1
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
3
|
Liu Y, Zhang M, Tsai CJ, Jang H, Nussinov R. Allosteric regulation of autoinhibition and activation of c-Abl. Comput Struct Biotechnol J 2022; 20:4257-4270. [PMID: 36051879 PMCID: PMC9399898 DOI: 10.1016/j.csbj.2022.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
c-Abl, a non-receptor tyrosine kinase, regulates cell growth and survival in healthy cells and causes chronic myeloid leukemia (CML) when fused by Bcr. Its activity is blocked in the assembled inactive state, where the SH3 and SH2 domains dock into the kinase domain, reducing its conformational flexibility, resulting in the autoinhibited state. It is active in an extended 'open' conformation. Allostery governs the transitions between the autoinhibited and active states. Even though experiments revealed the structural hallmarks of the two states, a detailed grasp of the determinants of c-Abl autoinhibition and activation at the atomic level, which may help innovative drug discovery, is still lacking. Here, using extensive molecular dynamics simulations, we decipher exactly how these determinants regulate it. Our simulations confirm and extend experimental data that the myristoyl group serves as the switch for c-Abl inhibition/activation. Its dissociation from the kinase domain promotes the SH2-SH3 release, initiating c-Abl activation. We show that the precise SH2/N-lobe interaction is required for full activation of c-Abl. It stabilizes a catalysis-favored conformation, priming it for catalytic action. Bcr-Abl allosteric drugs elegantly mimic the endogenous myristoyl-mediated autoinhibition state of c-Abl 1b. Allosteric activating mutations shift the ensemble to the active state, blocking ATP-competitive drugs. Allosteric drugs alter the active-site conformation, shifting the ensemble to re-favor ATP-competitive drugs. Our work provides a complete mechanism of c-Abl activation and insights into critical parameters controlling at the atomic level c-Abl inactivation, leading us to propose possible strategies to counter reemergence of drug resistance.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Wu K, Wu H, Lyu W, Kim Y, Furdui CM, Anderson KS, Koleske AJ. Platelet-derived growth factor receptor beta activates Abl2 via direct binding and phosphorylation. J Biol Chem 2021; 297:100883. [PMID: 34144039 PMCID: PMC8259415 DOI: 10.1016/j.jbc.2021.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Abl family kinases are nonreceptor tyrosine kinases activated by diverse cellular stimuli that regulate cytoskeleton organization, morphogenesis, and adhesion. The catalytic activity of Abl family kinases is tightly regulated in cells by a complex set of intramolecular and intermolecular interactions and post-translational modifications. For example, the platelet-derived growth factor receptor beta (PDGFRβ), important for cell proliferation and chemotaxis, is a potent activator of Abl family kinases. However, the molecular mechanism by which PDGFRβ engages and activates Abl family kinases is not known. We show here that the Abl2 Src homology 2 domain directly binds to phosphotyrosine Y771 in the PDGFRβ cytoplasmic domain. PDGFRβ directly phosphorylates multiple novel sites on the N-terminal half of Abl2, including Y116, Y139, and Y161 within the Src homology 3 domain, and Y299, Y303, and Y310 on the kinase domain. Y116, Y161, Y272, and Y310 are all located at or near the Src homology 3/Src homology 2-kinase linker interface, which helps maintain Abl family kinases in an autoinhibited conformation. We also found that PDGFRβ-mediated phosphorylation of Abl2 in vitro activates Abl2 kinase activity, but mutation of these four tyrosines (Y116, Y161, Y272, and Y310) to phenylalanine abrogated PDGFRβ-mediated activation of Abl2. These findings reveal how PDGFRβ engages and phosphorylates Abl2 leading to activation of the kinase, providing a framework to understand how growth factor receptors engage and activate Abl family kinases.
Collapse
Affiliation(s)
- Kuanlin Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Youngjoo Kim
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Karen S Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Sivaraman T. A Review on Computational Approaches for Analyzing Hydrogen- Deuterium (H/D) Exchange of Proteins. Protein Pept Lett 2021; 28:372-381. [PMID: 33006533 DOI: 10.2174/0929866527666201002145859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Native state Hydrogen-Deuterium (H/D) exchange method has been used to study the structures and the unfolding pathways for quite a number of proteins. The H/D exchange method is generally monitored using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) techniques. NMR-assisted H/D exchange methods primarily monitor the residue level fluctuation of proteins, whereas MS-assisted H/D exchange methods analyze multifold ensemble conformations of proteins. In this connection, quite a large number of computational tools and algorithms have been developed for processing and analyzing huge amount of the H/D exchange data generated from these techniques. In this review, most of the freely available computational tools associated with the H/D exchange of proteins have been comprehensively reviewed and scopes to improve/ develop novel computational approaches for analyzing the H/D exchange data of proteins have also been brought into fore.
Collapse
Affiliation(s)
- Thirunavukkarasu Sivaraman
- Drug Design and Discovery Lab, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore - 641021, Tamil Nadu, India
| |
Collapse
|
6
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
7
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
8
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
9
|
Kwon A, John M, Ruan Z, Kannan N. Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. J Biol Chem 2018; 293:5102-5116. [PMID: 29432127 DOI: 10.1074/jbc.ra117.001296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
Ephrin (Eph) receptor tyrosine kinases have evolutionarily diverged from other tyrosine kinases to respond to specific activation and regulatory signals that require close coupling of kinase catalytic and regulatory functions. However, the evolutionary basis for such functional coupling is not fully understood. We employed an evolutionary systems approach involving statistical mining of large sequence and structural data sets to define the hallmarks of Eph kinase evolution and functional specialization. We found that some of the most distinguishing Eph-specific residues structurally tether the flanking juxtamembrane and sterile α motif (SAM) linker regions to the kinase domain, and substitutions of these residues in EphA3 resulted in faster kinase activation. We report for the first time that the SAM domain linker is functionally coupled to the juxtamembrane through co-conserved residues in the kinase domain and that together these residues provide a structural framework for coupling catalytic and regulatory functions. The unique organization of Eph-specific tethering networks and the identification of other Eph-specific sequence features of unknown functions provide new hypotheses for future functional studies and new clues to disease mutations altering Eph kinase-specific functions.
Collapse
Affiliation(s)
- Annie Kwon
- From the Institute of Bioinformatics and
| | - Mihir John
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Zheng Ruan
- From the Institute of Bioinformatics and
| | - Natarajan Kannan
- From the Institute of Bioinformatics and .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
10
|
The stress sigma factor of RNA polymerase RpoS/σS is a solvent-exposed open molecule in solution. Biochem J 2018; 475:341-354. [DOI: 10.1042/bcj20170768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
In bacteria, one primary and multiple alternative sigma (σ) factors associate with the RNA polymerase core enzyme (E) to form holoenzymes (Eσ) with different promoter recognition specificities. The alternative σ factor RpoS/σS is produced in stationary phase and under stress conditions and reprograms global gene expression to promote bacterial survival. To date, the three-dimensional structure of a full-length free σ factor remains elusive. The current model suggests that extensive interdomain contacts in a free σ factor result in a compact conformation that masks the DNA-binding determinants of σ, explaining why a free σ factor does not bind double-stranded promoter DNA efficiently. Here, we explored the solution conformation of σS using amide hydrogen/deuterium exchange coupled with mass spectrometry, NMR, analytical ultracentrifugation and molecular dynamics. Our data strongly argue against a compact conformation of free σS. Instead, we show that σS adopts an open conformation in solution in which the folded σ2 and σ4 domains are interspersed by domains with a high degree of disorder. These findings suggest that E binding induces major changes in both the folding and domain arrangement of σS and provide insights into the possible mechanisms of regulation of σS activity by its chaperone Crl.
Collapse
|
11
|
Saleh T, Rossi P, Kalodimos CG. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Nat Struct Mol Biol 2017; 24:893-901. [PMID: 28945248 PMCID: PMC5745040 DOI: 10.1038/nsmb.3470] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The activity of protein kinases is often regulated in an intramolecular fashion by signaling domains, which feature several phosphorylation or protein-docking sites. How kinases integrate such distinct binding and signaling events to regulate their activities is unclear, especially in quantitative terms. We used NMR spectroscopy to show how structural elements within the Abl regulatory module (RM) synergistically generate a multilayered allosteric mechanism that enables Abl kinase to function as a finely tuned switch. We dissected the structure and energetics of the regulatory mechanism to precisely measure the effects of various activating or inhibiting stimuli on Abl kinase activity. The data provide a mechanistic basis explaining genetic observations and reveal a previously unknown activator region within Abl. Our findings show that drug-resistance mutations in the Abl RM exert their allosteric effect by promoting the activated state of Abl and not by decreasing the drug affinity for the kinase.
Collapse
Affiliation(s)
- Tamjeed Saleh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Heinzl GA, Huang W, Yu W, Giardina BJ, Zhou Y, MacKerell AD, Wilks A, Xue F. Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of Pseudomonas aeruginosa. J Med Chem 2016; 59:6929-42. [PMID: 27353344 DOI: 10.1021/acs.jmedchem.6b00757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New therapeutic targets are required to combat multidrug resistant infections, such as the iron-regulated heme oxygenase (HemO) of Pseudomonas aeruginosa, due to links between iron and virulence and dependence on heme as an iron source during infection. Herein we report the synthesis and activity of a series of iminoguanidine-based inhibitors of HemO. Compound 23 showed a binding affinity of 5.7 μM and an MIC50 of 52.3 μg/mL against P. aeruginosa PAO1. An in cellulo activity assay was developed by coupling HemO activity to a biliverdin-IXα-dependent infrared fluorescent protein, in which compound 23 showed an EC50 of 11.3 μM. The compounds showed increased activity against clinical isolates of P. aeruginosa, further confirming the target pathway. This class of inhibitors acts by binding to an allosteric site; the novel binding site is proposed in silico and supported by saturation transfer difference (STD) NMR as well as by hydrogen exchange mass spectrometry (HXMS).
Collapse
Affiliation(s)
- Geoffrey A Heinzl
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Weiliang Huang
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Wenbo Yu
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Bennett J Giardina
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Yue Zhou
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Angela Wilks
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Roberts JM, Tarafdar S, Joseph RE, Andreotti AH, Smithgall TE, Engen JR, Wales TE. Dynamics of the Tec-family tyrosine kinase SH3 domains. Protein Sci 2016; 25:852-64. [PMID: 26808198 DOI: 10.1002/pro.2887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 11/10/2022]
Abstract
The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X-ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src-family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src-family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher-order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra- and intermolecular binding assays of proteins containing the domains.
Collapse
Affiliation(s)
- Justin M Roberts
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Sreya Tarafdar
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Thomas E Smithgall
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
14
|
Tse A, Verkhivker GM. Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality. J Chem Inf Model 2015; 55:1645-62. [DOI: 10.1021/acs.jcim.5b00240] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences,
Department of Computational Sciences, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences,
Department of Computational Sciences, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
15
|
Grover P, Shi H, Baumgartner M, Camacho CJ, Smithgall TE. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function. PLoS One 2015. [PMID: 26222440 PMCID: PMC4519180 DOI: 10.1371/journal.pone.0133590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important kinase system.
Collapse
Affiliation(s)
- Prerna Grover
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Engen JR, Wales TE. Analytical Aspects of Hydrogen Exchange Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:127-48. [PMID: 26048552 PMCID: PMC4989240 DOI: 10.1146/annurev-anchem-062011-143113] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115;
| | | |
Collapse
|
18
|
Hrincius ER, Liedmann S, Anhlan D, Wolff T, Ludwig S, Ehrhardt C. Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cell Microbiol 2014; 16:1854-74. [PMID: 25052580 DOI: 10.1111/cmi.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.
Collapse
Affiliation(s)
- Eike R Hrincius
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | | | | | | | | | | |
Collapse
|
19
|
Fang J, Nevin P, Kairys V, Venclovas Č, Engen JR, Beuning PJ. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics. Structure 2014; 22:572-581. [PMID: 24613485 DOI: 10.1016/j.str.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 02/06/2023]
Abstract
The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Visvaldas Kairys
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Corbi-Verge C, Marinelli F, Zafra-Ruano A, Ruiz-Sanz J, Luque I, Faraldo-Gómez JD. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap. Proc Natl Acad Sci U S A 2013; 110:E3372-80. [PMID: 23959873 PMCID: PMC3767523 DOI: 10.1073/pnas.1303966110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ana Zafra-Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. INT REV PHYS CHEM 2013; 32:96-127. [PMID: 23682200 DOI: 10.1080/0144235x.2012.751175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem 2013; 288:5443-50. [PMID: 23316053 DOI: 10.1074/jbc.r112.438382] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity.
Collapse
Affiliation(s)
- Shoghag Panjarian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
23
|
West GM, Pascal BD, Ng LM, Soon FF, Melcher K, Xu HE, Chalmers MJ, Griffin PR. Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities. Structure 2013; 21:229-35. [PMID: 23290725 DOI: 10.1016/j.str.2012.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/16/2012] [Accepted: 12/08/2012] [Indexed: 01/04/2023]
Abstract
Plants regulate growth and respond to environmental stress through abscisic acid (ABA) regulated pathways, and as such these pathways are of primary interest for biological and agricultural research. The ABA response is first perceived by the PYR/PYL/RCAR class of START protein receptors. These ABA activated receptors disrupt phosphatase inhibition of Snf1-related kinases (SnRKs), enabling kinase signaling. Here, insights into the structural mechanism of proteins in the ABA signaling pathway (the ABA receptor PYL2, HAB1 phosphatase, and two kinases, SnRK2.3 and 2.6) are discerned through hydrogen/deuterium exchange (HDX) mass spectrometry. HDX on the phosphatase in the presence of binding partners provides evidence for receptor-specific conformations involving the Trp385 "lock" that is necessary for signaling. Furthermore, kinase activity is linked to a more stable "closed" conformation. These solution-based studies complement the static crystal structures and provide a more detailed understanding of the ABA signaling pathway.
Collapse
Affiliation(s)
- Graham M West
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
DNAs and proteins are major classes of biomolecules that differ in many aspects. However, a considerable number of their members also share a common architectural feature that enables the assembly of multi-protein complexes and thereby permits the effective processing of signals: loop structures of substantial sizes. Here we briefly review a few representative examples and suggest a functional classification of different types of loop structures. In proteins, these loops occur in protein regions classified as intrinsically disordered. Studying such loops, their binders and their interactions with other loops should reveal much about cellular information computation and signaling network architectures. It is also expected to provide critical information for synthetic biologists and bioengineers.
Collapse
Affiliation(s)
- Stephan M Feller
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | | |
Collapse
|
25
|
Marcsisin SR, Narute PS, Emert-Sedlak LA, Kloczewiak M, Smithgall TE, Engen JR. On the solution conformation and dynamics of the HIV-1 viral infectivity factor. J Mol Biol 2011; 410:1008-22. [PMID: 21763503 PMCID: PMC3139145 DOI: 10.1016/j.jmb.2011.04.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) has evolved a cunning mechanism to circumvent the antiviral activity of the APOBEC3 family of host cell enzymes. HIV-1 Vif [viral (also called virion) infectivity factor], one of several HIV accessory proteins, targets APOBEC3 proteins for proteasomal degradation and downregulates their expression at the mRNA level. Despite the importance of Vif for HIV-1 infection, there is little conformational data on Vif alone or in complex with other cellular factors due to incompatibilities with many structural techniques and difficulties in producing suitable quantities of the protein for biophysical analysis. As an alternative, we have turned to hydrogen exchange mass spectrometry (HX MS), a conformational analysis method that is well suited for proteins that are difficult to study using X-ray crystallography and/or NMR. HX MS was used to probe the solution conformation of recombinant full-length HIV-1 Vif. Vif specifically interacted with the previously identified binding partner Hck and was able to cause kinase activation, suggesting that the Vif studied by HX MS retained a biochemically competent conformation relevant to Hck interaction. HX MS analysis of Vif alone revealed low deuteration levels in the N-terminal portion, indicating that this region contained structured or otherwise protected elements. In contrast, high deuteration levels in the C-terminal portion of Vif indicated that this region was likely unstructured in the absence of cellular interacting proteins. Several regions within Vif displayed conformational heterogeneity in solution, including the APOBEC3G/F binding site and the HCCH zinc finger. Taken together, these HX MS results provide new insights into the solution conformation of Vif.
Collapse
Affiliation(s)
- Sean R. Marcsisin
- Department of Chemistry & Chemical Biology and the Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Purushottam S. Narute
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology and the Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
26
|
Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW, Engen JR. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol Cell Proteomics 2011; 10:M111.010876. [PMID: 21715319 DOI: 10.1074/mcp.m111.010876] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.
Collapse
Affiliation(s)
- Christopher R Morgan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chalmers MJ, Busby SA, Pascal BD, West GM, Griffin PR. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev Proteomics 2011; 8:43-59. [PMID: 21329427 DOI: 10.1586/epr.10.109] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.
Collapse
Affiliation(s)
- Michael J Chalmers
- The Scripps Research Molecular Screening Center, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
28
|
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput Biol 2009; 5:e1000487. [PMID: 19714203 PMCID: PMC2722018 DOI: 10.1371/journal.pcbi.1000487] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. Mutations in protein kinases are implicated in many cancers, and an important goal of cancer research is to elucidate molecular effects of mutated kinase genes that contribute to tumorigenesis. We present a comprehensive computational study of molecular mechanisms of kinase activation by cancer-causing mutations. Using a battery of computational approaches, we have systematically investigated the effects of clinically important cancer mutants on dynamics of the ABL and EGFR kinase domains and regulatory multi-protein complexes. The results of this study have illuminated common and specific features of the activation mechanism in the normal and oncogenic forms of ABL and EGFR. We have found that mutants with the higher oncogenic activity may cause a partial destabilization of the inactive structure, while simultaneously facilitating activating transitions and the enhanced stabilization of the active conformation. Our results provided useful insights into thermodynamic and mechanistic aspects of the activation mechanism and highlighted the role of structurally distinct conformational states in kinase regulation. Ultimately, molecular signatures of activation mechanisms in the normal and oncogenic states may aid in the correlation of mutational effects with clinical outcomes and facilitate the development of therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
|
29
|
Conformational disturbance in Abl kinase upon mutation and deregulation. Proc Natl Acad Sci U S A 2009; 106:1386-91. [PMID: 19164531 DOI: 10.1073/pnas.0811912106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein dynamics are inextricably linked to protein function but there are few techniques that allow protein dynamics to be conveniently interrogated. For example, mutations and translocations give rise to aberrant proteins such as Bcr-Abl where changes in protein conformation and dynamics are believed to result in deregulated kinase activity that provides the oncogenic signal in chronic myelogeous leukemia. Although crystal structures of the down-regulated c-Abl kinase core have been reported, the conformational impact of mutations that render Abl resistant to small-molecule kinase inhibitors are largely unknown as is the allosteric interplay of the various regulatory elements of the protein. Hydrogen exchange mass spectrometry (HX MS) was used to compare the conformations of wild-type Abl with a nonmyristoylated form and with 3 clinically relevant imatinib resistance mutants (T315I, Y253H and E255V). A HX-resistant core localized to the interface between the SH2 and kinase domains, a region known to be important for maintaining the down-regulated state. Conformational differences upon demyristoylation were consistent with the SH2 domain moving to the top of the small lobe of the kinase domain as a function of activation. There were conformational changes in the T315I mutant but, surprisingly, no major changes in conformation were detected in either the Y253H or the E255V mutants. Taken together, these results provide evidence that allosteric interactions and conformational changes play a major role in Abl kinase regulation in solution. Similar analyses could be performed on any protein to provide mechanistic details about conformational changes and protein function.
Collapse
|
30
|
Chen S, O'Reilly LP, Smithgall TE, Engen JR. Tyrosine phosphorylation in the SH3 domain disrupts negative regulatory interactions within the c-Abl kinase core. J Mol Biol 2008; 383:414-23. [PMID: 18775435 DOI: 10.1016/j.jmb.2008.08.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Recent studies have shown that trans-phosphorylation of the Abl SH3 domain at Tyr89 by Src-family kinases is required for the full transforming activity of Bcr-Abl. Tyr89 localizes to a binding surface of the SH3 domain that engages the SH2-kinase linker in the crystal structure of the c-Abl core. Displacement of SH3 from the linker is likely to influence efficient downregulation of c-Abl. Hydrogen-deuterium exchange (HX) and mass spectrometry (MS) were used to investigate whether Tyr89 phosphorylation affects the ability of the SH3 domain to interact intramolecularly with the SH2-kinase linker in cis as well as other peptide ligands in trans. HX MS analysis of SH3 binding showed that when various Abl constructs were phosphorylated at Tyr89 by the Src-family kinase Hck, SH3 was unable to engage a high-affinity ligand in trans and that interaction with the linker in cis was reduced dramatically in a construct containing the SH3 and SH2 domains plus the linker. Phosphorylation of the Abl SH3 domain on Tyr89 also interfered with binding to the negative regulatory protein Abi-1 in trans. Site-directed mutagenesis of Tyr89 and Tyr245, another tyrosine phosphorylation site located in the linker that may also influence SH3 binding, implicated Tyr89 as the key residue necessary for disrupting regulation after phosphorylation. These results imply that phosphorylation at Tyr89 by Src-family kinases prevents engagement of the Abl SH3 domain with its intramolecular binding partner leading to enhanced Abl kinase activity and cellular signaling.
Collapse
Affiliation(s)
- Shugui Chen
- Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Abl N-terminal cap stabilization of SH3 domain dynamics. Biochemistry 2008; 47:5795-803. [PMID: 18452309 DOI: 10.1021/bi800446b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.
Collapse
Affiliation(s)
- Shugui Chen
- Chemistry and Chemical Biology, The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|