1
|
Chubb JJ, Albanese KI, Rodger A, Woolfson DN. De Novo Design of Parallel and Antiparallel A 3B 3 Heterohexameric α-Helical Barrels. Biochemistry 2025; 64:1973-1982. [PMID: 40227224 PMCID: PMC12060282 DOI: 10.1021/acs.biochem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
The de novo design of α-helical coiled-coil peptides is advanced. Using established sequence-to-structure relationships, it is possible to generate various coiled-coil assemblies with predictable numbers and orientations of helices. Here, we target new assemblies, namely, A3B3 heterohexamer α-helical barrels. These designs are based on pairs of sequences with three heptad repeats (abcdefg), programmed with a = Leu, d = Ile, e = Ala, and g = Ser, and b = c = Glu to make the acidic (A) chains and b = c = Lys in the basic (B) chains. These design rules ensure that the desired oligomeric state and stoichiometry are readily achieved. However, controlling the orientation of neighboring helices (parallel or antiparallel) is less straightforward. Surprisingly, we find that assembly and helix orientation are sensitive to the length of the overhang between helices. To study this, cyclically permutated peptide sequences with three heptad repeats (the register) in the peptide sequences were analyzed. Peptides starting at g (g-register) form a parallel 6-helix barrel in solution and in an X-ray crystal structure, whereas the b- and c-register peptides form an antiparallel complex. In lieu of experimental X-ray structures for b- and c-register peptides, AlphaFold-Multimer is used to predict atomistic models. However, considerably more sampling than the default value is required to match the models and the experimental data, as many confidently predicted and plausible models are generated with incorrect helix orientations. This work reveals the previously unknown influence of the heptad register on helical overhang and the orientation of α-helical coiled-coil peptides and provides insights for the modeling of oligopeptide coiled-coil complexes with AlphaFold.
Collapse
Affiliation(s)
- Joel J. Chubb
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Natural Sciences, Macquarie University, Sydney, New South Wales 2019, Australia
| | - Katherine I. Albanese
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alison Rodger
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol,
Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K.
- Bristol BioDesign
Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
2
|
Kibler RD, Lee S, Kennedy MA, Wicky BIM, Lai SM, Kostelic MM, Carr A, Li X, Chow CM, Nguyen TK, Carter L, Wysocki VH, Stoddard BL, Baker D. Design of pseudosymmetric protein hetero-oligomers. Nat Commun 2024; 15:10684. [PMID: 39695145 PMCID: PMC11655659 DOI: 10.1038/s41467-024-54913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers. Starting from de novo designed circular homo-oligomers composed of 9 or 24 tandemly repeated units, we redesigned the inter-subunit interfaces to generate 19 new homo-oligomers and structurally recombined them to make 24 new hetero-oligomers, including ABC heterotrimers, A2B2 heterotetramers, and A3B3 and A2B2C2 heterohexamers which assemble with high structural specificity. The symmetric homo-oligomers and pseudosymmetric hetero-oligomers generated for each system have identical or nearly identical backbones, and hence are ideal building blocks for generating and functionalizing larger symmetric and pseudosymmetric assemblies.
Collapse
Affiliation(s)
- Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98006, USA
| | - Basile I M Wicky
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Marius M Kostelic
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Ann Carr
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Tina K Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98006, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Zhao F, Frandsen M, Capodaglio S, Sleiman HF. DNA-Mediated Peptide Assembly into Protein Mimics. J Am Chem Soc 2024; 146:1946-1956. [PMID: 38226787 DOI: 10.1021/jacs.3c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The design of new protein structures is challenging due to their vast sequence space and the complexity of protein folding. Here, we report a new modular DNA-templated strategy to construct protein mimics. We achieve the spatial control of multiple peptide units by conjugation with DNA and hybridization to a branched DNA trimer template followed by covalent stapling of the preorganized peptides into a single unit. A library of protein mimics with different lengths, sequences, and heptad registers has been efficiently constructed. DNA-templated protein mimics show an α-helix or coiled-coil motif formation even when they are constructed from weakly interacting peptide units. Their attached DNA handles can be used to exert dynamic control over the protein mimics' secondary and tertiary structures. This modular strategy will facilitate the development of DNA-encoded protein libraries for the rapid discovery of new therapeutics, enzymes, and antibody mimics.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A0B8, Canada
| | - Martin Frandsen
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus 8000, Denmark
| | - Sabrina Capodaglio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma I-43124, Italy
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A0B8, Canada
| |
Collapse
|
4
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
5
|
Bermeo S, Favor A, Chang YT, Norris A, Boyken SE, Hsia Y, Haddox HK, Xu C, Brunette TJ, Wysocki VH, Bhabha G, Ekiert DC, Baker D. De novo design of obligate ABC-type heterotrimeric proteins. Nat Struct Mol Biol 2022; 29:1266-1276. [PMID: 36522429 PMCID: PMC9758053 DOI: 10.1038/s41594-022-00879-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
The de novo design of three protein chains that associate to form a heterotrimer (but not any of the possible two-chain heterodimers) and that can drive the assembly of higher-order branching structures is an important challenge for protein design. We designed helical heterotrimers with specificity conferred by buried hydrogen bond networks and large aromatic residues to enhance shape complementary packing. We obtained ten designs for which all three chains cooperatively assembled into heterotrimers with few or no other species present. Crystal structures of a helical bundle heterotrimer and extended versions, with helical repeat proteins fused to individual subunits, showed all three chains assembling in the designed orientation. We used these heterotrimers as building blocks to construct larger cyclic oligomers, which were structurally validated by electron microscopy. Our three-way junction designs provide new routes to complex protein nanostructures and enable the scaffolding of three distinct ligands for modulation of cell signaling.
Collapse
Affiliation(s)
- Sherry Bermeo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Andrew Favor
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hugh K Haddox
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Chunfu Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
7
|
Abstract
The quantitative evaluation of the chirality of macromolecule structures remains one of the exciting issues in biophysics. In this paper, we propose methods for quantitative analysis of the chirality of protein helical and superhelical structures. The analysis of the chirality sign of the protein helical structures (α-helices and 310-helices) is based on determining the mixed product of every three consecutive vectors between neighboring reference points—α-carbons atoms. The method for evaluating the chirality sign of coiled-coil structures is based on determining the direction and value of the angle between the coiled-coil axis and the α-helices axes. The chirality sign of the coiled coil is calculated by averaging the value of the cosine of the corresponding angle for all helices forming the superhelix. Chirality maps of helical and superhelical protein structures are presented. Furthermore, we propose an analysis of the distributions of helical and superhelical structures in polypeptide chains of several protein classes. The features common to all studied classes and typical for each protein class are revealed. The data obtained, in all likelihood, can reflect considerations about molecular machines as chiral formations.
Collapse
|
8
|
Towards functional de novo designed proteins. Curr Opin Chem Biol 2019; 52:102-111. [DOI: 10.1016/j.cbpa.2019.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
9
|
Bergues-Pupo AE, Blank KG, Lipowsky R, Vila Verde A. Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear. Phys Chem Chem Phys 2018; 20:29105-29115. [PMID: 30426982 DOI: 10.1039/c8cp04896g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coiled coils are widespread protein motifs in nature, and promising building blocks for bio-inspired nanomaterials and nanoscale force sensors. Detailed structural insight into their mechanical response is required to understand their role in tissues and to design building blocks for applications. We use all-atom molecular dynamics simulations to elucidate the mechanical response of two types of coiled coils under shear: dimers and trimers. The amino acid sequences of both systems are similar, thus enabling universal (vs. system-specific) features to be identified. The trimer is mechanically more stable - it is both stronger and tougher - than the dimer, withstanding higher forces (127 pN vs. 49 pN at v = 10-3 nm ns-1) and dissipating up to five times more energy before rupture. The deformation mechanism of the trimer at all pull speeds is dominated by progressive helix unfolding. In contrast, at the lowest pull speeds, dimers deform by unfolding/refolding-assisted sliding. The additional helix in the trimer thus both determines the stability of the structure and affects the deformation mechanism, preventing helix sliding. The mechanical response of the coiled coils is not only sensitive to the oligomerization state but also to helix stability: preventing helix unfolding doubles the mechanical strength of the trimer, but decreases its toughness to half. Our results show that coiled coil trimers expand the range of coiled coil responses to an applied shear force. Altering the stability of individual helices against deformation emerges as one possible route towards fine-tuning this response, enabling the use of these motifs as nanomechanical building blocks.
Collapse
Affiliation(s)
- Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, 14424 Potsdam, Germany.
| | | | | | | |
Collapse
|
10
|
Rink WM, Thomas F. De Novo Designed α-Helical Coiled-Coil Peptides as Scaffolds for Chemical Reactions. Chemistry 2018; 25:1665-1677. [DOI: 10.1002/chem.201802849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 01/31/2023]
Affiliation(s)
- W. Mathis Rink
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Franziska Thomas
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration; Von-Siebold-Straße 3a 37075 Göttingen Germany
| |
Collapse
|
11
|
Goktas M, Luo C, Sullan RMA, Bergues-Pupo AE, Lipowsky R, Vila Verde A, Blank KG. Molecular mechanics of coiled coils loaded in the shear geometry. Chem Sci 2018; 9:4610-4621. [PMID: 29899954 PMCID: PMC5969510 DOI: 10.1039/c8sc01037d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023] Open
Abstract
Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Collapse
Affiliation(s)
- Melis Goktas
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Chuanfu Luo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ruby May A Sullan
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| |
Collapse
|
12
|
Mizuguchi Y, Mashimo Y, Mie M, Kobatake E. Design of bFGF-tethered self-assembling extracellular matrix proteins via coiled-coil triple-helix formation. Biomed Mater 2017; 12:045021. [DOI: 10.1088/1748-605x/aa7616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Fletcher JM, Bartlett GJ, Boyle AL, Danon JJ, Rush LE, Lupas AN, Woolfson DN. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces. ACS Chem Biol 2017; 12:528-538. [PMID: 28026921 DOI: 10.1021/acschembio.6b00935] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.
Collapse
Affiliation(s)
- Jordan M. Fletcher
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Gail J. Bartlett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Aimee L. Boyle
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan J. Danon
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Laura E. Rush
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrei N. Lupas
- Department
of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, Life Science
Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
14
|
Abstract
α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK.
- School of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK.
- BrisSynBio, Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, UK.
| |
Collapse
|
15
|
Burgess NC, Sharp TH, Thomas F, Wood CW, Thomson AR, Zaccai NR, Brady RL, Serpell LC, Woolfson DN. Modular Design of Self-Assembling Peptide-Based Nanotubes. J Am Chem Soc 2015. [DOI: 10.1021/jacs.5b03973] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Natasha C. Burgess
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Bristol Centre
for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | - Thomas H. Sharp
- Section
Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Franziska Thomas
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Christopher W. Wood
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol, BS8 1TD, United Kingdom
| | - Andrew R. Thomson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Nathan R. Zaccai
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol, BS8 1TD, United Kingdom
| | - R. Leo Brady
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol, BS8 1TD, United Kingdom
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, United Kingdom
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol, BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall
Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
16
|
Abstract
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
Collapse
|
17
|
Gamble AJ, Peacock AFA. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination. Methods Mol Biol 2014; 1216:211-31. [PMID: 25213418 DOI: 10.1007/978-1-4939-1486-9_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes how de novo designed peptides can be used as novel preorganized ligands for metal ion coordination. The focus is on the design of peptides which are programmed to spontaneously self-assemble into α-helical coiled coils in aqueous solution, and how metal ion binding sites can be engineered onto and into these structures. In addition to describing the various design principles, some key examples are covered illustrating the success of this approach, including a more detailed example in the case study.
Collapse
Affiliation(s)
- Aimee J Gamble
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
18
|
Fallas JA, Lee MA, Jalan AA, Hartgerink JD. Rational design of single-composition ABC collagen heterotrimers. J Am Chem Soc 2012; 134:1430-3. [PMID: 22239117 DOI: 10.1021/ja209669u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of heterotrimeric ABC collagen triple helices is challenging due to the large number of competing species that may be formed. Given the required one amino acid stagger between adjacent peptide strands in this fold, a ternary mixture of peptides can form as many as 27 triple helices with unique composition or register. Previously we have demonstrated that electrostatic interactions can be used to bias the helix population toward a desired target. However, homotrimeric assemblies have always remained the most thermally stable species in solution and therefore comprised a significant component of the peptide mixture. In this work we incorporate complementary modifications to this triple-helical design strategy to destabilize an undesirable competing state while compensating for this destabilization in the desired ABC composition. The result of these modifications is a new ABC triple-helical system with high thermal stability and control over composition, as observed by NMR. An additional set of modifications, which exchanges aspartate for glutamate, results in an overall lowering of stability of the ABC triple helix yet shows further improvement in the system's specificity. This rationally designed system helps to elucidate the rules governing the self-assembly of synthetic collagen triple helices and sheds light on the biological mechanisms of collagen assembly.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
19
|
Hwang S, Schmitt AA, Luteran AE, Toone EJ, McCafferty DG. Thermodynamic characterization of the binding interaction between the histone demethylase LSD1/KDM1 and CoREST. Biochemistry 2010; 50:546-57. [PMID: 21142040 DOI: 10.1021/bi101776t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Flavin-dependent histone demethylases catalyze the posttranslational oxidative demethylation of mono- and dimethylated lysine residues, producing formaldehyde and hydrogen peroxide in addition to the corresponding demethylated protein. In vivo, histone demethylase LSD1 (KDM1; BCH110) is a component of the multiprotein complex that includes histone deacetylases (HDAC 1 and 2) and the scaffolding protein CoREST. Although little is known about the affinities of or the structural basis for the interaction between CoREST and HDACs, the structure of CoREST(286-482) bound to an α-helical coiled-coil tower domain within LSD1 has recently been reported. Given the significance of CoREST in directing demethylation to specific nucleosomal substrates, insight into the molecular basis of the interaction between CoREST and LSD1 may suggest a new means of inhibiting LSD1 activity by misdirecting the enzyme away from nucleosomal substrates. Toward this end, isothermal titration calorimetry studies were conducted to determine the affinity and thermodynamic parameters characterizing the binding interaction between LSD1 and CoREST(286-482). The proteins tightly interact in a 1:1 stoichiometry with a dissociation constant (K(d)) of 15.9 ± 2.07 nM, and their binding interaction is characterized by a favorable enthalpic contribution near room temperature with a smaller entropic penalty at pH 7.4. Additionally, one proton is transferred from the buffer to the heterodimeric complex at pH 7.4. From the temperature dependence of the enthalpy change of interaction, a constant-pressure heat capacity change (ΔC(p)) of the interaction was determined to be -0.80 ± 0.01 kcal mol(-1) K(-1). Notably, structure-driven truncation of CoREST revealed that the central binding determinant lies within the segment of residues 293-380, also known as the CoREST "linker" region, which is a central isolated helix that interacts with the LSD1 coiled-coil tower domain to create a triple-helical bundle. Thermodynamic parameters obtained from the binding between LSD1 and the linker region of CoREST are similar to those obtained from the interaction between LSD1 and CoREST(286-482). These results provide a framework for understanding the molecular basis of protein-protein interactions that govern nucleosomal demethylation.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemistry, Levine Science Research Center, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
20
|
Shekhawat SS, Porter JR, Sriprasad A, Ghosh I. An autoinhibited coiled-coil design strategy for split-protein protease sensors. J Am Chem Soc 2010; 131:15284-90. [PMID: 19803505 DOI: 10.1021/ja9050857] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteases are widely studied as they are integral players in cell-cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an autoinhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new autoinhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000-fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus, these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general autoinhibited coiled-coil strategy for controlling the activity of fragmented proteins.
Collapse
Affiliation(s)
- Sujan S Shekhawat
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
21
|
Diss ML, Kennan AJ. Heterotrimeric coiled coils with core residue urea side chains. J Org Chem 2009; 73:9752-5. [PMID: 19032043 DOI: 10.1021/jo802379p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report several coiled coil heterotrimers with varying core residue buried polar groups, all with T(m) values >43 degrees C. Introduction of new synthetic side chain structures, including some terminating in monosubstituted ureas, diversifies the pool of viable core residue candidates. A study of core charge pairings demonstrates that, unlike dimeric systems, trimeric coiled coils do not tolerate guanidine-guanidine contacts, even in the presence of a compensating carboxylate. Overall, the roster of feasible coiled coil designs is significantly expanded.
Collapse
Affiliation(s)
- Maria L Diss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
22
|
Pendley SS, Yu YB, Cheatham TE. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 2009; 74:612-29. [PMID: 18704948 PMCID: PMC2692595 DOI: 10.1002/prot.22177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.
Collapse
Affiliation(s)
- Scott S. Pendley
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Yihua B. Yu
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Departments of Pharmaceutical Sciences and Bioengineering, University of Maryland, University of Maryland, 20 Penn Street, Rm. 635, Baltimore, MD 21201
| | - Thomas E. Cheatham
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Medicinal Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Bioengineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| |
Collapse
|
23
|
Selectional and mutational scope of peptides sequestering the Jun-Fos coiled-coil domain. J Mol Biol 2008; 381:73-88. [PMID: 18586270 DOI: 10.1016/j.jmb.2008.04.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/07/2008] [Accepted: 04/11/2008] [Indexed: 01/14/2023]
Abstract
The activator protein-1 (AP-1) complex plays a crucial role in numerous pathways, and its ability to induce tumorigenesis is well documented. Thus, AP-1 represents an interesting therapeutic target. We selected peptides from phage display and compared their ability to disrupt the cFos/cJun interaction to a previously described in vivo protein-fragment complementation assay (PCA). A cJun-based library was screened to enrich for peptides that disrupt the AP-1 complex by binding to the cFos coiled-coil domain. Interestingly, phage display identified one helix, JunW(Ph1) [phage-selected winning peptide (clone 1) targeting cFos], which differs in only 2 out of 10 randomized positions to JunW (PCA-selected winning peptide targeting cFos). Phage-selected peptides revealed higher affinity to cFos than wild-type cJun, harboring a T(m) of 53 degrees C compared to 16 degrees C for cFos/cJun or 44 degrees C for cFos/JunW. In PCA growth assays in the presence of cJun as competitor, phage-selected JunW(Ph1) conferred shorter generation times than JunW. Bacterial growth was barely detectable, using JunW(Ph1) as a competitor for the wild-type cJun/cFos interaction, indicating efficient cFos removal from the dimeric wild-type complex. Importantly, all inhibitory peptides were able to interfere with DNA binding as demonstrated in gel shift assays. The selected sequences have consequently improved our 'bZIP coiled-coil interaction prediction algorithm' in distinguishing interacting from noninteracting coiled-coil sequences. Predicting and manipulating protein interaction will accelerate the systems biology field, and generated peptides will be valuable tools for analytical and biomedical applications.
Collapse
|
24
|
Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 2008; 163:258-69. [PMID: 18342539 DOI: 10.1016/j.jsb.2008.01.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 11/20/2022]
Abstract
alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.
Collapse
|
25
|
Bromley EHC, Channon K, Moutevelis E, Woolfson DN. Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 2008; 3:38-50. [PMID: 18205291 DOI: 10.1021/cb700249v] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are several approaches to creating synthetic-biological systems. Here, we describe a molecular-design approach. First, we lay out a possible synthetic-biology space, which we define with a plot of complexity of components versus divergence from nature. In this scheme, there are basic units, which range from natural amino acids to totally synthetic small molecules. These are linked together to form programmable tectons, for example, amphipathic alpha-helices. In turn, tectons can interact to give self-assembled units, which can combine and organize further to produce functional assemblies and systems. To illustrate one path through this vast landscape, we focus on protein engineering and design. We describe how, for certain protein-folding motifs, polypeptide chains can be instructed to fold. These folds can be combined to give structured complexes, and function can be incorporated through computational design. Finally, we describe how protein-based systems may be encapsulated to control and investigate their functions.
Collapse
Affiliation(s)
| | - Kevin Channon
- School of Chemistry, University
of Bristol, BS8 1TS, United Kingdom
| | | | - Derek N. Woolfson
- School of Chemistry, University
of Bristol, BS8 1TS, United Kingdom
- Department of Biochemistry, University of Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
26
|
Maglio O, Nastri F, Martin de Rosales RT, Faiella M, Pavone V, DeGrado WF, Lombardi A. Diiron-containing metalloproteins: Developing functional models. CR CHIM 2007. [DOI: 10.1016/j.crci.2007.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Charest G, Lavigne P. Simple and versatile restraints for the accurate modeling of α-helical coiled-coil structures of multiple strandedness, orientation and composition. Biopolymers 2006; 81:202-14. [PMID: 16245262 DOI: 10.1002/bip.20401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a minimalist approach for the modeling of the three-dimensional structure of multistranded alpha-helical coiled coils. The approach is based on empirical principles introduced by F. H. C. Crick (F. H. C. Crick, Acta Crystallogr, 1953, Vol. 6, pp. 689-697). Crick hypothesized that keeping the distance between the residues at the interacting interface of alpha-helices constant would lead to supercoiling or the formation of a coiled coil through the knobs-into-holes mode of packing. We have implemented the latter hypothesis in a simulating annealing protocol in the simple form of interhelical distance restraints (two per heptad) between Calpha at the interfacial positions and. To demonstrate the authenticity of Crick's hypothesis and the precision and accuracy of our approach, we have modeled the crystal structures of six synthetic coiled coils in dimeric, trimeric, and tetrameric states. The mean root mean square deviations (RMSDs) between the backbone atoms of the ensemble of structures calculated and those of the corresponding geometric averages is always below 0.76 A, indicating that our protocol has an excellent degree of convergence and precision. The RMSDs between the backbone atoms of each of the six geometric average structures and the backbone of the corresponding crystal structures all range between 0.43 and 0.95 A, indicative of excellent accuracy and proving the authenticity of Crick's hypothesis. Moreover, without specifying any dihedral angles, we found that in 81% of the occurrences, the most populated conformer of the side chains at positions and in the ensembles calculated were identical to those observed in the crystal structures. This shows that our simple approach, which is the simplest reported so far, can generate accurate results for the backbone and side chains. Finally, as a test case for a wider application of our approach in the field of structural proteomics, we describe the successful modeling of the overall structure of SNARE and the organization of its interfacial ionic layer known to play an important functional role.
Collapse
Affiliation(s)
- Gabriel Charest
- Département de Pharmacologie, Faculté de Médecine, Université de Sherbrooke 3001, 12e Avenue Nord, Sherbrooke, Qc J1H 5N4, Canada
| | | |
Collapse
|
28
|
Ali MH, Taylor CM, Grigoryan G, Allen KN, Imperiali B, Keating AE. Design of a heterospecific, tetrameric, 21-residue miniprotein with mixed alpha/beta structure. Structure 2005; 13:225-34. [PMID: 15698566 DOI: 10.1016/j.str.2004.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/05/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
The study of short, autonomously folding peptides, or "miniproteins," is important for advancing our understanding of protein stability and folding specificity. Although many examples of synthetic alpha-helical structures are known, relatively few mixed alpha/beta structures have been successfully designed. Only one mixed-secondary structure oligomer, an alpha/beta homotetramer, has been reported thus far. In this report, we use structural analysis and computational design to convert this homotetramer into the smallest known alpha/beta-heterotetramer. Computational screening of many possible sequence/structure combinations led efficiently to the design of short, 21-residue peptides that fold cooperatively and autonomously into a specific complex in solution. A 1.95 A crystal structure reveals how steric complementarity and charge patterning encode heterospecificity. The first- and second-generation heterotetrameric miniproteins described here will be useful as simple models for the analysis of protein-protein interaction specificity and as structural platforms for the further elaboration of folding and function.
Collapse
Affiliation(s)
- Mayssam H Ali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sumandea CA, Fung LWM. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. ACTA ACUST UNITED AC 2005; 136:81-90. [PMID: 15893590 DOI: 10.1016/j.molbrainres.2005.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 11/18/2004] [Accepted: 01/08/2005] [Indexed: 10/25/2022]
Abstract
Spectrin, a prominent cytoskeletal protein, exerts its fundamental role in cellular function by forming a sub-membrane filamentous network. An essential aspect of spectrin network formation is the tetramerization of spectrin alphabeta heterodimers. We used laboratory methods, the yeast two-hybrid system and random mutagenesis, to investigate, for the first time, effects of amino acid mutations on tetramerization of nonerythroid (brain) spectrin (fodrin). Based on high sequence homology with erythroid spectrin, we assume the putative tetramerization region of nonerythroid alpha-spectrin at the N-terminal region. We introduced mutations in the region consisting of residues 1-45 and studied mutational effects on spectrin alphabeta association to form tetramers. We detected single, double, and triple mutations involving 24 residues in this region. These amino acid mutations of nonerythroid alpha-spectrin exhibit full, partial, or no effect on the association with nonerythroid beta-spectrin. Single amino acid mutations in the region of residues 1-9 (D2Y, G5V, V6D, and V8M) did not affect the association. However, seven single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, and R28P) affected the alphabeta association. These mutations were clustered in the region predicted by sequence alignment to be crucial in nonerythroid alpha-spectrin for tetramerization, a region that spanned residues 12-36, corresponding to the partial domain Helix C' (residues 21-45) in erythroid alpha-spectrin. In addition, two other mutations, one upstream and one downstream of this region at positions 10 (E10D) and 37 (R37P), also affected the alphabeta association. Our results implied nonerythroid alpha-spectrin partial domain helix may be longer than Helix C' (residues 21-45 and a total of 25 residues) in erythroid alpha-spectrin and spanned at least residues 10-37. It is interesting to note that seven out of these nine single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, R37P) were at the a, d, e or g heptad positions based on sequence alignment with erythroid alpha-spectrin. Four of the mutated residues (I15, R18, V22, R25) are conserved in both erythroid and nonerythroid spectrin. These positions were previously identified as hot spots in erythroid alpha-spectrin that lead to severe hematological symptoms. This study clearly demonstrated that single mutation in a region predicted to be critical functionally in nonerythroid alpha-spectrin indeed leads to functional abnormalities and may lead to neurological disorders.
Collapse
Affiliation(s)
- Claudia A Sumandea
- Loyola University of Chicago, Department of Chemistry, 6525 N Sheridan Road, Chicago, IL 60626, USA
| | | |
Collapse
|
30
|
Frost DWH, Yip CM, Chakrabartty A. Reversible assembly of helical filaments by de novo designed minimalist peptides. Biopolymers 2005; 80:26-33. [PMID: 15612048 DOI: 10.1002/bip.20188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have designed a series of 15 short, helical de novo peptides consisting of lysine, isoleucine, and alanine. We have termed this the KIA series. These peptides differ only in their hydrophobic interface, and thus their self-association is largely a consequence of hydrophobic interactions. One of these peptides, KIA13, forms insoluble helical fibers at specific NaCl concentrations. We have used CD spectroscopy, turbidity assays, and in situ tapping mode atomic force microscopy to characterize the reversible assembly pathway for this peptide. It is unfolded at low NaCl concentration, and forms helical, soluble fibers resembling a coiled-coil conformation at intermediate NaCl concentrations, and rope-like insoluble fibers at high NaCl concentrations. Reducing the NaCl concentration completely reverses this process. Another peptide from the KIA series specifically inhibits the formation of the insoluble KIA13 fibers, and reverses the process to some extent. This work sheds light onto protein fibrillogenesis and offers intriguing possibilities for the use of these types of peptides in drug delivery and biomaterials applications.
Collapse
Affiliation(s)
- David W H Frost
- Division of Molecular and Structural Biology, Ontario Cancer Institute, and Departments of Medical Biophysics and Biochemistry, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9
| | | | | |
Collapse
|
31
|
Abstract
Protein design allows sequence-to-structure relationships in proteins to be examined and, potentially, new protein structures and functions to be made to order. To succeed, however, the protein-design process requires reliable rules that link protein sequence to structure?function. Although our present understanding of coiled-coil folding and assembly is not complete, through numerous bioinformatics and experimental studies there are now sufficient rules to allow confident design attempts of naturally observed and even novel coiled-coil motifs. This review summarizes the current design rules for coiled coils, and describes some of the key successful coiled-coil designs that have been created to date. The designs range from those for relatively straightforward, naturally observed structures-including parallel and antiparallel dimers, trimers and tetramers, all of which have been made as homomers and heteromers-to more exotic structures that expand the repertoire of Nature's coiled-coil structures. Examples in the second bracket include a probe that binds a cancer-associated coiled-coil protein; a tetramer with a right-handed supercoil; sticky-ended coiled coils that self-assemble to form fibers; coiled coils that switch conformational state; a three-component two-stranded coiled coil; and an antiparallel dimer that directs fragment complementation of larger proteins. Some of the more recent examples show an important development in the field; namely, new designs are being created with function as well as structure in mind. This will remain one of the key challenges in coiled-coil design in the next few years. Other challenges that lie ahead include the need to discover more rules for coiled-coil prediction and design, and to implement these in prediction and design algorithms. The considerable success of coiled-coil design so far bodes well for this, however. It is likely that these challenges will be met and surpassed.
Collapse
Affiliation(s)
- Derek N Woolfson
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QG, United Kingdom
| |
Collapse
|
32
|
Boon CL, Frost D, Chakrabartty A. Identification of stable helical bundles from a combinatorial library of amphipathic peptides. Biopolymers 2004; 76:244-57. [PMID: 15148684 DOI: 10.1002/bip.20074] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A set of combinatorial amphipathic helical peptides referred to as the KIA series has been screened to identify native-like helical bundles. The series contains the following consensus sequence: AKAxAAxxKAxAAxxKAGGY, where "x" positions are occupied by either Ala or Ile. The peptide sequences in the series comprise all possible combinations of four Ile residues occupying the six x positions. In each case, Ala occupied the two x positions not occupied by Ile. There are a total of 15 peptides in the KIA series; all of the peptides differ in the number of ridges and grooves formed by the Ile side chains, and two of the KIA peptides possess a canonical knobs-into-holes heptad repeat. The structure and stability of these 15 peptides and their pairwise mixtures were evaluated. One peptide in the series formed a stable four-helix bundle that folded with cooperativity similar to native proteins. Ten peptides assembled into molten globular helical assemblies, two peptides were unstructured, and two peptides assembled into helical filaments that were several micrometers long. One of the helical filament forming peptides could be diverted from forming filaments by the addition of another KIA peptide, and resulted in the formation of a heteromeric six-helix bundle. This study demonstrates that combinatorial peptides composed of only three types of amino acids can form a diverse array of structures, some of which are native-like.
Collapse
Affiliation(s)
- Chandra L Boon
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Departments of Medical Biophysics and Biochemistry, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9
| | | | | |
Collapse
|
33
|
Sanz L, García-Bermejo L, Blanco FJ, Kristensen P, Feijóo M, Suárez E, Blanco B, Alvarez-Vallina L. A novel cell binding site in the coiled-coil domain of laminin involved in capillary morphogenesis. EMBO J 2003; 22:1508-17. [PMID: 12660158 PMCID: PMC152894 DOI: 10.1093/emboj/cdg150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, we reported the isolation and characterization of an anti-laminin antibody that modulates the extracellular matrix-dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction. By using a phage display-assisted mapping strategy to preserve protein structure, we demonstrate for the first time that the coiled-coil region of laminin contains a cell binding site. The adhesion motif is formed by residues contributed by both alpha and gamma chains, and is located in the middle part of the rod-like portion in a highly flexible area, which corresponds to a protease-susceptible site. Based on this information, a peptide mimotope was used to characterize the cognate receptor. Although we can not rule out the implication of other receptors, our results demonstrate that the laminin helical rod active site interacts with alpha2beta1 integrin on the surface of endothelial cells. These findings provide new insight into the complex mechanisms regulating capillary morphogenesis.
Collapse
Affiliation(s)
- Laura Sanz
- Department of Immunology, Hospital Universitario Clínica Puerta de Hierro, 28035 Madrid
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Arndt KM, Pelletier JN, Müller KM, Plückthun A, Alber T. Comparison of in vivo selection and rational design of heterodimeric coiled coils. Structure 2002; 10:1235-48. [PMID: 12220495 DOI: 10.1016/s0969-2126(02)00838-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate how electrostatic interactions restrict the associations of coiled coils, we improved a heterodimeric coiled coil (WinZip-A1B1) by in vivo selection and, alternatively, by rational design. Selection from libraries encoding variable edge (g and e) residues enriched g/e' ion pairs, but the optimum selected heterodimers unexpectedly retained two predicted repulsive g/e' pairs. The best genetically selected heterodimer displayed similar thermodynamic stability and specificity as a rationally designed dimer with predicted ion pairs at all edge positions. This rationally designed pair, however, was less effective than the best genetically selected pair in mediating dimerization in vivo. Thus, the effects of predicted charge pairs depend on sequence context, and complementary charges at the edge positions rationalize only a fraction of the sequences that form stable, specific coiled coils.
Collapse
Affiliation(s)
- Katja M Arndt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
35
|
Ghirlanda G, Lear JD, Ogihara NL, Eisenberg D, DeGrado WF. A hierarchic approach to the design of hexameric helical barrels. J Mol Biol 2002; 319:243-53. [PMID: 12051949 DOI: 10.1016/s0022-2836(02)00233-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The design of large macromolecular assemblies is an endeavor with implications for protein engineering as well as nanotechnology. A hierarchic approach was used to design an antiparallel hexameric, tubular assembly of helices. In previous studies, a domain-swapped, dimeric three-helix bundle was designed from first principles. In the crystal lattice, three dimers associate around a 3-fold rotational axis to form a hexameric assembly. Although this hexameric assembly was not observed in solution, it was possible to stabilize its formation by changing three polar residues per monomer to hydrophobic (two Phe and one Trp) residues. Molecular models based on the crystallographic coordinates of DSD (PDB accession code 1G6U) show that these side-chains pack in the central cavity (the "supercore") of the hexameric bundle. Analytical ultracentrifugation, fluorescence spectroscopy, CD spectroscopy, and guanidine-HCl denaturation were used to determine the assembly of the hexamer. To probe the requirements for stabilizing the hexamer, we systematically varied the polarity and steric bulk of one of the Phe residues in the supercore of the hexamer. Depending on the nature of this side-chain, it is possible to modulate the stability of the hexamer in a predictable manner. This family of hexameric proteins may provide a useful framework for the construction of proteins that change their oligomeric states in response to binding of small molecules.
Collapse
Affiliation(s)
- Giovanna Ghirlanda
- Department of Biochemistry and Biophysics, The Johnson Research Foundation, University of Pennsylvania School of Medicine, Stellar Chance Building, Room 1010, 421 Curie Boulevard, Philadelphia, PA 19104-6059, USA
| | | | | | | | | |
Collapse
|
36
|
Marsh ENG, DeGrado WF. Noncovalent self-assembly of a heterotetrameric diiron protein. Proc Natl Acad Sci U S A 2002; 99:5150-4. [PMID: 11959963 PMCID: PMC122737 DOI: 10.1073/pnas.052023199] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2002] [Indexed: 11/18/2022] Open
Abstract
Diiron and dimanganese proteins catalyze a wide range of hydrolytic and oxygen-dependent reactions. To probe the mechanisms by which individual members of this class of proteins are able to catalyze such a wide range of reactions, we have prepared a model four-helix bundle with a diiron site located near the center of the bundle. The four-helix bundle is constructed by the noncovalent self-assembly of three different chains (A(a), A(b), and B) that self-assemble into the desired heterotetramer when mixed in a 1:1:2 molar ratio. On addition of ferrous ions and oxygen, the protein forms a complex with a UV-visible spectrum closely resembling that of peroxo-bridged diferric species in natural proteins and model compounds. By combining a small collection of n variants of these peptides, it should now be possible to prepare an n(3) member library, which will allow systematic exploration of the features giving rise to the catalytic properties of this class of proteins.
Collapse
Affiliation(s)
- E Neil G Marsh
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
37
|
Tai LJ, McFall SM, Huang K, Demeler B, Fox SG, Brubaker K, Radhakrishnan I, Morimoto RI. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain. J Biol Chem 2002; 277:735-45. [PMID: 11679589 DOI: 10.1074/jbc.m108604200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.
Collapse
Affiliation(s)
- Li-Jung Tai
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McClain DL, Binfet JP, Oakley MG. Evaluation of the energetic contribution of interhelical Coulombic interactions for coiled coil helix orientation specificity. J Mol Biol 2001; 313:371-83. [PMID: 11800563 DOI: 10.1006/jmbi.2001.5044] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coiled coils are formed by two or more alpha-helices that align in a parallel or an antiparallel relative orientation. The factors that determine a preference for a given relative helix orientation are incompletely understood. The helix orientation preference for the designed coiled coil, Acid-a1-Base-a1, was measured previously. This model system therefore provides a means for the experimental determination of the energetic contribution of a variety of interactions to helix orientation specificity. The antiparallel preference for Acid-a1-Base-a1 is imparted by a single buried polar interaction. Interhelical Coulombic interactions between residues at the e and g positions have been proposed to influence helix orientation preference. In the Acid-a1-Base-a1 heterodimer, potentially attractive Coulombic interactions are expected in both orientations. To determine the energetic consequences of Coulombic interactions for helix orientation preference, we have positioned a single charged residue in each peptide such that exclusively favorable interhelical Coulombic interactions can occur only in the parallel orientation. In contrast, two potentially repulsive interactions are expected in the antiparallel orientation. Because the buried polar interaction can occur only in the antiparallel orientation, interhelical Coulombic interactions favor the parallel orientation and the potential to form a buried polar interaction favors the antiparallel orientation. We find no clear preference for an antiparallel orientation in the resulting heterodimer, Acid-Ke-Base-Eg, suggesting that interhelical Coulombic interactions and a buried polar interaction are of approximately equal importance for helix orientation specificity. Stability measurements indicate that maintenance of all favorable electrostatic interactions and/or avoidance of two potentially repulsive interactions contributes approximately 2.1 kcal/mol to helix orientation preference.
Collapse
Affiliation(s)
- D L McClain
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | | | | |
Collapse
|
39
|
Affiliation(s)
- J Venkatraman
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
40
|
North B, Summa CM, Ghirlanda G, DeGrado WF. D(n)-symmetrical tertiary templates for the design of tubular proteins. J Mol Biol 2001; 311:1081-90. [PMID: 11531341 DOI: 10.1006/jmbi.2001.4900] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antiparallel helical bundles are found in a wide range of proteins. Often, four-helical bundles form tube-like structures, with binding sites for substrates or cofactors near their centers. For example, a transmembrane four-helical bundle in cytochrome bc(1) binds a pair of porphyrins in an elongated central cavity running down the center of the structure. Antiparallel helical barrels with larger diameters are found in the crystal structures of TolC and DSD, which form antiparallel 12-helical and six-helical bundles, respectively. The backbone geometries of the helical bundles of cytochrome bc(1), TolC, and DSD are well described using a simple D(n)-symmetrical model with only eight adjustable parameters. This parameterization provides an excellent starting point for construction of minimal models of these proteins as well as the de novo design of proteins with novel functions.
Collapse
Affiliation(s)
- B North
- The Johnson Research Foundation, Department of Biochemistry & Biophysics School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The amino acid sequence that forms the alpha-helical coiled coil structure has a representative heptad repeat denoted by defgabc, according to their positions. Although the a and d positions are usually occupied by hydrophobic residues, hydrophilic residues at these positions sometimes play important roles in natural proteins. We have manipulated a few amino acids at the a and d positions of a de novo designed trimeric coiled coil to confer new functions to the peptides. The IZ peptide, which has four heptad repeats and forms a parallel triple-stranded coiled coil, has Ile at all of the a and d positions. We show three examples: (1) the substitution of one Ile at either the a or d position with Glu caused the peptide to become pH sensitive; (2) the metal ion induced alpha-helical bundles were formed by substitutions with two His residues at the d and a positions for a medium metal ion, and with one Cys residue at the a position for a soft metal ion; and (3) the AAB-type heterotrimeric alpha-helical bundle formation was accomplished by a combination of Ala and Trp residues at the a positions of different peptide chains. Furthermore, we applied these procedures to prepare an ABC-type heterotrimeric alpha-helical bundle and a metal ion-induced heterotrimeric alpha-helical bundle.
Collapse
Affiliation(s)
- T Kiyokawa
- Department of Applied Biology, Kyoto Institute of Technology, Matugasaki, Sakyou-ku, Kyoto 606-8585, Japan
| | | | | | | |
Collapse
|
42
|
Walshaw J, Woolfson DN. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 2001; 307:1427-50. [PMID: 11292353 DOI: 10.1006/jmbi.2001.4545] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The coiled coil is arguably the simplest protein-structure motif and probably the most ubiquitous facilitator of protein-protein interactions. Coiled coils comprise two or more alpha-helices that wind around each other to form "supercoils". The hallmark of most coiled coils is a regular sequence pattern known as the heptad repeat. Despite this apparent simplicity and relatedness at the sequence level, coiled coils display a considerable degree of structural diversity: the helices may be arranged parallel or anti-parallel and may form a variety of oligomer states. To aid studies of coiled coils, we developed SOCKET, a computer program to identify these motifs automatically in protein structures. We used SOCKET to gather a set of unambiguous coiled-coil structures from the RCSB Protein Data Bank. Rather than searching for sequence features, the algorithm recognises the characteristic knobs-into-holes side-chain packing of coiled coils; this proved to be straightforward to implement and was able to distinguish coiled coils from the great majority of helix-helix packing arrangements observed in globular domains. SOCKET unambiguously defines coiled-coil helix boundaries, oligomerisation states and helix orientations, and also assigns heptad registers. Structures retrieved from the Protein Data Bank included parallel and anti-parallel variants of two, three and four-stranded coiled coils, one example of a parallel pentamer and a small number of structures that extend the classical description of a coiled coil. We anticipate that our structural database and the associated sequence data that we have gathered will be of use in identifying principles for coiled-coil assembly, prediction and design. To illustrate this we give examples of sequence and structural analyses of the structures that are possible using the new data bases, and we present amino acid profiles for the heptad repeats of different motifs.
Collapse
Affiliation(s)
- J Walshaw
- Centre for Biomolecular Design and Drug Development, School of Biological Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | | |
Collapse
|
43
|
Ramarao MK, Bianchetta MJ, Lanken J, Cohen JB. Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 2001; 276:7475-83. [PMID: 11087759 DOI: 10.1074/jbc.m009888200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapsyn, a 43-kDa peripheral membrane protein of skeletal muscle, is essential for clustering nicotinic acetylcholine receptors (nAChR) in the postsynaptic membrane. Previous studies with rapsyn NH(2)-terminal fragments fused to green fluorescent protein, expressed in 293T cells along with nAChRs, establish the following: Rapsyn-(1-90), containing the myristoylated amino terminus and two tetratricopeptide repeats (TPRs), was sufficient for self-association at the plasma membrane; rapsyn-(1-287), containing seven TPRs, did not cluster nAChRs; whereas rapsyn-(1-360)(,) containing a coiled-coil domain (rapsyn-(298-331)), clustered nAChRs. To further analyze the role of rapsyn structural domains in self-association and nAChR clustering, we have characterized the clustering properties of additional rapsyn mutants containing deletions and substitutions within the TPR and coiled-coil domains. A mutant lacking the coiled-coil domain alone (rapsyn-(black triangle288-348)), failed to cluster nAChRs. Within the coiled-coil domain neutralization of the charged side chains was tolerated, while alanine substitutions of large hydrophobic residues resulted in the loss of nAChR clustering. Rapsyn self-association requires at least two TPRs, as a single TPR (TPR1 or TPR2 alone) was not sufficient. While TPRs 1 and 2 are sufficient for self-association, they are not necessary, as TPRs 3-7 also formed clusters similar to wild-type rapsyn. Fragments containing TPRs co-localized with full-length rapsyn, while the expressed coiled-coil or RING-H2 domain did not. These results are discussed in terms of a homology model of rapsyn, based on the three-dimensional structure of the TPR domain of protein phosphatase 5.
Collapse
Affiliation(s)
- M K Ramarao
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- K M Müller
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3206, USA
| | | | | |
Collapse
|
45
|
Boon CL, Chakrabartty A. Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides. Protein Sci 2000; 9:1011-23. [PMID: 10850811 PMCID: PMC2144635 DOI: 10.1110/ps.9.5.1011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A series of designed short helical peptides was used to study the effect of nonpolar interactions on conformational specificity. The consensus sequence was designed to obtain short helices (17 residues) and to minimize the presence of interhelical polar interactions. Furthermore, the sequence contained a heptad repeat (abcdefg), where positions a and d were occupied by hydrophobic residues Leu, Ile, or Val, and positions e and g were occupied by Ala. The peptides were named according to the identities of the residues in the adeg positions, respectively. The peptides llaa, liaa, ilaa, iiaa, ivaa, viaa, lvaa, vlaa, and vvaa were synthesized, and their characterization revealed marked differences in specificity. An experimental methodology was developed to study the nine peptides and their pairwise mixtures. These peptides and their mixtures formed a vast array of structural states, which may be classified as follows: helical tetramers and pentamers, soluble and insoluble helical aggregates, insoluble unstructured aggregates, and soluble unstructured monomers. The peptide liaa formed stable helical pentamers, and iiaa and vlaa formed stable helical tetramers. Disulfide cross-linking experiments indicated the presence of an antiparallel helix alignment in the helical pentamers and tetramers. Rates of amide proton exchange of the tetrameric form of vlaa were 10-fold slower than the calculated exchange rate for unfolded vlaa. In other work, the control of specificity has been attributed to polar interactions, especially buried polar interactions; this work demonstrated that subtle changes in the configuration of nonpolar interactions resulted in a large variation in the extent of conformational specificity of assemblies of designed short helical peptides. Thus, nonpolar interactions can have a significant effect on the conformational specificity of oligomeric short helices.
Collapse
Affiliation(s)
- C L Boon
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | |
Collapse
|
46
|
Kumar S, Nussinov R. Fluctuations between stabilizing and destabilizing electrostatic contributions of ion pairs in conformers of the c-Myc-Max leucine zipper. Proteins 2000. [DOI: 10.1002/1097-0134(20001201)41:4<485::aid-prot60>3.0.co;2-e] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci U S A 1999; 96:8408-13. [PMID: 10411888 PMCID: PMC17529 DOI: 10.1073/pnas.96.15.8408] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-A crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique beta-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer.
Collapse
Affiliation(s)
- S M McWhirter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206, USA
| | | | | | | | | | | |
Collapse
|
48
|
Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci U S A 1999; 96:2662-7. [PMID: 10077567 PMCID: PMC15825 DOI: 10.1073/pnas.96.6.2662] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ebola virions contain a surface transmembrane glycoprotein (GP) that is responsible for binding to target cells and subsequent fusion of the viral and host-cell membranes. GP is expressed as a single-chain precursor that is posttranslationally processed into the disulfide-linked fragments GP1 and GP2. The GP2 subunit is thought to mediate membrane fusion. A soluble fragment of the GP2 ectodomain, lacking the fusion-peptide region and the transmembrane helix, folds into a stable, highly helical structure in aqueous solution. Limited proteolysis studies identify a stable core of the GP2 ectodomain. This 74-residue core, denoted Ebo-74, was crystallized, and its x-ray structure was determined at 1.9-A resolution. Ebo-74 forms a trimer in which a long, central three-stranded coiled coil is surrounded by shorter C-terminal helices that are packed in an antiparallel orientation into hydrophobic grooves on the surface of the coiled coil. Our results confirm the previously anticipated structural similarity between the Ebola GP2 ectodomain and the core of the transmembrane subunit from oncogenic retroviruses. The Ebo-74 structure likely represents the fusion-active conformation of the protein, and its overall architecture resembles several other viral membrane-fusion proteins, including those from HIV and influenza.
Collapse
Affiliation(s)
- V N Malashkevich
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|