1
|
Zhu J, Li Z, Zou Y, Lu G, Ronca A, D’Amora U, Liang J, Fan Y, Zhang X, Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research.
Graphical Abstract
Collapse
|
2
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
3
|
Guo Y, Bian Z, Xu Q, Wen X, Kang J, Lin S, Wang X, Mi Z, Cui J, Zhang Z, Chen Z, Chen F. Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112469. [PMID: 34702544 DOI: 10.1016/j.msec.2021.112469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Tissue-engineered skin equivalent (TESE) is an optimized alternative for the treatment of skin defects. Designing and fabricating biomaterials with desired properties to load cells is critical for the approach. In this study, we aim to develop a novel TESE with recombinant human collagen (rHC) hydrogel and fibroblasts to improve full-thickness skin defect repair. First, the bioactive effect of rHC on fibroblast proliferation, migration and phenotype was assayed. The results showed that rHC had good biocompatibility and could stimulate fibroblasts migration and secrete various growth factors. Then, rHC was cross-linked with transglutaminase (TG) to prepare rHC hydrogel. Rheometer tests indicated that 10% rHC/TG hydrogel could reach a oscillate stress of 251 Pa and remained stable. Fibroblasts were seeded into rHC/TG hydrogel to prepare TESE. Confocal microscope and scanning electronic microscope observation showed that seeded fibroblasts survived well in the hydrogel. Finally, the therapeutic effect of the newly prepared TESE was tested in a mouse full-thickness skin defect model. The results demonstrated that TESE could significantly improve skin defect repair in vivo. Conclusively, TESE prepared from rHC and fibroblasts in this study exhibits great potential for clinical application in the future.
Collapse
Affiliation(s)
- Yayuan Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhengyue Bian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Qian Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaomin Wen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juan Kang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shuai Lin
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xue Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhaoxiang Mi
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhen Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
4
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 599] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
6
|
Chakkalakal SA, Heilig J, Baumann U, Paulsson M, Zaucke F. Impact of Arginine to Cysteine Mutations in Collagen II on Protein Secretion and Cell Survival. Int J Mol Sci 2018; 19:ijms19020541. [PMID: 29439465 PMCID: PMC5855763 DOI: 10.3390/ijms19020541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the X or Y position within the Gly-X-Y cause different phenotypes like Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC). We investigated the consequences of arginine to cysteine substitutions (X or Y position within the Gly-X-Y) towards the N and C terminus of the triple helix. Protein expression and its secretion trafficking were analyzed. Substitutions R75C, R134C and R704C did not alter the thermal stability with respect to wild type; R740C and R789C proteins displayed significantly reduced melting temperatures (Tm) affecting thermal stability. Additionally, R740C and R789C were susceptible to proteases; in cell culture, R789C protein was further cleaved by matrix metalloproteinases (MMPs) resulting in expression of only a truncated fragment affecting its secretion and intracellular retention. Retention of misfolded R740C and R789C proteins triggered an ER stress response leading to apoptosis of the expressing cells. Arginine to cysteine mutations towards the C-terminus of the triple helix had a deleterious effect, whereas mutations towards the N-terminus of the triple helix (R75C and R134C) and R704C had less impact.
Collapse
Affiliation(s)
- Salin A Chakkalakal
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany.
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
8
|
Wieczorek A, Rezaei N, Chan CK, Xu C, Panwar P, Brömme D, Merschrod S EF, Forde NR. Development and characterization of a eukaryotic expression system for human type II procollagen. BMC Biotechnol 2015; 15:112. [PMID: 26666739 PMCID: PMC4678704 DOI: 10.1186/s12896-015-0228-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Results Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Conclusions Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Wieczorek
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Naghmeh Rezaei
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Clara K Chan
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Present Address: Department of Bioengineering, University of California at Los Angeles, Los Angeles, USA
| | - Chuan Xu
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada.,Present Address: Green Innovative Technologies R&D Centre Ltd, Vancouver, Canada
| | - Preety Panwar
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Erika F Merschrod S
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
9
|
Tuning cellular response by modular design of bioactive domains in collagen. Biomaterials 2015; 53:309-17. [PMID: 25890729 DOI: 10.1016/j.biomaterials.2015.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 02/02/2023]
Abstract
Collagen's ability to direct cellular behavior suggests that redesigning it at the molecular level could enable manipulation of cells residing in an engineered microenvironment. However, the fabrication of full-length collagen mimics of specified sequence de novo has been elusive, and applications still rely on material from native tissues. Using a bottom-up strategy, we synthesized modular genes and expressed recombinant human collagen variants in Saccharomyces cerevisiae. The resulting biopolymers contained prescribed cell-interaction sites that can direct and tune cellular responses, with retention of the important triple-helical self-assembled structure. Removal of the native integrin-binding sites GROGER, GAOGER, GLOGEN, GLKGEN, and GMOGER in human collagen III yielded collagen that did not support adhesion of mammalian cells. Introduction of GFOGER sequences to this scaffold at specified locations and densities resulted in varying degrees of cellular attachment. The recruitment of focal adhesion complexes on the different collagens ranged from a 96% reduction to a 56% increase over native collagen I. Adhesion to the GFOGER-containing variants was entirely dependent and partially dependent on the β1 and α2 subunits of integrin, respectively, with cell adhesion on average reduced by 86% with anti-β1 and 38% with anti-α2 integrin antibody incubation. Results support the importance of local context in collagen-cell interactions. The investigation demonstrates the flexibility of this approach to introduce targeted changes throughout the collagen polymer for producing fully-prescribed variants with tailored properties.
Collapse
|
10
|
Que R, Mohraz A, Da Silva NA, Wang SW. Expanding functionality of recombinant human collagen through engineered non-native cysteines. Biomacromolecules 2014; 15:3540-9. [PMID: 25144412 DOI: 10.1021/bm500735d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen is the most abundant protein in extracellular matrices and is commonly used as a tissue engineering scaffold. However, collagen and other biopolymers from native sources can exhibit limitations when tuning mechanical and biological properties. Cysteines do not naturally occur within the triple-helical region of any native collagen. We utilized a novel modular synthesis strategy to fabricate variants of recombinant human collagen that contained 2, 4, or 8 non-native cysteines at precisely defined locations within each biopolymer. This bottom-up approach introduced capabilities using sulfhydryl chemistry to form hydrogels and immobilize bioactive factors. Collagen variants retained their triple-helical structure and supported cellular adhesion. Hydrogels were characterized using rheology, and the storage moduli were comparable to fibrillar collagen gels at similar concentrations. Furthermore, the introduced cysteines functioned as anchoring sites, with TGF-β1-conjugated collagens promoting myofibroblast differentiation. This approach demonstrates the feasibility to produce custom-designed collagens with chemical functionality not available from native sources.
Collapse
Affiliation(s)
- Richard Que
- Department of Biomedical Engineering and ‡Department of Chemical Engineering and Materials Science, University of California , Irvine, California 92697, United States
| | | | | | | |
Collapse
|
11
|
Ramshaw JAM, Werkmeister JA, Dumsday GJ. Bioengineered collagens: emerging directions for biomedical materials. Bioengineered 2014; 5:227-33. [PMID: 24717980 DOI: 10.4161/bioe.28791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.
Collapse
|
12
|
Jabaiah A, Wang X, Raman SK, Ragan R, Da Silva NA, Wang SW. Nanoscale architecture and cellular adhesion of biomimetic collagen substrates. J Biomater Appl 2013; 28:1354-65. [DOI: 10.1177/0885328213508328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ability to engineer bioactive sites within the biopolymer collagen has significant potential to dictate cellular microenvironments and processes. We have developed a novel recombinant DNA platform that enables such molecular-level control over this important material. In this investigation, we demonstrated the production of synthetic human collagen using yeast strains that were engineered with human prolyl hydroxylase α and β genes integrated into the genome and a codon-optimized collagen gene carried on a plasmid. To understand the extent to which this synthetic collagen can mimic native human collagen, we examined the relationships between the structural topology and physical stability with the ability to support adhesion of HT-1080 cells. Characterization of these biopolymers included evaluation using circular dichroism spectroscopy, atomic force microscopy, and MTT metabolic activity assays. Although the apparent melting temperatures of the recombinant collagens were ∼3–5℃ less than native sources, the recombinant and native collagens exhibited comparable triple helical structure, polymeric dimensions, adsorption on polystyrene, and cellular adhesion properties below their respective melting temperature values. These results support the feasibility of producing molecularly-engineered collagens that can mimic native substrates for therapeutic and tissue engineering applications.
Collapse
Affiliation(s)
- Abeer Jabaiah
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Xi Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Senthil Kumar Raman
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Regina Ragan
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Gronau G, Krishnaji ST, Kinahan ME, Giesa T, Wong JY, Kaplan DL, Buehler MJ. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials 2012; 33:8240-55. [PMID: 22938765 DOI: 10.1016/j.biomaterials.2012.06.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 02/08/2023]
Abstract
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.
Collapse
Affiliation(s)
- Greta Gronau
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Chan SWP, Hung SP, Raman SK, Hatfield GW, Lathrop RH, Da Silva NA, Wang SW. Recombinant human collagen and biomimetic variants using a de novo gene optimized for modular assembly. Biomacromolecules 2010; 11:1460-9. [PMID: 20481478 DOI: 10.1021/bm100052y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A collagen-mimetic polymer that can be easily engineered with specific cell-responsive and mechanical properties would be of significant interest for fundamental cell-matrix studies and applications in regenerative medicine. However, oligonucleotide-based synthesis of full-length collagen has been encumbered by the characteristic glycine-X-Y sequence repetition, which promotes mismatched oligonucleotide hybridizations during de novo gene assembly. In this work, we report a novel, modular synthesis strategy that yields full-length human collagen III and specifically defined variants. We used a computational algorithm that applies codon degeneracy to design oligonucleotides that favor correct hybridizations while disrupting incorrect ones for gene synthesis. The resulting recombinant polymers were expressed in Saccharomyces cerevisiae engineered with prolyl-4-hydroxylase. Our modular approach enabled mixing-and-matching domains to fabricate different combinations of collagen variants that contained different secretion signals at the N-terminus and cysteine residues imbedded within the triple-helical domain at precisely defined locations. This work shows the flexibility of our strategy for designing and assembling specifically tailored biomimetic collagen polymers with re-engineered properties.
Collapse
Affiliation(s)
- Sam Wei Polly Chan
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Chung HJ, Jensen DA, Gawron K, Steplewski A, Fertala A. R992C (p.R1192C) Substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J Mol Biol 2009; 390:306-18. [PMID: 19433093 PMCID: PMC2749300 DOI: 10.1016/j.jmb.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 11/18/2022]
Abstract
We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant molecules showed that excessive accumulation of thermolabile collagen II was associated with the activation of an "unfolded protein response" and an increase in apoptosis of host cells. Collectively, these data suggest that molecular mechanisms of SED may be driven not only by structural changes in the architecture of extracellular collagenous matrices, but also by intracellular processes activated by the presence of mutant collagen II molecules.
Collapse
Affiliation(s)
- Hye Jin Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
17
|
Kyle S, Aggeli A, Ingham E, McPherson MJ. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 2009; 27:423-33. [PMID: 19497631 PMCID: PMC2828541 DOI: 10.1016/j.tibtech.2009.04.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 11/24/2022]
Abstract
Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
18
|
Peng YY, Werkmeister JA, Vaughan PR, Ramshaw JAM. Constructs for the expression of repeating triple-helical protein domains. Biomed Mater 2008. [DOI: 10.1088/1748-6041/4/1/015006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Witecka J, Auguściak-Duma AM, Kruczek A, Szydło A, Lesiak M, Krzak M, Pietrzyk JJ, Männikkö M, Sieroń AL. Two novel COL1A1 mutations in patients with osteogenesis imperfecta (OI) affect the stability of the collagen type I triple-helix. J Appl Genet 2008; 49:283-95. [PMID: 18670065 DOI: 10.1007/bf03195625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a bone dysplasia caused by mutations in the COL1A1 and COL1A2 genes. Although the condition has been intensely studied for over 25 years and recently over 800 novel mutations have been published, the relation between the location of mutations and clinical manifestation is poorly understood. Here we report missense mutations in COL1A1 of several OI patients. Two novel mutations were found in the D1 period. One caused a substitution of glycine 200 by valine at the N-terminus of D1 in OI type I/IV, lowering collagen stability by 50% at 34 degrees C. The other one was a substitution of valine 349 by phenylalanine at the C-terminus of D1 in OI type I, lowering collagen stability at 37.5 degrees C. Two other mutations, reported before, changed amino residues in D4. One was a lethal substitution changing glycine 866 to serine in genetically identical twins with OI type II. That mutated amino acid was near the border of D3 and D4. The second mutation changed glycine 1040 to serine located at the border of D4 and D0.4, in a proband manifesting OI type III, and lowered collagen stability at 39 degrees C (2 degrees C lower than normal). Our results confirm the hypothesis on a critical role of the D1 and D4 regions in stabilization of the collagen triple-helix. The defect in D1 seemed to produce a milder clinical type of OI, whereas the defect in the C-terminal end of collagen type caused the more severe or lethal types of OI.
Collapse
Affiliation(s)
- Joanna Witecka
- Department of General and Molecular Biology and Genetics, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Steplewski A, Hintze V, Fertala A. Molecular basis of organization of collagen fibrils. J Struct Biol 2006; 157:297-307. [PMID: 17126032 DOI: 10.1016/j.jsb.2006.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/25/2006] [Accepted: 10/05/2006] [Indexed: 11/29/2022]
Abstract
The collagen fibrils are formed by self-assembly of individual collagen molecules, but the mechanism that drives their orderly packing during fibril formation is not clearly defined. To identify structural determinants critical for the D-periodic alignment of collagen molecules we employed three sets of genetically engineered collagen II variants: (i) a set in which domains corresponding to the specific D periods have been purposely deleted, (ii) a set of collagen variants consisting of tandem repeats of a specific D period, and (iii) a set lacking definite fragments of the D4 period. All collagen variants were analyzed for their ability to assemble into D-periodic fibrils. Even though all genetically engineered collagen variants differ significantly from the wild-type collagen II, most of them were able to form filamentous structures. The D-periodic banding pattern, an indication of the staggered arrangement of collagen monomers, however, occurred only when the D1, D4, and D0.4 domains of interacting collagen monomers could potentially cluster together to form a triad through telopeptide-mediated binding. Our results identify a critical step in the formation of collagenous matrices and provide experimental evidence for the active involvement of the N-terminal and C-terminal regions of fibrillar collagens in this process.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, BLSB, Room 424, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
21
|
Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006; 76:551-60. [PMID: 16278869 DOI: 10.1002/jbm.a.30551] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagens are attractive proteins as materials for tissue engineering. Over the last decade, significant progress has been made in developing technologies for large-scale production of native-like human recombinant collagens. Yet, the rational design of customized collagen-like proteins for smart biomaterials to enhance the quality of engineered tissues has not been explored. We mapped the D4 domain of human collagen II as most critical for supporting migration of chondrocytes and used this information to genetically engineer a collagen-like protein consisting of tandem repeats of the D4 domain (mD4 collagen). This novel collagen has been utilized to fabricate a scaffold for support of chondrocytes. We determined superior qualities of cartilaginous constructs created by chondrocytes cultured in scaffolds containing the mD4 collagen in comparison to those formed by chondrocytes cultured in bare scaffolds or those coated with wild-type collagen II. Our results are a first attempt to rationally engineer collagen-like proteins with characteristics tailored for specific needs of cartilage engineering and provide a basis for rational engineering of similar proteins for a variety of biomedical applications.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
22
|
Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 2005; 344:993-1003. [PMID: 15544808 DOI: 10.1016/j.jmb.2004.09.089] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022]
Abstract
The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.
Collapse
Affiliation(s)
- Birgit Leitinger
- Department of Medicine, The Sackler Institute for Muscular Skeletal Research, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | | | |
Collapse
|
23
|
Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A. Thermostability Gradient in the Collagen Triple Helix Reveals its Multi-domain Structure. J Mol Biol 2004; 338:989-98. [PMID: 15111062 DOI: 10.1016/j.jmb.2004.03.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|