1
|
Tang Y, Wang N, Dong Z, Lowerison M, Del Aguila A, Johnston N, Vu T, Ma C, Xu Y, Yang W, Song P, Yao J. Non-Invasive Deep-Brain Imaging With 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM). IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:994-1004. [PMID: 39383084 PMCID: PMC11892115 DOI: 10.1109/tmi.2024.3477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO , US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.
Collapse
|
2
|
Kim DW, Wrede P, Estrada H, Yildiz E, Lazovic J, Bhargava A, Razansky D, Sitti M. Hierarchical Nanostructures as Acoustically Manipulatable Multifunctional Agents in Dynamic Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404514. [PMID: 39400967 PMCID: PMC11636169 DOI: 10.1002/adma.202404514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Acoustic waves provide a biocompatible and deep-tissue-penetrating tool suitable for contactless manipulation in in vivo environments. Despite the prevalence of dynamic fluids within the body, previous studies have primarily focused on static fluids, and manipulatable agents in dynamic fluids are limited to gaseous core-shell particles. However, these gas-filled particles face challenges in fast-flow manipulation, complex setups, design versatility, and practical medical imaging, underscoring the need for effective alternatives. In this study, flower-like hierarchical nanostructures (HNS) into microparticles (MPs) are incorporated, and demonstrated that various materials fabricated as HNS-MPs exhibit effective and reproducible acoustic trapping within high-velocity fluid flows. Through simulations, it is validated that the HNS-MPs are drawn to the focal point by acoustic streaming and form a trap through secondary acoustic streaming at the tips of the nanosheets comprising the HNS-MPs. Furthermore, the wide range of materials and modification options for HNS, combined with their high surface area and biocompatibility, enable them to serve as acoustically manipulatable multimodal imaging contrast agents and microrobots. They can perform intravascular multi-trap maneuvering with real-time imaging, purification of wastewater flow, and highly-loaded drug delivery. Given the diverse HNS materials developed to date, this study extends their applications to acoustofluidic and biomedical fields.
Collapse
Affiliation(s)
- Dong Wook Kim
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Hector Estrada
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jelena Lazovic
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Aarushi Bhargava
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
3
|
Zhong W, Li T, Hou S, Zhang H, Li Z, Wang G, Liu Q, Song X. Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view. PHOTOACOUSTICS 2024; 38:100613. [PMID: 38764521 PMCID: PMC11101706 DOI: 10.1016/j.pacs.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Traditional methods under sparse view for reconstruction of photoacoustic tomography (PAT) often result in significant artifacts. Here, a novel image to image transformation method based on unsupervised learning artifact disentanglement network (ADN), named PAT-ADN, was proposed to address the issue. This network is equipped with specialized encoders and decoders that are responsible for encoding and decoding the artifacts and content components of unpaired images, respectively. The performance of the proposed PAT-ADN was evaluated using circular phantom data and the animal in vivo experimental data. The results demonstrate that PAT-ADN exhibits excellent performance in effectively removing artifacts. In particular, under extremely sparse view (e.g., 16 projections), structural similarity index and peak signal-to-noise ratio are improved by ∼188 % and ∼85 % in in vivo experimental data using the proposed method compared to traditional reconstruction methods. PAT-ADN improves the imaging performance of PAT, opening up possibilities for its application in multiple domains.
Collapse
Affiliation(s)
- Wenhua Zhong
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Tianle Li
- Nanchang University, Jiluan Academy, Nanchang, China
| | - Shangkun Hou
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Hongyu Zhang
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Zilong Li
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Guijun Wang
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Qiegen Liu
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Xianlin Song
- Nanchang University, School of Information Engineering, Nanchang, China
| |
Collapse
|
4
|
Hatami M, Özbek A, Deán‐Ben XL, Gutierrez J, Schill A, Razansky D, Larin KV. Noninvasive Tracking of Embryonic Cardiac Dynamics and Development with Volumetric Optoacoustic Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400089. [PMID: 38526147 PMCID: PMC11165471 DOI: 10.1002/advs.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Ali Özbek
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Xosé Luís Deán‐Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Jessica Gutierrez
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Alexander Schill
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Kirill V. Larin
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
- Department of Integrative PhysiologyBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
5
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
6
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
7
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
8
|
Pi-Martín I, Cebrecos A, García-Garrigós JJ, Jiménez N, Camarena F. Spatial resolution and reconstructed size accuracy using advanced beamformers in linear array-based PAT systems. PHOTOACOUSTICS 2023; 34:100576. [PMID: 38174104 PMCID: PMC10761304 DOI: 10.1016/j.pacs.2023.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Limitations associated with linear-array probes in photoacoustic tomography are partially compensated by using advanced beamformers that exploit the temporal and spatial coherence of the recorded signals, such as Delay Multiply and Sum (DMAS), Minimum Variance (MV) or coherence factor (CF), among others. However, their associated signal processing leads to an overestimation of the spatial resolution, as well as alterations in the reconstructed object size. Numerical and experimental results reported here support this hypothesis. First, we show that the Rayleigh criterion (RC) is the most suitable choice to characterize the spatial resolution instead of the Point Spread Function (PSF) when considering advanced beamformers. Then, we observe that several advanced beamformers fail to properly reconstruct target sizes slightly above the spatial resolution, underestimating their size. This work sheds light on the suitability of this type of beamformers combined with linear probes for determining sizes and morphology in photoacoustic images.
Collapse
Affiliation(s)
- Irene Pi-Martín
- Instituto de Instrumentación para Imagen Molecular (i3M), CSIC – Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
| | - Alejandro Cebrecos
- Instituto de Instrumentación para Imagen Molecular (i3M), CSIC – Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
| | - Juan J. García-Garrigós
- Instituto de Instrumentación para Imagen Molecular (i3M), CSIC – Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (i3M), CSIC – Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (i3M), CSIC – Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
| |
Collapse
|
9
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. LIGHT, SCIENCE & APPLICATIONS 2022; 11:321. [PMID: 36323662 PMCID: PMC9630534 DOI: 10.1038/s41377-022-01004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
Collapse
Affiliation(s)
- Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ying Jiang
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Linli Shi
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Runyu Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Nan Zheng
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
12
|
Cheng Z, Wang C, Wei B, Gan W, Zhou Q, Cui M. High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging. Brain Stimul 2022; 15:190-196. [PMID: 34952226 PMCID: PMC9169577 DOI: 10.1016/j.brs.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/09/2023] Open
Abstract
Neural modulation plays a major role in delineating the circuit mechanisms and serves as the cornerstone of neural interface technologies. Among the various modulation mechanisms, ultrasound enables noninvasive label-free deep access to mammalian brain tissue. To date, most if not all ultrasonic neural modulation implementations are based on ∼1 MHz carrier frequency. The long acoustic wavelength results in a spatially coarse modulation zone, often spanning over multiple function regions. The modulation of one function region is inevitably linked with the modulation of its neighboring regions. Moreover, the lack of in vivo cellular resolution cell-type-specific recording capabilities in most studies prevents the revealing of the genuine cellular response to ultrasound. To significantly increase the spatial resolution, we explored the application of high-frequency ultrasound. To investigate the neuronal response at cellular resolutions, we developed a dual-modality system combining in vivo two-photon calcium imaging and focused ultrasound modulation. The studies show that the ∼30 MHz ultrasound can suppress the neuronal activity in awake mice at 100-μm scale spatial resolutions, paving the way for high-resolution ultrasonic neural modulation. The dual-modality in vivo system validated through this study will serve as a general platform for studying the dynamics of various cell types in response to ultrasound.
Collapse
Affiliation(s)
- Zongyue Cheng
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenmao Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Bowen Wei
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA; Department of Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Estrada H, Robin J, Özbek A, Chen Z, Marowsky A, Zhou Q, Beck D, le Roy B, Arand M, Shoham S, Razansky D. High-resolution fluorescence-guided transcranial ultrasound mapping in the live mouse brain. SCIENCE ADVANCES 2021; 7:eabi5464. [PMID: 34878843 PMCID: PMC8654306 DOI: 10.1126/sciadv.abi5464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/19/2021] [Indexed: 05/28/2023]
Abstract
Understanding the physiological impact of transcranial ultrasound in rodent brains may offer an important preclinical model for human scale magnetic resonance–guided focused ultrasound methods. However, precision tools for high-resolution transcranial ultrasound targeting and real-time in vivo tracking of its effects at the mouse brain scale are currently lacking. We report a versatile bidirectional hybrid fluorescence-ultrasound (FLUS) system incorporating a 0.35-mm precision spherical-phased array ultrasound emission with a fiberscope-based wide-field fluorescence imaging. We show how the marriage between cortex-wide functional imaging and targeted ultrasound delivery can be used to transcranially map previously undocumented localized fluorescence events caused by reversible thermal processes and perform high-speed large-scale recording of neural activity induced by focused ultrasound. FLUS thus naturally harnesses the extensive toolbox of fluorescent tags and ultrasound’s localized bioeffects toward visualizing and causally perturbing a plethora of normal and pathophysiological processes in the living murine brain.
Collapse
Affiliation(s)
- Hector Estrada
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Justine Robin
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ali Özbek
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Beck
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Beau le Roy
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, New York, NY 10016, USA
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Lu M, Liu X, Liu C, Li B, Gu W, Jiang J, Ta D. Artifact removal in photoacoustic tomography with an unsupervised method. BIOMEDICAL OPTICS EXPRESS 2021; 12:6284-6299. [PMID: 34745737 PMCID: PMC8548009 DOI: 10.1364/boe.434172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging technology that can realize high contrast imaging with a penetration depth of the acoustic. Recently, deep learning (DL) methods have also been successfully applied to PAT for improving the image reconstruction quality. However, the current DL-based PAT methods are implemented by the supervised learning strategy, and the imaging performance is dependent on the available ground-truth data. To overcome the limitation, this work introduces a new image domain transformation method based on cyclic generative adversarial network (CycleGAN), termed as PA-GAN, which is used to remove artifacts in PAT images caused by the use of the limited-view measurement data in an unsupervised learning way. A series of data from phantom and in vivo experiments are used to evaluate the performance of the proposed PA-GAN. The experimental results show that PA-GAN provides a good performance in removing artifacts existing in photoacoustic tomographic images. In particular, when dealing with extremely sparse measurement data (e.g., 8 projections in circle phantom experiments), higher imaging performance is achieved by the proposed unsupervised PA-GAN, with an improvement of ∼14% in structural similarity (SSIM) and ∼66% in peak signal to noise ratio (PSNR), compared with the supervised-learning U-Net method. With an increasing number of projections (e.g., 128 projections), U-Net, especially FD U-Net, shows a slight improvement in artifact removal capability, in terms of SSIM and PSNR. Furthermore, the computational time obtained by PA-GAN and U-Net is similar (∼60 ms/frame), once the network is trained. More importantly, PA-GAN is more flexible than U-Net that allows the model to be effectively trained with unpaired data. As a result, PA-GAN makes it possible to implement PAT with higher flexibility without compromising imaging performance.
Collapse
Affiliation(s)
- Mengyang Lu
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Wenting Gu
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|