased spatial resolution, the high-velocity gradients and the recirculation areas of a liquid metal convection experiment could be observed for the first time. The presented technique paves the way for in-depth flow studies of convective turbulent liquid metal flows that are close to the boundary layer.
Collapse
|
37
|
Favre H, Pernot M, Tanter M, Papadacci C. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5f72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Mapping blood microflows of the whole brain is crucial for early diagnosis of cerebral diseases. Ultrasound localization microscopy (ULM) was recently applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which significantly reduces the imaging sensitivity. Large aperture probes with a large surface can increase both resolution and sensitivity. However, a large active surface implies thousands of acoustic elements, with limited clinical translation. In this study, we investigate via simulations a new high-sensitive 3D imaging approach based on large diverging elements, combined with an adapted beamforming with corrected delay laws, to increase sensitivity. First, pressure fields from single elements with different sizes and shapes were simulated. High directivity was measured for curved element while maintaining high transmit pressure. Matrix arrays of 256 elements with a dimension of 10 × 10 cm with small (λ/2), large (4λ), and curved elements (4λ) were compared through point spread functions analysis. A large synthetic microvessel phantom filled with 100 microbubbles per frame was imaged using the matrix arrays in a transcranial configuration. 93% of the bubbles were detected with the proposed approach demonstrating that the multi-lens diffracting layer has a strong potential to enable 3D ULM over a large field of view through the bones.
Collapse
|
38
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
39
|
McCall JR, Dayton PA, Pinton GF. Characterization of the Ultrasound Localization Microscopy Resolution Limit in the Presence of Image Degradation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:124-134. [PMID: 34524957 DOI: 10.1109/tuffc.2021.3112074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasound localization microscopy (ULM) has been able to overcome the diffraction limit of ultrasound imaging. The resolution limit of ULM has been previously modeled using the Cramér-Rao lower bound (CRLB). While this model has been validated in a homogeneous medium, it estimates a resolution limit, which has not yet been achieved in vivo. In this work, we investigated the effects of three sources of image degradation on the resolution limit of ULM. The Fullwave simulation tool was used to simulate acquisitions of transabdominal contrast-enhanced data at depth. The effects of reverberation clutter, trailing clutter, and phase aberration were studied. The resolution limit, in the presence of reverberation clutter alone, was empirically measured to be up to 39 times worse in the axial dimension and up to 2.1 times worse in the lateral dimension than the limit predicted by the CRLB. While reverberation clutter had an isotropic impact on the resolution, trailing clutter had a constant impact on both dimensions across all signal-to-trailing-clutter ratios (STCR). Phase aberration had a significant impact on the resolution limit over the studied analysis ranges. Phase aberration alone degraded the resolution limit up to 70 and 160 [Formula: see text] in the lateral and axial dimensions, respectively. These results illustrate the importance of phase aberration correction and clutter filtering in ULM postprocessing. The analysis results were demonstrated through the simulation of the ULM process applied to a cross-tube model that was degraded by each of the three aforementioned sources of degradation.
Collapse
|
40
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
41
|
Andersen SB, Taghavi I, Kjer HM, Søgaard SB, Gundlach C, Dahl VA, Nielsen MB, Dahl AB, Jensen JA, Sørensen CM. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci Rep 2021; 11:24335. [PMID: 34934089 PMCID: PMC8692475 DOI: 10.1038/s41598-021-03726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | |
Collapse
|
42
|
Yin J, Zhang J, Zhu Y, Dong F, An J, Wang D, Li N, Luo Y, Wang Y, Wang X, Zhang J. Ultrasound microvasculature imaging with entropy-based radiality super-resolution (ERSR). Phys Med Biol 2021; 66. [PMID: 34592723 DOI: 10.1088/1361-6560/ac2bb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective:Microvasculature is highly relevant to the occurrence and development of pathologies such as cancer and diabetes. Ultrasound localization microscopy (ULM) has bypassed the diffraction limit and demonstrated its great potential to provide new imaging modality and establish new diagnostic criteria in clinical application. However, sparse microbubble distribution can be a significant bottleneck for improving temporal resolution, even for further clinical translation. Other important challenges for ULM to tackle in clinic also include high microbubble concentration and low frame rate.Approach:As part of the efforts to facilitate clinical translation, this paper focused on the low frame rate and the high microbubble distribution issue and proposed a new super-resolution imaging strategy called entropy-based radiality super-resolution (ERSR). The feasibility of ERSR is validated with simulations, phantom experiment and contrast-enhanced ultrasound scan of rabbit sciatic nerve with clinical accessible ultrasound system.Main results:ERSR can achieve 10 times improvement in spatial resolution compared to conventional ultrasound imaging, higher temporal resolution (∼10 times higher) and contrast-to-noise ratio under high-density microbubbles, compared with ULM under low-density microbubbles.Significance:We conclude ERSR could be a valuable imaging tool with high spatio-temporal resolution for clinical diagnosis and assessment of diseases potentially.
Collapse
Affiliation(s)
- Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jiabin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Yaqiong Zhu
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.,Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Nan Li
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yukun Luo
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuexiang Wang
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.,College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Wei L, Wahyulaksana G, Meijlink B, Ramalli A, Noothout E, Verweij MD, Boni E, Kooiman K, van der Steen AFW, Tortoli P, de Jong N, Vos HJ. High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3069-3081. [PMID: 34086570 DOI: 10.1109/tuffc.2021.3086597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric ultrasound imaging of blood flow with microbubbles enables a more complete visualization of the microvasculature. Sparse arrays are ideal candidates to perform volumetric imaging at reduced manufacturing complexity and cable count. However, due to the small number of transducer elements, sparse arrays often come with high clutter levels, especially when wide beams are transmitted to increase the frame rate. In this study, we demonstrate with a prototype sparse array probe and a diverging wave transmission strategy, that a uniform transmission field can be achieved. With the implementation of a spatial coherence beamformer, the background clutter signal can be effectively suppressed, leading to a signal to background ratio improvement of 25 dB. With this approach, we demonstrate the volumetric visualization of single microbubbles in a tissue-mimicking phantom as well as vasculature mapping in a live chicken embryo chorioallantoic membrane.
Collapse
|
44
|
Abstract
In this review, the roles of detectors in various medical imaging techniques were described. Ultrasound, optical (near-infrared spectroscopy and optical coherence tomography) and thermal imaging, magnetic resonance imaging, computed tomography, single-photon emission tomography, positron emission tomography were the imaging modalities considered. For each methodology, the state of the art of detectors mainly used in the systems was described, emphasizing new technologies applied.
Collapse
|
45
|
Guidi F, Tortoli P. Real-Time High Frame Rate Color Flow Mapping System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2193-2201. [PMID: 33690116 DOI: 10.1109/tuffc.2021.3064612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plane wave (PW) transmission (TX) can be profitably used to improve the performance of color flow mapping (CFM) systems by increasing the autocorrelation ensemble length (EL) and/or the frame rate (FR). Although high-end scanners tend to include imaging schemes using PW TX and parallel receive beams, high frame rate (HFR) CFM has been so far experimentally implemented mostly through research platforms that transmit PWs and beamform/process the received channel data off-line. In this article, full real-time implementation of PW CFM with continuous-time clutter filtering and extended FR/EL is reported. The field-programmable gate arrays (FPGAs) and digital signal processors (DSPs) onboard the ULA-OP 256 research scanner were programmed to perform high-speed parallel beamforming and autocorrelation-based CFM processing, respectively. Different strategies were tested, in which the TX of PWs for CFM is either continuous or interleaved with the TX of packets of B-mode pulses. A fourth-order Chebyshev continuous-time high-pass filter with programmable cutoff frequency was implemented and its clutter rejection performance was positively compared with that obtained when operating on packet data. CFM FRs up to 575 were obtained. The possibility of programming the autocorrelation EL up to 64 permitted to detect flow with high sensitivity and accuracy (average relative errors down to 0.4% ± 8.4%). In vivo HFR movies are presented, showing the dynamics of flow in the common carotid artery, which highlight the presence of secondary flow components.
Collapse
|
46
|
Mazierli D, Ramalli A, Boni E, Guidi F. Architecture for an Ultrasound Advanced Open Platform With an Arbitrary Number of Independent Channels. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:486-496. [PMID: 33956633 DOI: 10.1109/tbcas.2021.3077664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound open platforms are programmable and flexible tools for the development and test of novel methods. In most cases, they embed the electronics for the independent control of (maximum) 256 probe elements. However, a higher number of channels is needed for the control of 2-D array probes. This paper presents a system architecture that, through the hardware and software synchronization of multiple ULA-OP 256 scanners, may implement advanced open platforms with an arbitrary number of channels. The proposed solution needs a single personal computer, maintains real-time features, and preserves portability. A prototype demonstrator, composed of two ULA-OP 256 scanners connected to 512 elements of a matrix array, was implemented and tested according to different channel configurations. Experiments performed under MATLAB control confirmed that by doubling the number of elements (from 256 to 512) the signal-to-noise and contrast ratios improve by 9 dB and 3 dB, respectively. Furthermore, as a full 512-channel scanner, the demonstrator can produce real-time B-mode images at 18 Hz, high enough for probe positioning during acquisitions. Also, the demonstrator permitted the implementation of a new high frame rate, bi-plane, triplex modality. All probe elements are excited to simultaneously produce two planar, perpendicular diverging waves. Each scanner independently processes the echoes received by the 256 connected elements to beamform 1300 frames per second. For each insonified plane, good quality morphological (B-mode), qualitative (color flow-), and quantitative (spectral-) Doppler images are finally shown in real-time by a dedicated interface.
Collapse
|
47
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
48
|
Hardy E, Porée J, Belgharbi H, Bourquin C, Lesage F, Provost J. Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM). Phys Med Biol 2021; 66. [PMID: 33761492 DOI: 10.1088/1361-6560/abf1b6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
Ultrasound localization microscopy (ULM) has recently enabled the mapping of the cerebral vasculaturein vivowith a resolution ten times smaller than the wavelength used, down to ten microns. However, with frame rates up to 20000 frames per second, this method requires large amount of data to be acquired, transmitted, stored, and processed. The transfer rate is, as of today, one of the main limiting factors of this technology. Herein, we introduce a novel reconstruction framework to decrease this quantity of data to be acquired and the complexity of the required hardware by randomly subsampling the channels of a linear probe. Method performance evaluation as well as parameters optimization were conductedin silicousing the SIMUS simulation software in an anatomically realistic phantom and then compared toin vivoacquisitions in a rat brain after craniotomy. Results show that reducing the number of active elements deteriorates the signal-to-noise ratio and could lead to false microbubbles detections but has limited effect on localization accuracy. In simulation, the false positive rate on microbubble detection deteriorates from 3.7% for 128 channels in receive and 7 steered angles to 11% for 16 channels and 7 angles. The average localization accuracy ranges from 10.6μm and 9.93μm for 16 channels/3 angles and 128 channels/13 angles respectively. These results suggest that a compromise can be found between the number of channels and the quality of the reconstructed vascular network and demonstrate feasibility of performing ULM with a reduced number of channels in receive, paving the way for low-cost devices enabling high-resolution vascular mapping.
Collapse
Affiliation(s)
- Erwan Hardy
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Jonathan Porée
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Hatim Belgharbi
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Chloé Bourquin
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Frédéric Lesage
- Electrical Engineering Department, Polytechnique Montréal, Montréal, Canada.,Montréal Heart Institute, Montréal, Canada
| | - Jean Provost
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada.,Montréal Heart Institute, Montréal, Canada
| |
Collapse
|
49
|
Özdemir İ, Johnson K, Mohr-Allen S, Peak KE, Varner V, Hoyt K. Three-dimensional visualization and improved quantification with super-resolution ultrasound imaging - validation framework for analysis of microvascular morphology using a chicken embryo model. Phys Med Biol 2021; 66:085008. [PMID: 33765676 PMCID: PMC8463964 DOI: 10.1088/1361-6560/abf203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to improve the morphological analysis of microvascular networks depicted in three-dimensional (3D) super-resolution ultrasound (SR-US) images. This was supported by qualitative and quantitative validation by comparison to matched brightfield microscopy and traditional B-mode ultrasound (US) images. Contrast-enhanced US (CEUS) images were collected using a preclinical US scanner (Vevo 3100, FUJIFILM VisualSonics Inc.) equipped with an MX250 linear array transducer. CEUS imaging was performed after administration of a microbubble (MB) contrast agent into the vitelline network of a developing chicken embryo. Volume data was collected by mechanically scanning the US transducer throughout a tissue volume-of-interest in 90μm step increments. CEUS images were collected at each increment and stored as in-phase/quadrature data (2000 frames at 152 frames per sec). SR-US images were created for each cross-sectional plane using established data processing methods. All SR-US images were then used to reconstruct a final 3D volume for vessel diameter (VD) quantification and for surface rendering. VD quantification from the 3D SR-US data exhibited an average error of 6.1% ± 6.0% when compared with matched brightfield microscopy images, whereas measurements from B-mode US images had an average error of 77.1% ± 68.9%. Volume and surface renderings in 3D space enabled qualitative validation and improved visualization of small vessels below the axial resolution of the US system. Overall, 3D SR-US image reconstructions depicted the microvascular network of the developing chicken embryos. Improved visualization of isolated vessels and quantification of microvascular morphology from SR-US images achieved a considerably greater accuracy compared to B-mode US measurements.
Collapse
Affiliation(s)
- İpek Özdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Kenneth Johnson
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Shelby Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Victor Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
50
|
Huang C, Zhang W, Gong P, Lok UW, Tang S, Yin T, Zhang X, Zhu L, Sang M, Song P, Zheng R, Chen S. Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study. Phys Med Biol 2021; 66. [PMID: 33725687 DOI: 10.1088/1361-6560/abef45] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Non-invasive detection of microvascular alterations in deep tissuesin vivoprovides critical information for clinical diagnosis and evaluation of a broad-spectrum of pathologies. Recently, the emergence of super-resolution ultrasound localization microscopy (ULM) offers new possibilities for clinical imaging of microvasculature at capillary level. Currently, the clinical utility of ULM on clinical ultrasound scanners is hindered by the technical limitations, such as long data acquisition time, high microbubble (MB) concentration, and compromised tracking performance associated with low imaging frame-rate. Here we present a robust in-human ULM on a high frame-rate (HFR) clinical ultrasound scanner to achieve super-resolution microvessel imaging using a short acquisition time (<10 s). Ultrasound MB data were acquired from different human tissues, including a healthy liver and a diseased liver with acute-on-chronic liver failure, a kidney, a pancreatic tumor, and a breast mass using an HFR clinical scanner. By leveraging the HFR and advanced processing techniques including sub-pixel motion registration, MB signal separation, and Kalman filter-based tracking, MBs can be robustly localized and tracked for ULM under the circumstances of relatively high MB concentration associated with standard clinical MB administration and limited data acquisition time in humans. Subtle morphological and hemodynamic information in microvasculature were shown based on data acquired with single breath-hold and free-hand scanning. Compared with contrast-enhanced power Doppler generated based on the same MB dataset, ULM showed a 5.7-fold resolution improvement in a vessel based on a linear transducer, and provided a wide-range blood flow speed measurement that is Doppler angle-independent. Microvasculatures with complex hemodynamics can be well-differentiated at super-resolution in both normal and pathological tissues. This preliminary study implemented the ultrafast in-human ULM in various human tissues based on a clinical scanner that supports HFR imaging, indicating the potentials of the technique for various clinical applications. However, rigorous validation of the technique in imaging human microvasculature (especially for those tiny vessel structure), preferably with a gold standard, is still required.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, United States of America
| | - Wei Zhang
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, United States of America
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, United States of America
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, United States of America
| | - Tinghui Yin
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xirui Zhang
- Shenzhen Mindray Bio-Medical Electronics Co. Ltd, Shenzhen, Guangdong, People's Republic of China
| | - Lei Zhu
- Shenzhen Mindray Bio-Medical Electronics Co. Ltd, Shenzhen, Guangdong, People's Republic of China
| | - Maodong Sang
- Shenzhen Mindray Bio-Medical Electronics Co. Ltd, Shenzhen, Guangdong, People's Republic of China
| | - Pengfei Song
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rongqin Zheng
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|