1
|
Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to Glutaraldehyde in Escherichia coli Mediated by Overexpression of the Aldehyde Reductase YqhD by YqhC. Front Microbiol 2021; 12:680553. [PMID: 34248896 PMCID: PMC8262776 DOI: 10.3389/fmicb.2021.680553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaraldehyde is a widely used biocide on the market for about 50 years. Despite its broad application, several reports on the emergence of bacterial resistance, and occasional outbreaks caused by poorly disinfection, there is a gap of knowledge on the bacterial adaptation, tolerance, and resistance mechanisms to glutaraldehyde. Here, we analyze the effects of the independent selection of mutations in the transcriptional regulator yqhC for biological replicates of Escherichia coli cells subjected to adaptive laboratory evolution (ALE) in the presence of glutaraldehyde. The evolved strains showed improved survival in the biocide (11-26% increase in fitness) as a result of mutations in the activator yqhC, which led to the overexpression of the yqhD aldehyde reductase gene by 8 to over 30-fold (3.1-5.2 log2FC range). The protective effect was exclusive to yqhD as other aldehyde reductase genes of E. coli, such as yahK, ybbO, yghA, and ahr did not offer protection against the biocide. We describe a novel mechanism of tolerance to glutaraldehyde based on the activation of the aldehyde reductase YqhD by YqhC and bring attention to the potential for the selection of such tolerance mechanism outside the laboratory, given the existence of YqhD homologs in various pathogenic and opportunistic bacterial species.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Zou J, Li Z, Liu S, Peng C, Fang D, Wan X, Lin Z, Lee TS, Raleigh DP, Yang M, Simmerling C. Scaffold Hopping Transformations Using Auxiliary Restraints for Calculating Accurate Relative Binding Free Energies. J Chem Theory Comput 2021; 17:3710-3726. [PMID: 34029468 PMCID: PMC8215533 DOI: 10.1021/acs.jctc.1c00214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In silico screening of drug-target interactions is a key part of the drug discovery process. Changes in the drug scaffold via contraction or expansion of rings, the breaking of rings, and the introduction of cyclic structures from acyclic structures are commonly applied by medicinal chemists to improve binding affinity and enhance favorable properties of candidate compounds. These processes, commonly referred to as scaffold hopping, are challenging to model computationally. Although relative binding free energy (RBFE) calculations have shown success in predicting binding affinity changes caused by perturbing R-groups attached to a common scaffold, applications of RBFE calculations to modeling scaffold hopping are relatively limited. Scaffold hopping inevitably involves breaking and forming bond interactions of quadratic functional forms, which is highly challenging. A novel method for handling ring opening/closure/contraction/expansion and linker contraction/expansion is presented here. To the best of our knowledge, RBFE calculations on linker contraction/expansion have not been previously reported. The method uses auxiliary restraints to hold the atoms at the ends of a bond in place during the breaking and forming of the bonds. The broad applicability of the method was demonstrated by examining perturbations involving small-molecule macrocycles and mutations of proline in proteins. High accuracy was obtained using the method for most of the perturbations studied. The rigor of the method was isolated from the force field by validating the method using relative and absolute hydration free energy calculations compared to standard simulation results. Unlike other methods that rely on λ-dependent functional forms for bond interactions, the method presented here can be employed using modern molecular dynamics software without modification of codes or force field functions.
Collapse
Affiliation(s)
- Junjie Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Zhipeng Li
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Shuai Liu
- XtalPi Inc., 245 Main St, 11th Floor, Cambridge, MA 02142, United States
| | - Chunwang Peng
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Dong Fang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Xiao Wan
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Zhixiong Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Tai-Sung Lee
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854-8076, United States
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Mingjun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
3
|
Structural analysis of missense mutations occurring in the DNA-binding domain of HSF4 associated with congenital cataracts. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 4:100015. [PMID: 32647819 PMCID: PMC7337047 DOI: 10.1016/j.yjsbx.2019.100015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
High-resolution structures of wild-type and K23N mutant DBD in HSF4 were determined. Cataract-related mutations in HSF4 were structurally analyzed through MD simulation. Mutations Q61R, K64E, R73H, R116H and R119C likely perturb DNA-binding activity. Mutations K23N, P60H and L114P probably affect trimer formation or folding dynamics. Mutations A19D, H35Y and I86V may be false positives leading to trivial impacts.
Congenital cataract (CC) is the major cause of childish blindness, and nearly 50% of CCs are hereditary disorders. HSF4, a member of the heat shock transcription factor family, acts as a key regulator of cell growth and differentiation during the development of sensory organs. Missense mutations in the HSF4-encoding gene have been reported to cause CC formation; in particular, those occurring within the DNA-binding domain (DBD) are usually autosomal dominant mutations. To address how the identified mutations lead to HSF4 malfunction by placing adverse impacts on protein structure and DNA-binding specificity and affinity, we determined two high-resolution structures of the wild-type DBD and the K23N mutant of human HSF4, built DNA-binding models, conducted in silico mutations and molecular dynamics simulations. Our analysis suggests four possible structural mechanisms underlining the missense mutations in HSF4-DBD and cataractogenesis: (i), disruption of HSE recognition; (ii), perturbation of protein-DNA interactions; (iii), alteration of protein folding; (iv), other impacts, e.g. inhibition of protein oligomerization.
Collapse
|
4
|
Lobner E, Humm AS, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C. Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 2017; 9:1088-1104. [PMID: 28816592 PMCID: PMC5627596 DOI: 10.1080/19420862.2017.1364825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.
Collapse
Affiliation(s)
- Elisabeth Lobner
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Anne-Sophie Humm
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Georg Mlynek
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Konstantin Kubinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael Kitzmüller
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael W Traxlmayr
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Kristina Djinović-Carugo
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria.,d Department of Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, Ljubljana , Slovenia
| | - Christian Obinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| |
Collapse
|
5
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
6
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Paes HC, Mello-de-Sousa TM, Fernandes L, Teixeira MDM, Melo RDO, Derengowski LDS, Torres FAG, Felipe MSS. Characterisation of the heat shock factor of the human thermodimorphic pathogen Paracoccidioides lutzii. Fungal Genet Biol 2011; 48:947-55. [PMID: 21708278 DOI: 10.1016/j.fgb.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Thermodimorphic fungi include most causative agents of systemic mycoses, but the molecular mechanisms that underlie their defining trait, i.e. the ability to shift between mould and yeast on temperature change alone, remain poorly understood. We hypothesised that the heat shock factor (Hsf), a protein that evolved to sense thermal stimuli quickly, might play a role in this process in addition to the known regulator Drk1 and the Ryp proteins. To test this hypothesis, we characterised the Hsf from the thermodimorph Paracoccidioides lutzii (formerly Paracoccidioides brasiliensis isolate 01). We show in the present work that PlHsf possesses regulatory domains that are exclusive of the Eurotiomycetidae family, suggesting evolutionary specialisation; that it can successfully rescue the otherwise lethal loss of the native protein of Saccharomyces cerevisiae; and that its DNA-binding domain is able to recognise regulatory elements from the promoters of both Drk1 and Ryp1. An in silico screening of all 1 kb sequences upstream of P. lutzii ORFs revealed that 7% of them possess a heat shock element. This is the first description of a heat shock factor in a thermodimorphic fungus.
Collapse
Affiliation(s)
- Hugo Costa Paes
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Caspase-6 is an apoptotic protease that also plays important roles in neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Caspase-6 is the only caspase known to form a latent state in which two extended helices block access to the active site. These helices must convert to strands for binding substrate. We probed the interconverting region and found that the absence of helix-breaking residues is more critical than a helix-bridging, hydrogen-bond network for formation of the extended conformation. In addition, our results suggest that caspase-6 must undergo a transition through a low-stability intermediate to bind the active-site ligand. Mature caspase-6 is capable of adopting a latent state not observed in any other caspase. The absence of any helix-breaking residues allows caspase-6 to adopt the extended helical conformation. When we introduced helix-breaking residues similar to those seen in caspase-3 or -7, the structure and stability of the latent state were compromised.
Collapse
Affiliation(s)
- Sravanti Vaidya
- Department of Chemistry, 710 North Pleasant St., University of Massachusetts Amherst, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, 710 North Pleasant St., University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
9
|
Andrésen C, Jalal S, Aili D, Wang Y, Islam S, Jarl A, Liedberg B, Wretlind B, Mårtensson LG, Sunnerhagen M. Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci 2010; 19:680-92. [PMID: 20095047 DOI: 10.1002/pro.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-assembling MexA-MexB-OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR-wt as well as a selected set of MDR single mutants distant from the proposed DNA-binding helix. Although DNA affinity and MexA-MexB-OprM repression were both drastically impaired in the selected MexR-MDR mutants, MexR-wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR-MDR mutants, secondary structure content and oligomerization properties were very similar to MexR-wt despite their lack of DNA binding. Despite this, the MexR-MDR mutants showed highly varying stabilities compared with MexR-wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA-binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR-wt in both free and DNA-bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations-stability, domain interactions, and internal hydrophobic surfaces-are also critical for the regulation of MexR DNA binding.
Collapse
Affiliation(s)
- Cecilia Andrésen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Uffenbeck SR, Krebs JE. The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae. Biochem Cell Biol 2007; 84:477-89. [PMID: 16936821 DOI: 10.1139/o06-079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All cells, whether free-living or part of a multicellular organism, must contend with a variety of environmental fluctuations that can be harmful or lethal to the cell. Cells exposed to different kinds of environmental stress rapidly alter gene transcription, resulting in the immediate downregulation of housekeeping genes, while crucial stress-responsive transcription is drastically increased. Common cis-acting elements within many stress-induced promoters, such as stress response elements and heat shock elements, allow for coordinated expression in response to many different stresses. However, specific promoter architectures, i.e., specific combinations of high- and low-affinity stress-responsive cis elements embedded in a particular chromatin environment, allow for unique expression patterns that are responsive to the individual type and degree of stress. The coordination of transcriptional stress responses and the role that chromatin structure plays in the regulation and kinetics of such responses is discussed. The interplay among global and gene-specific stress responses is illustrated using the constitutive and stress-induced transcriptional regulation of HSP82 as a model. This review also investigates evidence suggesting that stress-induced transcription is globally synchronized with the stress-induced repression of housekeeping gene via 2 distinct mechanisms of facilitating the binding of TATA-binding protein (TBP): TFIID and SAGA-mediated TBP binding.
Collapse
Affiliation(s)
- Shannon R Uffenbeck
- Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | |
Collapse
|
11
|
Raghunand TR, Bishai WR. Mapping essential domains of Mycobacterium smegmatis WhmD: insights into WhiB structure and function. J Bacteriol 2006; 188:6966-76. [PMID: 16980499 PMCID: PMC1595512 DOI: 10.1128/jb.00384-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/19/2006] [Indexed: 11/20/2022] Open
Abstract
A growing body of evidence suggests that the WhiB-like proteins exclusive to the GC-rich actinomycete genera play significant roles in pathogenesis and cell division. Each of these proteins contains four invariant cysteine residues and a conserved helix-turn-helix motif. whmD, the Mycobacterium smegmatis homologue of Streptomyces coelicolor whiB, is essential in M. smegmatis, and the conditionally complemented mutant M. smegmatis 628-53 undergoes filamentation under nonpermissive conditions. To identify residues critical to WhmD function, we developed a cotransformation-based assay to screen for alleles that complement the filamentation phenotype of M. smegmatis 628-53 following inducer withdrawal. Mycobacterium tuberculosis whiB2 and S. coelicolor whiB complemented the defect in M. smegmatis 628-53, indicating that these genes are true functional orthologues of whmD. Deletion analysis suggested that the N-terminal 67 and C-terminal 12 amino acid residues are dispensable for activity. Site-directed mutagenesis indicated that three of the four conserved cysteine residues (C90, C93, and C99) and a conserved aspartate (D71) are essential. Mutations in a predicted loop glycine (G111) and an unstructured leucine (L116) were poorly tolerated. The region essential for WhmD activity encompasses 6 of the 10 residues conserved in all seven M. tuberculosis WhiBs, as well as in most members of the WhiB family identified thus far. WhmD structure was found to be sensitive to the presence of a reducing agent, suggesting that the cysteine residues are involved in coordinating a metal ion. Iron-specific staining strongly suggested that WhmD contains a bound iron atom. With this information, we have now begun to comprehend the functional significance of the conserved sequence and structural elements in this novel family of proteins.
Collapse
Affiliation(s)
- Tirumalai R Raghunand
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231-1002, USA
| | | |
Collapse
|
12
|
Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol 2006; 26:955-64. [PMID: 16428449 PMCID: PMC1347039 DOI: 10.1128/mcb.26.3.955-964.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.
Collapse
Affiliation(s)
- Julius Anckar
- Turku Centre for Biotechnology, P.O. Box 123, FI-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Senes A, Engel DE, DeGrado WF. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 2004; 14:465-79. [PMID: 15313242 DOI: 10.1016/j.sbi.2004.07.007] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Helical integral membrane proteins share several structural determinants that are widely conserved across their universe. The discovery of common motifs has furthered our understanding of the features that are important to stability in the membrane environment, while simultaneously providing clues about proteins that lack high-resolution structures. Motif analysis also helps to target mutagenesis studies, and other experimental and computational work. Three types of transmembrane motifs have recently seen interesting developments: the GxxxG motif and its like; polar and hydrogen bonding motifs; and proline motifs.
Collapse
Affiliation(s)
- Alessandro Senes
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | |
Collapse
|
14
|
Kovári Z, Vas M. Protein conformer selection by sequence-dependent packing contacts in crystals of 3-phosphoglycerate kinase. Proteins 2004; 55:198-209. [PMID: 14997553 DOI: 10.1002/prot.10469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In several crystal structures of 3-phosphoglycerate kinase (PGK), the two domains occupy different relative positions. It is intriguing that the two extreme (open and closed) conformations have never been observed for the enzyme from the same species. Furthermore, in certain cases, these different crystalline conformations represent the enzyme-ligand complex of the same composition, such as the ternary complex containing either the substrate 3-phosphoglycerate (3-PG) and beta,gamma-imido-adenosine-5'-triphosphate (AMP-PNP), an analogue of the substrate MgATP, or 3-PG and the product MgADP. Thus, the protein conformation in the crystal is apparently determined by the origin of the isolated enzyme: PGK from pig muscle has only been crystallized in open conformation, whereas PGK from either Thermotoga maritima or Trypanosoma brucei has only been reported in closed conformations. A systematic analysis of the underlying sequence differences at the crucial hinge regions of the molecule and in the protein-protein contact surfaces in the crystal, in two independent pairs of open and closed states, have revealed that 1) sequential differences around the molecular hinges do not explain the appearance of fundamentally different conformations and 2) the species-specific intermolecular contacts between the nonconserved residues are responsible for stabilizing one conformation over the other in the crystalline state. A direct relationship between the steric position of the contacts in the three-dimensional structure and the conformational state of the protein has been demonstrated.
Collapse
Affiliation(s)
- Zoltán Kovári
- Department of Theoretical Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
15
|
Ceruso MA, Weinstein H. Structural mimicry of proline kinks: tertiary packing interactions support local structural distortions. J Mol Biol 2002; 318:1237-49. [PMID: 12083514 DOI: 10.1016/s0022-2836(02)00221-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proline residues in the helical segments of soluble and transmembrane proteins have received special attention from both a structural and functional perspective. A feature of these helices is the structural distortion termed "proline-kink", which has been associated with the presence of the proline residue. However, a recent report on the yeast heat-shock transcription factor of Kluyveromyces lactis (HSF_KL) suggests that these proline-associated deformations can be achieved in the absence of proline residues, thus raising the question of the mechanisms responsible for the structural mimicry of proline-related features. In this study, the specific interactions responsible for the distortion were characterized by comparative analysis of the atomic details of the packing interactions that surround the evolutionarily conserved proline-kink in the alpha2 helix of HSF_KL and a set of 39 structurally related proteins that lacked the distortion. The mechanistic details inferred from this analysis were confirmed with molecular dynamics simulations. The study shows that the packing interactions between the alpha2 and alpha1 helices in HSF_KL are responsible for the stabilization of the conserved kink, whether a proline residue that divides the helix into segments is present or not. The proline-kink can facilitate the formation of tertiary packing interactions that would otherwise not be possible. However, it is the ability to establish differential packing interactions for the helix segments, rather than the structural properties of the proline-kink itself, that emerges as the key factor for the characteristic distortion.
Collapse
Affiliation(s)
- Marc A Ceruso
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | |
Collapse
|
16
|
Bulman AL, Hubl ST, Nelson HC. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains. J Biol Chem 2001; 276:40254-62. [PMID: 11509572 DOI: 10.1074/jbc.m106301200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of heat shock proteins in response to cellular stresses is dependent on the activity of the heat shock transcription factor (HSF). In yeast, HSF is constitutively bound to DNA; however, the mitigation of negative regulation in response to stress dramatically increases transcriptional activity. Through alanine-scanning mutagenesis of the surface residues of the DNA-binding domain, we have identified a large number of mutants with increased transcriptional activity. Six of the strongest mutations were selected for detailed study. Our studies suggest that the DNA-binding domain is involved in the negative regulation of both the N-terminal and C-terminal activation domains of HSF. These mutations do not significantly affect DNA binding. Circular dichroism analysis suggests that a subset of the mutants may have altered secondary structure, whereas a different subset has decreased thermal stability. Our findings suggest that the regulation of HSF transcriptional activity (under both constitutive and stressed conditions) may be partially dependent on the local topology of the DNA-binding domain. In addition, the DNA-binding domain may mediate key interactions with ancillary factors and/or other intramolecular regulatory regions in order to modulate the complex regulation of HSF's transcriptional activity.
Collapse
Affiliation(s)
- A L Bulman
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
17
|
Abstract
The evolutionary history of serine proteases can be accounted for by highly conserved amino acids that form crucial structural and chemical elements of the catalytic apparatus. These residues display non- random dichotomies in either amino acid choice or serine codon usage and serve as discrete markers for tracking changes in the active site environment and supporting structures. These markers categorize serine proteases of the chymotrypsin-like, subtilisin-like and alpha/beta-hydrolase fold clans according to phylogenetic lineages, and indicate the relative ages and order of appearance of those lineages. A common theme among these three unrelated clans of serine proteases is the development or maintenance of a catalytic tetrad, the fourth member of which is a Ser or Cys whose side chain helps stabilize other residues of the standard catalytic triad. A genetic mechanism for mutation of conserved markers, domain duplication followed by gene splitting, is suggested by analysis of evolutionary markers from newly sequenced genes with multiple protease domains.
Collapse
Affiliation(s)
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, MO 63110-1093, USA
Corresponding author e-mail:
| |
Collapse
|
18
|
Cicero MP, Hubl ST, Harrison CJ, Littlefield O, Hardy JA, Nelson HC. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res 2001; 29:1715-23. [PMID: 11292844 PMCID: PMC31317 DOI: 10.1093/nar/29.8.1715] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix-turn-helix proteins, HSF's wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein-protein interactions, possibly within a trimer or between adjacent trimers. To understand the function of the wing in the HSF DNA-binding domain, a Saccharomyces cerevisiae strain was created that expresses a wingless HSF protein. This strain grows normally at 30 degrees C, but shows a decrease in reporter gene expression during constitutive and heat-shocked conditions. Removal of the wing does not affect the stability or trimeric nature of a protein fragment containing the DNA-binding and trimerization domains. Removal of the wing does result in a decrease in DNA-binding affinity. This defect was mainly observed in the ability to form the first trimer-bound complex, as the formation of larger complexes is unaffected by the deletion. Our results suggest that the wing is not involved in the highly co-operative nature of HSF binding, but may be important in stabilizing the first trimer bound to DNA.
Collapse
Affiliation(s)
- M P Cicero
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6089, USA
| | | | | | | | | | | |
Collapse
|