1
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations, and clinical observations to provide a comprehensive view of the mechanisms by which these pathways cause pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis. We aim to delineate approaches towards effectively treating fibrosis in SSc by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128 Trieste, Italy; Public Health Department, University Health Agency Giuliano-Isontina (ASUGI), 34148 Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
McDowell-Sanchez AK, Waich Cohen AR, Sanchez S, Tsoyi K. Osteoprotegerin is induced by transforming growth factor-beta 1 and regulates pro-fibrotic responses in human dermal fibroblasts. Biochem Biophys Res Commun 2025; 754:151524. [PMID: 40031101 DOI: 10.1016/j.bbrc.2025.151524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Transforming growth factor-beta1 (TGF-β1) is known to play a key role in the progression of organ fibrosis. Here, we demonstrate that TGF-β1 induces osteoprotegerin (OPG) expression in human dermal fibroblasts (HDFs) at both protein and mRNA levels. OPG neutralization has led to attenuation of TGF-β1-mediated profibrotic effects in HDFs. Further, we found that recombinant OPG induced fibronectin (FN) production and alpha-smooth muscle actin (α-SMA) expression. Interestingly, the OPG-mediated effect was significantly attenuated by αvβ3-integrin inhibitors (cyclo(RGDfK) and cilengitide) suggesting that OPG exerts profibrotic responses in human dermal fibroblasts by regulating αvβ3-integrin activation. Taken together, our data suggest that OPG expression is stimulated by TGF-β1 and contributes to dermal fibroblast activation.
Collapse
Affiliation(s)
- Aaron K McDowell-Sanchez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alan R Waich Cohen
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Sanchez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Konstantin Tsoyi
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Constantino Cunha EG, de Almeida AR, Dantas AT, de Oliveira Gonçalves ME, Pereira MC, Guimarães Gonçalves RS, Branco Pinto Duarte AL, Barreto de Melo Rêgo MJ, da Rocha Pitta MG. Soluble oncostatin M receptor (sOSMR): A potential biomarker in systemic sclerosis diagnosis. Clin Chim Acta 2025; 569:120177. [PMID: 39894192 DOI: 10.1016/j.cca.2025.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a complex disease whose diagnosis is based on clinical manifestations, serological testing for autoantibodies, and nailfold capillaroscopy. Although some proteins have been proposed as biomarkers, the diagnosis of SSc remains a challenge for clinicians. The soluble oncostatin M receptor (sOSMR) is a potential biomarker for the diagnosis of SSc, as it appears to act as an antagonist of oncostatin M (OSM)-mediated signaling, which is involved in biological and inflammatory processes, including tissue injury and fibrosis. Therefore, this study aimed to evaluate the diagnostic performance of sOSMR in systemic sclerosis. METHODOLOGY Serum samples were collected from 105 patients with SSc, 50 with rheumatoid arthritis (RA), 64 with systemic lupus erythematosus (SLE), and 130 healthy controls (HC). The sOSMR levels were measured using an ELISA kit, and a receiver operating characteristic (ROC) curve was used to analyze the biomarker's potential for diagnosing SSc. RESULTS sOSMR levels are significantly elevated in the serum of patients with SSc when compared to patients with RA and SLE, as well as healthy controls (p < 0.0001 for all comparisons). The area under the curve (AUC) of ROC curve analysis revealed the ability of sOSMR serum levels to distinguish patients with SSc from those with RA (0.901 [95 % CI 0.842-0.943]; p < 0.0001), with a sensitivity of 89.52 % and specificity of 78.00 %, and from patients with SLE (0.897 [95 % CI 0.841-0.938]; p < 0.0001), with a sensitivity of 81.90 % and specificity of 89.06 %, as well as from healthy controls (0.876 [95 % CI 0.827 - 0.916]; p < 0.0001), with a sensitivity of 82.86 % and specificity of 81.54 %. When comparing patients with SSc to patients with other diseases (RA and SLE combined), an AUC of 0.898 ([95 % CI 0.851-0.935]; p < 0.0001) was found, with a sensitivity of 82.86 % and specificity of 85.09 %. CONCLUSION Serum sOSMR levels are elevated in patients with SSc and have shown a good ability to distinguish between SSc patients, patients with other autoimmune rheumatologic diseases (RA and SLE), and healthy controls. Thus, sOSMR is a promising marker for diagnosing SSc.
Collapse
Affiliation(s)
- Eudes Gustavo Constantino Cunha
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Maria Eduarda de Oliveira Gonçalves
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
4
|
Greenman R, Weston CJ. CCL24 and Fibrosis: A Narrative Review of Existing Evidence and Mechanisms. Cells 2025; 14:105. [PMID: 39851534 PMCID: PMC11763828 DOI: 10.3390/cells14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes. CCL24 (eotaxin-2) is a chemokine secreted by immune cells and epithelial cells, which promotes the trafficking of immune cells and the activation of profibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the tissue and sera of patients with fibro-inflammatory diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis (SSc), and metabolic dysfunction-associated steatohepatitis (MASH). This review delves into the intricate role of CCL24 in fibrotic diseases, highlighting its impact on fibrotic, immune, and vascular pathways. We focus on the preclinical and clinical evidence supporting the therapeutic potential of blocking CCL24 in diseases that involve excessive inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Chris J. Weston
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Jaimez-Alvarado S, López-Tenorio II, Barragán-De los Santos J, Bello-Vega DC, Gómez FJR, Amedei A, Berrios-Bárcenas EA, Aguirre-García MM. Gut-Heart Axis: Microbiome Involvement in Restrictive Cardiomyopathies. Biomedicines 2025; 13:144. [PMID: 39857728 PMCID: PMC11761909 DOI: 10.3390/biomedicines13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health. Studies have shown that gut dysbiosis, an imbalance in the composition of intestinal bacteria, can contribute to systemic inflammation, a key factor in many cardiovascular conditions. An increase in gut permeability, frequently caused by dysbiosis, allows bacterial endotoxins to enter the bloodstream, activating inflammatory pathways that exacerbate cardiac dysfunction. Recent reports highlight the potential role of microbiome in amyloidogenesis, as certain bacteria produce proteins that accelerate the formation of amyloid fibrils. Concurrently, advancements in amyloidosis treatments have sparked renewed hopes, marking a promising era for managing these kinds of diseases. These findings suggest that the gut-heart axis may be a potential factor in the development and progression of cardiovascular disease like RCM, opening new paths for therapeutic intervention. The aim of this review is to provide a detailed overview of the gut-heart axis, focusing on RCM.
Collapse
Affiliation(s)
- Samuel Jaimez-Alvarado
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Itzel Ivonn López-Tenorio
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Javier Barragán-De los Santos
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Dannya Coral Bello-Vega
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Francisco Javier Roldán Gómez
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| | | | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| |
Collapse
|
6
|
Kowalska-Kępczyńska A, Mleczko M, Komajda K, Michalska-Jakubus M, Krasowska D, Korpysz M. Extended Inflammation Parameters (EIP) as Markers of Inflammation in Systemic Sclerosis. Int J Inflam 2024; 2024:3786206. [PMID: 39364215 PMCID: PMC11449563 DOI: 10.1155/2024/3786206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune disease characterized by inflammation, progressive vasculopathy, and fibrosis of skin and internal organs. The aim of the study was to evaluate extended inflammatory parameters (EIP) in patients with SSc in comparison to the control group of healthy subjects. Methods A total of 28 patients with SSc and 29 healthy controls (HCs) were included in the study. The following EIP parameters were analyzed: neutrophil reactive intensity (NEUT-RI), neutrophil granularity intensity (NEUT-GI), antibody-synthesizing lymphocytes (AS-LYMP), and reactive lymphocytes (RE-LYMP). Results Patients with SSc showed significantly higher values of parameters determining neutrophil reactivity and neutrophil granularity when compared to HCs (respectively, 49.16 FI vs. 44.33 FI, p < 0.001, and 152.01 SI vs. 147.51 SI, p < 0.001). Moreover, patients with SSc had higher absolute numbers of RE-LYMP than HCs (0.69 × 103/µl vs. 0.04 × 103/µl, p < 0.001). Importantly, significant correlations between the RE-LYMP and either IL-6 (R = 0.447, p < 0.001) or ESR (R = 0.532, p < 0.001) were found among patients with SSc. Conclusions Changes in NEUT-RI, NEUT-GI, and RE-LYMP levels positively correlate with inflammation in SSc and, thus, could potentially be used as an additional reliable inflammatory biomarker to assess inflammation in this disease.
Collapse
Affiliation(s)
- Anna Kowalska-Kępczyńska
- Department of Biochemical DiagnosticsChair of Laboratory DiagnosticsMedical University of Lublin, al. Solidarności 8, Lublin 20-081, Poland
| | - Mateusz Mleczko
- Department of DermatologyVenereology and Pediatric DermatologyMedical University of Lublin, ul. Staszica 11, Lublin 20-081, Poland
| | - Kamila Komajda
- Laboratory of Forensic ToxicologyMedical University of Lublin, ul. Jaczewskiego 8b, Lublin 20-080, Poland
| | - Małgorzata Michalska-Jakubus
- Department of DermatologyVenereology and Pediatric DermatologyMedical University of Lublin, ul. Staszica 11, Lublin 20-081, Poland
| | - Dorota Krasowska
- Department of DermatologyVenereology and Pediatric DermatologyMedical University of Lublin, ul. Staszica 11, Lublin 20-081, Poland
| | - Maciej Korpysz
- Department of Biochemical DiagnosticsChair of Laboratory DiagnosticsMedical University of Lublin, al. Solidarności 8, Lublin 20-081, Poland
| |
Collapse
|
7
|
Takahashi T, Takahashi T, Ikawa T, Terui H, Takahashi T, Segawa Y, Sumida H, Yoshizaki A, Sato S, Asano Y. Serum levels of AGGF1: Potential association with cutaneous and cardiopulmonary involvements in systemic sclerosis. J Dermatol 2024; 51:1083-1090. [PMID: 38619119 DOI: 10.1111/1346-8138.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, aberrant immune activation, and extensive tissue fibrosis of the skin and internal organs. Because of the complicated nature of its pathogenesis, the underlying mechanisms of SSc remain incompletely understood. Angiogenic factor with a G-patch domain and a Forkhead-associated domain 1 (AGGF1) is a critical factor in angiogenesis expressed on vascular endothelial cells, associated with inflammatory and fibrotic responses. To elucidate the possible implication of AGGF1 in SSc pathogenesis, we investigated the association between serum AGGF1 levels and clinical manifestations in SSc patients. We conducted a cross-sectional analysis of AGGF1 levels in sera from 60 SSc patients and 19 healthy controls with enzyme-linked immunosorbent assay. Serum AGGF1 levels in SSc patients were significantly higher than those in healthy individuals. In particular, diffuse cutaneous SSc patients with shorter disease duration had higher levels compared to those with longer disease duration and limited cutaneous SSc patients. Patients with higher serum AGGF1 levels had a higher incidence of digital ulcers, higher modified Rodnan Skin Scores (mRSS), elevated serum Krebs von den Lungen-6 (KL-6) levels, C-reactive protein levels, and right ventricular systolic pressures (RVSP) on the echocardiogram, whereas they had reduced percentage of vital capacity (%VC) and percentage of diffusing capacity of the lungs for carbon monoxide (%DLCO) in pulmonary functional tests. In line, serum AGGF1 levels were significantly correlated with mRSS, serum KL-6 and surfactant protein D levels, RVSP, and %DLCO. These results uncovered notable correlations between serum AGGF1 levels and key cutaneous and vascular involvements in SSc, suggesting potential roles of AGGF1 in SSc pathogenesis.
Collapse
Affiliation(s)
- Takuya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Segawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hayakazu Sumida
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Matsuda Y, Miyake T, Toda H, Tachibana K, Nomura H, Hirai Y, Kawakami Y, Sakoda N, Morizane S. The treatment effect of endovascular therapy for chronic limb-threatening ischemia with systemic sclerosis. J Dermatol 2024; 51:1108-1112. [PMID: 38895834 PMCID: PMC11483918 DOI: 10.1111/1346-8138.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Systemic sclerosis (SSc) is a collagen disease with immune abnormalities, vasculopathy, and fibrosis. Ca blockers and prostaglandins are used to treat peripheral circulatory disturbances. Chronic limb-threatening ischemia (CLTI) is a disease characterized by extremity ulcers, necrosis, and pain due to limb ischemia. Since only a few patients present with coexistence of CLTI and SSc, the treatment outcomes of revascularization in these cases are unknown. In this study, we evaluated the clinical characteristics and treatment outcomes of seven patients with CLTI and SSc, and 35 patients with uncomplicated CLTI who were hospitalized from 2012 to 2022. A higher proportion of patients with uncomplicated CLTI had diabetes and male. There were no significant differences in the age at which ischemic ulceration occurred, other comorbidities, or in treatments, including antimicrobial agents, revascularization and amputation, improvement of pain, and the survival time from ulcer onset between the two subgroups. EVT or amputation was performed in six or two of the seven patients with CLTI and SSc, respectively. Among those who underwent EVT, 33% (2/6) achieved epithelialization and 67% (4/6) experienced pain relief. These results suggest that the revascularization in cases with CLTI and SSc should consider factors such as infection and general condition, since revascularization improve the pain of these patients.
Collapse
Affiliation(s)
- Yoshihiro Matsuda
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tomoko Miyake
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hironobu Toda
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kota Tachibana
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hayato Nomura
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoji Hirai
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshio Kawakami
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Naoya Sakoda
- Department of Cardiovascular SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Shin Morizane
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
9
|
Wareing N, Mills TW, Collum S, Wu M, Revercomb L, Girard R, Lyons M, Skaug B, Bi W, Ali MA, Koochak H, Flores AR, Yang Y, Zheng WJ, Swindell WR, Assassi S, Karmouty-Quintana H. Deletion of adipocyte Sine Oculis Homeobox Homolog 1 prevents lipolysis and attenuates skin fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595271. [PMID: 38826482 PMCID: PMC11142148 DOI: 10.1101/2024.05.22.595271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dermal fibrosis is a cardinal feature of systemic sclerosis (SSc) for which there are limited treatment strategies. This is in part due to our fragmented understanding of how dermal white adipose tissue (DWAT) contributes to skin fibrosis. We identified elevated sine oculis homeobox homolog 1 (SIX1) expression in SSc skin samples from the GENISOS and PRESS cohorts, the expression of which correlated with adipose-associated genes and molecular pathways. SIX1 localization studies identified increased signals in the DWAT area in SSc and in experimental models of skin fibrosis. Global and adipocyte specific Six1 deletion abrogated end-stage fibrotic gene expression and dermal adipocyte shrinkage induced by SQ bleomycin treatment. Further studies revealed a link between elevated SIX1 and increased expression of SERPINE1 and its protein PAI-1 which are known pro-fibrotic mediators. However, SIX1 deletion did not appear to affect cellular trans differentiation. Taken together these results point at SIX1 as a potential target for dermal fibrosis in SSc.
Collapse
Affiliation(s)
- Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Minghua Wu
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | | | - Rene Girard
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Marka Lyons
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Brian Skaug
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Meer A. Ali
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Haniyeh Koochak
- Department of Pediatrics, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Anthony R Flores
- Department of Pediatrics, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Yuntao Yang
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - W Jim Zheng
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| |
Collapse
|
10
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
11
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
12
|
Kong X, Jiang S, He Q, Shi X, Pu W, Huang Y, Ma Y, Liu Q, Sun D, Huang D, Wu F, Li P, Tu W, Zhao Y, Wang L, Chen Y, Wu W, Tang Y, Zhao X, Zhu Q, Gao J, Xu W, Shui X, Qian F, Wang J. TLR8 aggravates skin inflammation and fibrosis by activating skin fibroblasts in systemic sclerosis. Rheumatology (Oxford) 2024; 63:1710-1719. [PMID: 37665747 DOI: 10.1093/rheumatology/kead456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVES Innate immunity significantly contributes to SSc pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS The expression of TLR8 was analysed, based on a public dataset, and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1β, COL I, COL III and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION TLR8 might be a promising therapeutic target for improving the treatment strategy for skin inflammation and fibrosis in SSc.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Qiuyu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dayan Sun
- Department of Neonatal Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Delin Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Fudan University Cancer Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yuanyuan Chen
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Zhu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Weihong Xu
- Laboratory Department of Tongren Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Xiaochuan Shui
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
- Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Paczwa K, Rerych M, Romanowska-Próchnicka K, Olesińska M, Różycki R, Gołębiewska J. Retinal Microvasculature in Systemic Sclerosis Patients and the Correlation between Nailfold Capillaroscopic Findings and Optical Coherence Angiography Results. J Clin Med 2024; 13:2025. [PMID: 38610789 PMCID: PMC11012647 DOI: 10.3390/jcm13072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The comparison of retinal perfusion in the eyes of patients with systemic sclerosis (SSc) and in healthy controls using optical coherence tomography angiography (OCTA). The correlation between nailfold capillaroscopy results and OCTA findings among SSc. Methods: The study enrolled 31 patients with systemic sclerosis and 41 healthy controls. OCTA was performed in both groups to assess the retinal vasculature in the superficial (SCP) and deep (DCP) capillary plexuses and the foveal avascular zone (FAZ) area. Nailfold capillaroscopy (NC) was performed in SSc patients and compared to the FAZ area and the superficial and the deep vessel density. Results: In the SSc group, the parafoveal vessel density in DCP was significantly higher in relation to the mean value (p < 0.0001) and in each quadrant of the macula (p < 0.0001) compared to healthy subjects (p < 0.0001). The patients with early scleroderma patterns in capillaroscopy had a larger superficial and deep FAZ (p = 0.0104, p = 0.0076, respectively) than those with active and late patterns. There was a statistically significant difference in the FAZ when comparing early to active (p < 0.0001) and early to late scleroderma patterns (p < 0.0001). A statistically significant difference was found in the type of interstitial lung disease and the deep FAZ area (p = 0.0484). SSc patients with nonspecific interstitial pneumonia (NSIP) had a larger FAZ than those with usual interstitial pneumonia (UIP) (p = 0.0484). Moreover, NSIP cases had a higher parafoveal mean superficial vessel density than those with UIP (p = 0.0471). Conclusions: Our investigation showed that the peripheral microvascular system correlates with ocular microcirculatory impairment. The results indicate the important role of OCTA in the diagnosis, monitoring, and prognosis of microvascular changes in SSc.
Collapse
Affiliation(s)
- Katarzyna Paczwa
- Department of Ophthalmology, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland (M.R.)
| | - Magdalena Rerych
- Department of Ophthalmology, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland (M.R.)
| | - Katarzyna Romanowska-Próchnicka
- Department and Polyclinic of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Marzena Olesińska
- Department and Polyclinic of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Radosław Różycki
- Department of Ophthalmology, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland (M.R.)
| | - Joanna Gołębiewska
- Department of Ophthalmology, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland (M.R.)
| |
Collapse
|
14
|
Simula ER, Jasemi S, Cossu D, Manca PC, Sanna D, Scarpa F, Meloni G, Cusano R, Sechi LA. The Genetic Landscape of Systemic Rheumatic Diseases: A Comprehensive Multigene-Panel Study Identifying Key Gene Polymorphisms. Pharmaceuticals (Basel) 2024; 17:438. [PMID: 38675400 PMCID: PMC11054024 DOI: 10.3390/ph17040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Systemic rheumatic diseases, including conditions such as rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus, represent a complex array of autoimmune disorders characterized by chronic inflammation and diverse clinical manifestations. This study focuses on unraveling the genetic underpinnings of these diseases by examining polymorphisms in key genes related to their pathology. Utilizing a comprehensive genetic analysis, we have documented the involvement of these genetic variations in the pathogenesis of rheumatic diseases. Our study has identified several key polymorphisms with notable implications in rheumatic diseases. Polymorphism at chr11_112020916 within the IL-18 gene was prevalent across various conditions with a potential protective effect. Concurrently, the same IL18R1 gene polymorphism located at chr2_103010912, coding for the IL-18 receptor, was observed in most rheumatic conditions, reinforcing its potential protective role. Additionally, a further polymorphism in IL18R1 at chr2_103013408 seems to have a protective influence against the rheumatic diseases under investigation. In the context of emerging genes involved in rheumatic diseases, like PARK2, a significant polymorphism at chr6_161990516 was consistently identified across different conditions, exhibiting protective characteristics in these pathological contexts. The findings underscore the complexity of the genetic landscape in rheumatic autoimmune disorders and pave the way for a deeper understanding of their etiology and the possible development of more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Rita Simula
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Seyedesomaye Jasemi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Pietro Carmelo Manca
- S.C. Servizio Immunotrasfusionale, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Gianfranco Meloni
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, 07100 Sassari, Italy;
| | - Roberto Cusano
- Centro di Ricerca, Sviluppo, Studi Superiori in Sardegna (CRS4), Pula, 09100 Cagliari, Italy;
| | - Leonardo Antonio Sechi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
15
|
Terui H, Segawa Y, Asano Y. Targeting B cells for treatment of systemic sclerosis. Curr Opin Rheumatol 2023; 35:317-323. [PMID: 37540776 DOI: 10.1097/bor.0000000000000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
PURPOSE OF REVIEW The pathogenesis of systemic sclerosis (SSc) has been linked to dysfunctional B cells as demonstrated in previous research. This review aims to show the evidence and ongoing clinical trials of B cell-targeted therapy and overview the various aspects of B cell involvement in SSc. RECENT FINDINGS We provide an overview of the current understanding and therapeutic strategies targeting B cells in SSc patients. Several molecular targets of B cells have been identified for treating SSc, including CD20, CD19, B-cell activating factor (BAFF), and proteasome. SUMMARY Many clinical trials have demonstrated that B cells play a critical role in the pathogenesis of SSc and may be a potential therapeutic target to improve disease symptoms. Although large-scale clinical studies are needed, various B cell-targeted therapies have the potential to address the unmet needs of SSc patients.
Collapse
Affiliation(s)
- Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
17
|
Driskill E, Zhang Z, Chi J, Cui Q. Increased rate of complications following total knee arthroplasty in patients with systemic sclerosis. INTERNATIONAL ORTHOPAEDICS 2023; 47:2563-2569. [PMID: 37354225 DOI: 10.1007/s00264-023-05873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Outcomes after total knee arthroplasty (TKA) for patients with systemic sclerosis (SSc) are poorly documented in the literature. The purpose of this study was to evaluate SSc as a potential risk factor for increased rate of complications after TKA. METHODS Using the PearlDiver Mariner database, 2,002 patients with SSc undergoing primary TKA were identified and compared to matched controls of 19,892 patients without SSc. Multivariable logistic regression analyses were done for medical complications up to 90 days and surgical complications up to two years. 90-day ED-visit and inpatient readmission were also documented. RESULTS Compared to the matched controls, patients with SSc demonstrated higher rates of medical complications such as cerebrovascular accident (1.5% vs 0.6%, p < 0.001), myocardial infarction (1.3% vs 0.3%, p < 0.001), and sepsis (1.1% vs 0.4%, p < 0.001). Additionally, patients with SSc displayed elevated rates of surgical complications, including wound complications (3.9% vs 2.2%, p < 0.001) and aseptic loosening at 90 days (0.2% vs 0.1%; OR 3.53 [1.13-9.28]), one year (0.7% vs 0.4%; OR 1.78 [0.96-3.05]), and two years (1.4% vs 0.9%; OR 1.68 [1.10-2.45]). Patients with SSc also had higher rates of emergency department visits (21.2% vs 11.4%, p < 0.001). CONCLUSIONS Patients with SSc are at higher risks of postoperative complications, encompassing both medical and surgical complications. Specifically, patients with SSc have a significantly higher likelihood of experiencing wound complications, cerebrovascular accident, and myocardial infarction. It is crucial for orthopaedic surgeons and patients alike to consider the elevated risks when determining a course of TKA for patients with SSc.
Collapse
Affiliation(s)
- Elizabeth Driskill
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zhichang Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22908, USA.
- , Charlottesville, USA.
| |
Collapse
|
18
|
Kohon MY, Zaaroor Levy M, Hornik-Lurie T, Shalom A, Berl A, Drucker L, Levy Y, Tartakover Matalon S. αvβ3 Integrin as a Link between the Development of Fibrosis and Thyroid Hormones in Systemic Sclerosis. Int J Mol Sci 2023; 24:ijms24108927. [PMID: 37240272 DOI: 10.3390/ijms24108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. Key players mediating fibrosis are myofibroblasts (MF) that, following transforming growth factor β (TGFβ) exposure, produce a collagen-rich extracellular matrix (ECM) that induces myofibroblast differentiation. Myofibroblasts express αvβ3 integrin (a membrane receptor for thyroid hormones) and miRNA-21 that promotes deiodinase-type-3 expression (D3), causing the degradation of triiodothyronine (T3) that attenuates fibrosis. We hypothesized that αvβ3 affects the fibrotic processes through its thyroid hormones (THs) binding site. To test this, dermal fibroblasts (DF) were cultured with/without TGFβ and removed with a base, leaving only normal/fibrotic ECMs in wells. Then, DF were cultured on the ECMs with/without tetrac (αvβ3 ligand, T4 antagonist), and evaluated for pro-fibrotic characteristics, αvβ3, miRNA-21, and D3 levels. Blood free-T3 (fT3), miRNA-21 levels, and the modified Rodnan skin score (MRSS) were evaluated in SSc patients. We found that the "fibrotic-ECM" significantly increased the pro-fibrotic characteristics of DF and the levels of miRNA-21, D3, and αvβ3, compared to the "normal-ECM." Tetrac significantly inhibited the effects of the "fibrotic-ECM" on the cells. In accordance with tetrac's effect on D3/miRNA-21, a negative correlation was found between the patients' fT3 to miRNA-21 levels, and to the development of pulmonary arterial hypertension (PAH). We conclude that occupying the THs binding site of αvβ3 may delay the development of fibrosis.
Collapse
Affiliation(s)
- Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Tzipi Hornik-Lurie
- Data Research Department, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Oncogenetics Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| |
Collapse
|
19
|
Laranjeira P, dos Santos F, Salvador MJ, Simões IN, Cardoso CMP, Silva BM, Henriques-Antunes H, Corte-Real L, Couceiro S, Monteiro F, Santos C, Santiago T, da Silva JAP, Paiva A. Umbilical-Cord-Derived Mesenchymal Stromal Cells Modulate 26 Out of 41 T Cell Subsets from Systemic Sclerosis Patients. Biomedicines 2023; 11:1329. [PMID: 37239000 PMCID: PMC10215673 DOI: 10.3390/biomedicines11051329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated disease wherein T cells are particularly implicated, presenting a poor prognosis and limited therapeutic options. Thus, mesenchymal-stem/stromal-cell (MSC)-based therapies can be of great benefit to SSc patients given their immunomodulatory, anti-fibrotic, and pro-angiogenic potential, which is associated with low toxicity. In this study, peripheral blood mononuclear cells from healthy individuals (HC, n = 6) and SSc patients (n = 9) were co-cultured with MSCs in order to assess how MSCs affected the activation and polarization of 58 different T cell subsets, including Th1, Th17, and Treg. It was found that MSCs downregulated the activation of 26 out of the 41 T cell subsets identified within CD4+, CD8+, CD4+CD8+, CD4-CD8-, and γδ T cells in SSc patients (HC: 29/42) and affected the polarization of 13 out of 58 T cell subsets in SSc patients (HC: 22/64). Interestingly, SSc patients displayed some T cell subsets with an increased activation status and MSCs were able to downregulate all of them. This study provides a wide-ranging perspective of how MSCs affect T cells, including minor subsets. The ability to inhibit the activation and modulate the polarization of several T cell subsets, including those implicated in SSc's pathogenesis, further supports the potential of MSC-based therapies to regulate T cells in a disease whose onset/development may be due to immune system's malfunction.
Collapse
Affiliation(s)
- Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco dos Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Maria João Salvador
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Irina N. Simões
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carla M. P. Cardoso
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Bárbara M. Silva
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Helena Henriques-Antunes
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Luísa Corte-Real
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Sofia Couceiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Filipa Monteiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carolina Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Tânia Santiago
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - José A. P. da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| |
Collapse
|
20
|
Fertala J, Wang ML, Rivlin M, Beredjiklian PK, Abboud J, Arnold WV, Fertala A. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules 2023; 13:biom13050758. [PMID: 37238628 DOI: 10.3390/biom13050758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive scar formation is a hallmark of localized and systemic fibrotic disorders. Despite extensive studies to define valid anti-fibrotic targets and develop effective therapeutics, progressive fibrosis remains a significant medical problem. Regardless of the injury type or location of wounded tissue, excessive production and accumulation of collagen-rich extracellular matrix is the common denominator of all fibrotic disorders. A long-standing dogma was that anti-fibrotic approaches should focus on overall intracellular processes that drive fibrotic scarring. Because of the poor outcomes of these approaches, scientific efforts now focus on regulating the extracellular components of fibrotic tissues. Crucial extracellular players include cellular receptors of matrix components, macromolecules that form the matrix architecture, auxiliary proteins that facilitate the formation of stiff scar tissue, matricellular proteins, and extracellular vesicles that modulate matrix homeostasis. This review summarizes studies targeting the extracellular aspects of fibrotic tissue synthesis, presents the rationale for these studies, and discusses the progress and limitations of current extracellular approaches to limit fibrotic healing.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Joseph Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Xie L, Long X, Mo M, Jiang J, Zhang Q, Long M, Li M. Bone marrow mesenchymal stem cell-derived exosomes alleviate skin fibrosis in systemic sclerosis by inhibiting the IL-33/ST2 axis via the delivery of microRNA-214. Mol Immunol 2023; 157:146-157. [PMID: 37028129 DOI: 10.1016/j.molimm.2023.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Interleukin (IL)- 33 is a tissue-derive proinflammatory cytokine that promotes fibrosis in systemic sclerosis (SSc). microRNA (miR)- 214 expression has been elaborated to be downregulated in SSc patients and exert anti-fibrotic and anti-inflammatory effects. This study elucidates the role of bone marrow mesenchymal stem cell-derived exosome (BMSC-Exos)-delivered miR-214 in SSc and the relationship between this miR and IL-33/ST2 axis. SSc clinical samples were obtained to evaluate levels of miR-214, IL-33, and ST2. Primary fibroblasts and BMSC-Exos were extracted, followed by the co-culture of PKH6-labeled BMSC-Exos and fibroblasts. Subsequently, Exos extracted from miR-214 inhibitor-transfected BMSCs were co-cultured with TGF-β1-stimulated fibroblasts, after which the expression of fibrotic markers, miR-214, IL-33, and ST2, as well as fibroblast proliferation and migration, was determined. A skin fibrosis mouse model was induced with bleomycin (BLM) and treated with BMSC-Exos. Collagen fiber accumulation, collagen content, α-SMA expression, and IL-33 and ST2 levels were examined in BLM-treated or IL-33-knockout mice. IL-33 and ST2 were upregulated and miR-214 was downregulated in SSc patients. Mechanistically, miR-214 targeted IL-33 and blocked the IL-33/ST2 axis. BMSC-Exos delivering miR-214 inhibitor augmented proliferation, migration, and fibrotic gene expression in TGF-β1-stimulated fibroblasts. Similarly, IL-33 induced migration, proliferation, and fibrotic gene expression in fibroblasts via ST2. In BLM-treated mice, IL-33 knockout suppressed skin fibrosis, and BMSC-Exos delivered miR-214 to suppress the IL-33/ST2 axis, thus mitigating skin fibrosis. Conclusively, BMSC-Exos alleviate skin fibrosis through the blockade of the IL-33/ST2 axis by delivering miR-214.
Collapse
Affiliation(s)
- Lihu Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoping Long
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Meili Mo
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Jinmei Jiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingxiu Zhang
- Department of Rehabilitation, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Mei Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
22
|
Ouazahrou K, El Bakkouri J, Souali M, Jeddane L, Mokhantar K, Errami A, El Kabli H, Bousfiha AA, Echchilali K. Clinical and serological correlation of systemic sclerosis in Moroccan patients. Rheumatol Adv Pract 2023; 7:rkad036. [PMID: 37091295 PMCID: PMC10115467 DOI: 10.1093/rap/rkad036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Objective SSc is a CTD characterized by excessive fibrosis of the skin and internal organs, along with microvascular damage, and is often associated with typical autoantibodies. The aim of this study was to analyse the correlation between specific autoantibody profiles, clinical and paraclinical features in Moroccan patients with SSc. Methods We analysed the presence of specific autoantibodies in 46 SSc patients using IIF on HEp-2 cells and immunodot. We then correlated the types of autoantibodies with clinical and laboratory manifestations. Results Among our patients, 86.9% were females. The mean age of patients at diagnosis was 50.21 years, with an average delay to diagnosis of 5 years. The main clinical manifestations found were RP (89.2%), sclerodactyly (84.8%), proximal scleroderma (67.4%), gastrointestinal involvement (50%) and interstitial lung disease (30.4%). According to the specific autoantibody profile, 14 patients were anti-topo I positive (30.4%), 8 anti-RNP (68 kDa/A/C) positive (17.4%) and 6 anti-RNA polymerase III positive (13%). We found a significant association of anti-RNA polymerase III with sclerodactyly and pulmonary arterial hypertension (P < 0.05). We also found an association between anti-topo I and interstitial lung disease in 30.4% of patients. There was no significant association between the positivity for the autoantibodies and other diagnosed clinical manifestations. Conclusion Some clinical manifestations of SSc might be positively correlated with the presence of specific autoantibodies. Environmental factors, ethnicity and gene interaction might also influence this correlation.
Collapse
Affiliation(s)
- Kaoutar Ouazahrou
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, IbnRochd University Hospital Center, Casablanca, Morocco
| | - Manal Souali
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Leila Jeddane
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khaoula Mokhantar
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hassan El Kabli
- Internal Medicine Department, IbnRochd University Hospital Center, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology Unit P1, IbnRochd University Hospital Center, Mother and Child El Harouchi Hospital, Casablanca, Morocco
| | - Khadija Echchilali
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Internal Medicine Department, IbnRochd University Hospital Center, Casablanca, Morocco
| |
Collapse
|
23
|
High prevalence and risk factors for osteoporosis in 1839 patients with systemic sclerosis: a systematic review and meta-analysis. Clin Rheumatol 2023; 42:1087-1099. [PMID: 36474110 DOI: 10.1007/s10067-022-06460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Osteoporosis is prevalent in patients with systemic sclerosis (SSc). Updated evidence is required to complement the previous systematic review on this topic to provide best practices. This systematic review and meta-analysis aimed to quantitatively synthesize data from studies concerning the prevalence and risk factors for osteoporosis among patients with SSc. METHODS We searched PubMed, EMBASE, Web of Science, and ScienceDirect databases for potential studies published from inception to May 31, 2022. Eligibility screening, data extraction, and quality assessment of the retrieved articles were conducted independently by two reviewers. Then meta-analyses were performed to determine osteoporosis prevalence and risk factors in patients with SSc. Meta-regression analysis was conducted to explore the sources of heterogeneity. RESULTS The pooled prevalence of osteoporosis in patients with SSc was 27% (95% CI, 24-31), with moderate heterogeneity (I2 = 61.6%). Meta-regression revealed no significant difference among all variables. And the presence of SSc increased the likelihood of having osteoporosis (OR = 3.05, 95% CI, 2.32-4.01) compared to controls. These significant risk factors for osteoporosis in SSc patients were age > 50 years (OR = 2.94, 95% CI, 1.52-5.68), menopause (OR = 3.90; 95% CI, 1.94-7.84), aging (MD = 8.40; 95% CI,6.10-10.71) and longer disease duration (MD = 4.78; 95% CI,1.83-7.73). However, female (OR = 1.45; 95% CI, 0.75-2.77), pulmonary arterial hypertension (OR = 0.50; 95% CI, 0.17-1.54), and diffuse cutaneous SSc (OR = 1.05; 95% CI, 0.75-1.48) were not significant risk factors for osteoporosis in SSc patients. CONCLUSIONS Osteoporosis was highly prevalent in patients with SSc, and the prevalence seemed to be high and similar in many countries. The age > 50 years, menopause, aging, and longer disease duration were identified as risk factors for osteoporosis in patients with SSc.
Collapse
|
24
|
Omori I, Sumida H, Sugimori A, Sakakibara M, Urano-Takaoka M, Iwasawa O, Saito H, Matsuno A, Sato S. Serum cold-inducible RNA-binding protein levels as a potential biomarker for systemic sclerosis-associated interstitial lung disease. Sci Rep 2023; 13:5017. [PMID: 36977758 PMCID: PMC10050418 DOI: 10.1038/s41598-023-32231-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractSystemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrotic, inflammatory, and vascular dysfunction. Danger-associated molecular patterns (DAMPs)-mediated inflammasome activation has been reported to be involved in the pathogenesis of SSc. Cold-inducible RNA-binding protein (CIRP) is newly identified as a DAMP. Here we examined the clinical significance of serum levels of CIRP in 60 patients with SSc and 20 healthy control patients (HCs) using an enzyme-linked immunosorbent assay. Serum CIRP levels in diffuse cutaneous SSc (dcSSc) patients were significantly increased compared with limited cutaneous SSc (lcSSc) patients or HCs. When examining the relationship with SSc-specific parameters, serum CIRP levels with the presence of interstitial lung disease (ILD) were higher than those without ILD. In detail, serum CIRP levels correlated negatively with the percent predicted diffusing capacity for carbon monoxide and positively with levels of Krebs von den Lungen-6. In addition, elevated serum CIRP levels declined along with decreased SSc-ILD activity in patients who received immunosuppressive therapy. These results suggest that CIRP may play a role in the development of ILD in SSc. Moreover, CIRP could serve as a useful serological marker of SSc-ILD in terms of disease activity and therapeutic effects.
Collapse
|
25
|
Jimenez SA, Piera-Velazquez S. Probable role of exosomes in the extension of fibrotic alterations from affected to normal cells in systemic sclerosis. Rheumatology (Oxford) 2023; 62:999-1008. [PMID: 35944210 PMCID: PMC9977136 DOI: 10.1093/rheumatology/keac451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Effects of Ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 2023; 116:109723. [PMID: 36696855 DOI: 10.1016/j.intimp.2023.109723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-β. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-β-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.
Collapse
|
27
|
Zhang Y, Zhu M, Xie L, Zhang H, Deng T. Identification and validation of key immune-related genes with promising diagnostic and predictive value in systemic sclerosis. Life Sci 2022; 312:121238. [PMID: 36460097 DOI: 10.1016/j.lfs.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
AIMS To screen and confirm key immune-related genes (IRGs) with diagnostic and predictive value in systemic sclerosis (SSc) and provide potential therapeutic targets for patients with SSc. MATERIALS AND METHODS In Gene Expression Omnibus database (GEO), four datasets of gene expression profiling related to SSc were downloaded and used for the analysis in this study. After differential analysis of SSc cases and controls in GSE130955, the differentially expressed genes (DEGs) were overlapped with IRGs to obtain the immune-related differentially expressed genes (IR-DEGs) in SSc. In addition, functional annotation and pathway enrichment of IR-DEGs were conducted. The protein-protein interaction network (PPI) was constructed to identify key IR-DEGs. Using GSE58095, GSE181549 and GSE130953, the diagnostic and predictive abilities for the key IR-DEGs in SSc were validated. Finally, the screened key genes were confirmed in skin derived bleomycin (BLM)-induced SSc mice by Real-time PCR. KEY FINDINGS NGFR, TNFSF13B, FCER1G, GIMAP5, TYROBP and CSF1R may have important or very high diagnostic value for SSc. TYROBP and TNFSF13B had moderate and mild predictive value respectively in SSc patients after treatment. Real-time PCR assay further confirmed that the expressions of Ngfr, Tyrobp, Csf1r, Fcer1g and Gimap5 were significantly higher in skin of BLM-induced SSc mice than that in controls. SIGNIFICANCE The key IR-DEGs, including NGFR, TNFSF13B, TYROBP, CSF1R, FCER1G and GIMAP5, may become auxiliary diagnostic indicators and potential biomarkers for SSc. Moreover, TNFSF13B and TYROBP could have good prospects as predictive indicators in SSc patients that accepted cyclophosphamide or transplantation therapy.
Collapse
Affiliation(s)
- Yajie Zhang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Mingxin Zhu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Haowei Zhang
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
28
|
Tatu AL, Nadasdy T, Arbune A, Chioncel V, Bobeica C, Niculet E, Iancu AV, Dumitru C, Popa VT, Kluger N, Clatici VG, Vasile CI, Onisor C, Nechifor A. Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 - An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives. J Inflamm Res 2022; 15:5163-5184. [PMID: 36110506 PMCID: PMC9468867 DOI: 10.2147/jir.s374060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Thomas Nadasdy
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Municipal Emergency Hospital, Timişoara, Romania
| | - Anca Arbune
- Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Chioncel
- Neurology Department, "Bagdasar-Arseni" Emergency Clinical Hospital, Bucharest, Romania
| | - Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Valentin Tudor Popa
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Center for the Morphologic Study of the Skin MORPHODERM, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,Apolo Medical Center, Bucharest, Romania
| | | | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| |
Collapse
|
29
|
Cheng H, Yu Z, Yan CL, Yang HD, Gao C, Wen HY. Long-Term Efficacy and Low Adverse Events of Methylprednisolone Pulses Combined to Low-Dose Glucocorticoids for Systemic Sclerosis: A Retrospective Clinical Study of 10 Years’ Follow-Up. J Inflamm Res 2022; 15:4421-4433. [PMID: 35958185 PMCID: PMC9359792 DOI: 10.2147/jir.s373387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Background Patients with systemic sclerosis (SSc) have poor prognosis without cure methods. We began, 10 years ago, to relieve active SSc using short-term intravenous high-dose methylprednisolone pulse (MP-Pulse) and then maintain remission using long-term and low-dose oral glucocorticoids (LTLD-GC). Methods Total 46 of SSc patients with interstitial lung disease (ILD) and induration of skin during January 2006 to December 2019 were analyzed retrospectively, who were followed up for 10 years or more. The patients were treated with MP-Pulse (15 mg/kg/day, 4 days/week, for 2 weeks) with (n=21) or without (n=25) LTLD-GC (prednisone 5–10 mg/day or methylprednisolone 4–8 mg/day). The biographic and clinical data, including occurrence of infection or any adverse reactions, were collected at baseline, 6 months, 1 year, and annually through 10 years after treatment. Results From baseline to 10 years, compared with MP-Pulse alone, MP-Pulse/LTLD-GC significantly reduced skin and lung fibrosis and improved lung function: Rodnan skin score (mRSS: 22.1±12.4 to 8.16±2.5, P<0.001), forced vital capacity (FVC: 71.7% to 89.83%, P<0.001), forced expiratory volume in the first second (FEV1: 75.7% to 87.88%, P<0.001), diffusing capacity of the lung for carbon monoxide (DLCO: 63.4% to 87.73%, P<0.001), and high-resolution chest computerized tomography scan (HRCT score: 3.96±2.81 to 1.42±0.83, P<0.001). None of the 46 patients had femoral head necrosis, compression fracture, death, or life-threatening adverse events. Conclusion These outcomes indicate that intravenous MP-Pulse combined with oral LTLD-GC could achieve significant remission and better long-term (10 years) efficacy without severe adverse effects in SSc patients with ILD and induration of skin.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Rheumatology, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zhen Yu
- Department of Rheumatology, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Cheng-lan Yan
- Department of Rheumatology, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui-dan Yang
- Department of Rheumatology, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-yan Wen
- Department of Rheumatology, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Hong-yan Wen, Email
| |
Collapse
|
30
|
Cheng J, Zhang Y, Yang J, Wang Y, Xu J, Fan Y. MiR-155-5p modulates inflammatory phenotype of activated oral lichen-planus-associated-fibroblasts by targeting SOCS1. Mol Biol Rep 2022; 49:7783-7792. [PMID: 35733067 DOI: 10.1007/s11033-022-07603-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines are closely associated with OLP development. In addition to immune cells, fibroblasts have been reported to induce regional inflammation. MicroRNA(miR)-155-5p is reportedly increased significantly in OLP and is known to regulate inflammation. This study aimed to investigate the role of miR-155-5p in fibroblasts of OLP lesions. METHODS AND RESULTS Normal mucosal fibroblasts (NFs) and OLP associated-fibroblasts (OLP AFs) were isolated from the oral mucosa of 15 healthy controls and 30 OLP patients. We detected the expression of miR-155-5p and fibroblast activation protein alpha (FAP-α) using quantitative RT-PCR and analyzed their correlation. Interleukin (IL)-6 and IL-8 levels were determined using ELISA. Expression of suppressor of cytokine signaling (SOCS) 1 was analyzed by western blotting. A dual-luciferase reporter assay was performed to investigate the interaction between miR-155-5p and SOCS1. MiR-155-5p and FAP-α were significantly increased and positively correlated in OLP AFs. Overexpression of miR-155-5p in OLP AFs augmented IL-6 and IL-8 release and decreased SOCS1 expression, whereas knockdown of miR-155-5p in OLP AFs decreased IL-6 and IL-8 release. The expression of SOCS1 was downregulated in OLP AFs, and SOCS1 silencing augmented IL-6 and IL-8 production in OLP AFs. Furthermore, miR-155-5p inhibited SOCS1 expression by directly targeting its 3'-UTR in OLP AFs. CONCLUSIONS MiR-155-5p regulates the secretion of IL-6 and IL-8 by downregulating the expression of SOCS1 in activated OLP AFs. Our results provide novel insights into the pathogenesis of OLP and identify a potential new target for OLP therapy.
Collapse
Affiliation(s)
- Juehua Cheng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuyao Zhang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jingjing Yang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Juanyong Xu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
31
|
Bobeica C, Niculet E, Craescu M, Parapiru EL, Musat CL, Dinu C, Chiscop I, Nechita L, Debita M, Stefanescu V, Stefanopol IA, Nechifor A, Pelin AM, Balan G, Chirobocea S, Vasile CI, Tatu AL. CREST Syndrome in Systemic Sclerosis Patients - Is Dystrophic Calcinosis a Key Element to a Positive Diagnosis? J Inflamm Res 2022; 15:3387-3394. [PMID: 35706527 PMCID: PMC9191197 DOI: 10.2147/jir.s361667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction CREST syndrome is a clinical entity associated with systemic sclerosis, which meets at least three of the five clinical features: calcinosis, Raynaud’s phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia. Three of these clinical features (Raynaud’s phenomenon, sclerodactyly and esophageal dysmotility) are often present in classical subsets of SSc: limited and diffuse, and their presence in association does not define CREST syndrome. Calcinosis seems to be less common in SSc and its association with other clinical features is characteristic of CREST syndrome. Therefore, it can be appreciated that calcinosis is the key element of CREST syndrome. Methods This study included a number of 37 candidates with SSc, diagnosed with the help of the American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) 2013 criteria. Results and Discussions These three elements (calcinosis, Raynaud’s phenomenon, esophageal dysmotility) were recorded both in the limited subset of SSc, but especially in the subset of diffuse SSc, contrary to the data in the literature. Conclusion We appreciate that CREST syndrome is a clinical entity that can overlap with both subsets of SSc. Given the divergent views of the authors on the classification of CREST syndrome, future studies may contribute to a reassessment of SSc classification.
Collapse
Affiliation(s)
- Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR (Centrul Integrat Multidisciplinar de Cercetare de Interfata Dermatologica - CIM-CID), 'Dunărea de Jos' University, Galați, Romania
| | - Mihaela Craescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena-Laura Parapiru
- Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Carmina Liana Musat
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Ciprian Dinu
- Dental Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Iulia Chiscop
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Mihaela Debita
- Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Victorita Stefanescu
- Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Ioana Anca Stefanopol
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania.,Department of Pediatrics, Clinical Emergency Hospital for Children "Sf. Ioan", Galati, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Ana Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Gabriela Balan
- Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania.,Department of Gastroenterology, "Sf. Apostol Andrei" County Emergency Clinical Hospital, Galați, Romania.,Research Center in the Field of Medical and Pharmaceutical Sciences, "Dunărea de Jos" University, Galați, Romania
| | - Silvia Chirobocea
- Department of Neurology, Municipal Emergency Hospital, Moinești, Romania
| | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania
| | - Alin Laurentiu Tatu
- Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR (Centrul Integrat Multidisciplinar de Cercetare de Interfata Dermatologica - CIM-CID), 'Dunărea de Jos' University, Galați, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, Dunărea de Jos University, Galați, Romania.,Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galați, Romania
| |
Collapse
|
32
|
Huldani H, Abdalkareem Jasim S, Olegovich Bokov D, Abdelbasset WK, Nader Shalaby M, Thangavelu L, Margiana R, Qasim MT. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol 2022; 106:108634. [PMID: 35193053 DOI: 10.1016/j.intimp.2022.108634] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been proven to have superior potential to be used astherapeutic candidates in various disorders. Nevertheless, the clinical application of these cells have been restricted because of their tumorigenic properties. Increasing evidence has established that the valuable impacts of MSCs are mainly attributable to the paracrine factors including extracellular vesicles (EVs). EVs are nanosized double-layer phospholipid membrane vesicles contain various proteins, lipids and miRNAs which mediate cell-to-cell communications. Due to their inferior immunogenicity and tumorigenicity, as well as easier management, EVs have drawn attention as potential cell-free replacement therapy to MSCs. For that reason, herein, we reviewed the recent findings of researches on different MSC-EVs and their effectiveness in the treatment of several autoimmune and rheumatic diseases including multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, osteoporosis, and systemic lupus erythematosus as well as Sjogren's syndrome, systemic sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
33
|
Martínez BA, Shrotri S, Kingsmore KM, Bachali P, Grammer AC, Lipsky PE. Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases. SCIENCE ADVANCES 2022; 8:eabn4776. [PMID: 35486723 PMCID: PMC9054015 DOI: 10.1126/sciadv.abn4776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, but all four diseases displayed common enrichment in multiple inflammatory signatures. These findings were confirmed by both classification and regression tree analysis and machine learning (ML) models. Nonlesional samples from each disease also differed from normal samples and each other by ML. Notably, the features used in classification of nonlesional disease were more distinct than their lesional counterparts, and GSVA confirmed unique features of nonlesional disease. These data show that lesional and nonlesional skin samples from inflammatory skin diseases have unique profiles of gene expression abnormalities, especially in nonlesional skin, and suggest a model in which disease-specific abnormalities in "prelesional" skin may permit environmental stimuli to trigger inflammatory responses leading to both the unique and shared manifestations of each disease.
Collapse
|
34
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
35
|
Zaaroor Levy M, Rabinowicz N, Yamila Kohon M, Shalom A, Berl A, Hornik-Lurie T, Drucker L, Tartakover Matalon S, Levy Y. MiRNAs in Systemic Sclerosis Patients with Pulmonary Arterial Hypertension: Markers and Effectors. Biomedicines 2022; 10:biomedicines10030629. [PMID: 35327430 PMCID: PMC8945806 DOI: 10.3390/biomedicines10030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a major cause of death in systemic sclerosis (SSc). Early detection may improve patient outcomes. Methods: We searched for circulating miRNAs that would constitute biomarkers in SSc patients with PAH (SSc-PAH). We compared miRNA levels and laboratory parameters while evaluating miRNA levels in white blood cells (WBCs) and myofibroblasts. Results: Our study found: 1) miR-26 and miR-let-7d levels were significantly lower in SSc-PAH (n = 12) versus SSc without PAH (SSc-noPAH) patients (n = 25); 2) a positive correlation between miR-26 and miR-let-7d and complement-C3; 3) GO-annotations of genes that are miR-26/miR-let-7d targets and that are expressed in myofibroblast cells, suggesting that these miRNAs regulate the TGF-β-pathway; 4) reduced levels of both miRNAs accompanied fibroblast differentiation to myofibroblasts, while macitentan (endothelin receptor-antagonist) increased the levels. WBCs of SSc-noPAH and SSc-PAH patients contained equal amounts of miR-26/miR-let-7d. During the study, an echocardiograph that predicted PAH development, showed increased pulmonary artery pressure in three SSc-noPAH patients. At study initiation, those patients and an additional SSc-noPAH patient, who eventually developed PAH, had miR-let-7d/miR-26 levels similar to those of SSc-PAH patients. This implies that reduced miR-let-7d/miR-26 levels might be an early indication of PAH. Conclusions: miR-26 and miR-let-7d may be serological markers for SSc-PAH. The results of our study suggest their involvement in myofibroblast differentiation and complement pathway activation, both of which are active in PAH development.
Collapse
Affiliation(s)
- Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Noa Rabinowicz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | | | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| |
Collapse
|
36
|
Papadimitriou TI, van Caam A, van der Kraan PM, Thurlings RM. Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis. Biomedicines 2022; 10:316. [PMID: 35203525 PMCID: PMC8869277 DOI: 10.3390/biomedicines10020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.
Collapse
Affiliation(s)
- Theodoros-Ioannis Papadimitriou
- Department of Rheumatic Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.v.C.); (P.M.v.d.K.); (R.M.T.)
| | | | | | | |
Collapse
|
37
|
Kuret T, Sodin-Šemrl S, Leskošek B, Ferk P. Single Cell RNA Sequencing in Autoimmune Inflammatory Rheumatic Diseases: Current Applications, Challenges and a Step Toward Precision Medicine. Front Med (Lausanne) 2022; 8:822804. [PMID: 35118101 PMCID: PMC8804286 DOI: 10.3389/fmed.2021.822804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Single cell RNA sequencing (scRNA-seq) represents a new large scale and high throughput technique allowing analysis of the whole transcriptome at the resolution of an individual cell. It has emerged as an imperative method in life science research, uncovering complex cellular networks and providing indices that will eventually lead to the development of more targeted and personalized therapies. The importance of scRNA-seq has been particularly highlighted through the analysis of complex biological systems, in which cellular heterogeneity is a key aspect, such as the immune system. Autoimmune inflammatory rheumatic diseases represent a group of disorders, associated with a dysregulated immune system and high patient heterogeneity in both pathophysiological and clinical aspects. This complicates the complete understanding of underlying pathological mechanisms, associated with limited therapeutic options available and their long-term inefficiency and even toxicity. There is an unmet need to investigate, in depth, the cellular and molecular mechanisms driving the pathogenesis of rheumatic diseases and drug resistance, identify novel therapeutic targets, as well as make a step forward in using stratified and informed therapeutic decisions, which could now be achieved with the use of single cell approaches. This review summarizes the current use of scRNA-seq in studying different rheumatic diseases, based on recent findings from published in vitro, in vivo, and clinical studies, as well as discusses the potential implementation of scRNA-seq in the development of precision medicine in rheumatology.
Collapse
Affiliation(s)
- Tadeja Kuret
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Polonca Ferk
| |
Collapse
|
38
|
Stegemann A, Raker V, Del Rey A, Steinbrink K, Böhm M. Expression of the α7 Nicotinic Acetylcholine Receptor Is Critically Required for the Antifibrotic Effect of PHA-543613 on Skin Fibrosis. Neuroendocrinology 2022; 112:446-456. [PMID: 34120115 DOI: 10.1159/000517772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Targeting the α7 nicotinic acetylcholine receptor (α7nAChR) has recently been suggested as a potential new treatment for fibrotic skin diseases. Here, we performed a genetic and pharmacologic approach to clarify the role of this receptor in the bleomycin (BLM) mouse model of skin fibrosis using α7nAChR KO mice. METHODS We analyzed the expression of extracellular matrix (ECM) components in murine skin using quantitative RT-PCR, pepsin digestion/SDS-PAGE of proteins and performed hydroxyproline assays as well as histological/immunohistochemical staining of skin sections. To identity the target cells of the α7nAChR agonist PHA-543613, we used murine dermal fibroblasts (MDF). We tested their response to the profibrotic cytokine transforming growth factor-β1 (TGF-β1) and utilized gene silencing to elucidate the role of the α7nAChR. RESULTS We confirmed our previous findings on C3H/HeJ mice and detected a suppressive effect of PHA-543613 on BLM-induced skin fibrosis in the mouse strain C57BL/6J. This antifibrotic effect of PHA-543613 was abrogated in α7nAChR-KO mice. Interestingly, α7nAChR-KO animals exhibited a basal profibrotic signature by higher RNA expression of ECM genes and hydroxyproline content than WT mice. In WT MDF, PHA-543613 suppressed ECM gene expression induced by TGF-β1. Gene silencing of α7nAChR by small interfering RNA neutralized the effects of PHA-543613 on TGF-β1-mediated ECM gene expression. CONCLUSION In summary, we have identified the α7nAChR as the essential mediator of the antifibrotic effect of PHA-543613. MDF are directly targeted by PHA-543613 to suppress collagen synthesis. Our findings emphasize therapeutic exploitation of α7nAChR receptor agonists in fibrotic skin diseases.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Verena Raker
- Department of Dermatology, University of Münster, Münster, Germany
- Department of Dermatology, University of Mainz, Mainz, Germany
| | - Adriana Del Rey
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Laurent P, Lapoirie J, Leleu D, Levionnois E, Grenier C, Jurado‐Mestre B, Lazaro E, Duffau P, Richez C, Seneschal J, Pellegrin J, Constans J, Schaeverbeke T, Douchet I, Duluc D, Pradeu T, Chizzolini C, Blanco P, Truchetet M, Contin‐Bordes C. Interleukin‐1‐β‐Activated
Microvascular Endothelial Cells Promote
DC‐SIGN
+ Alternative Macrophages Associated with Skin Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2021; 74:1013-1026. [DOI: 10.1002/art.42061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Paôline Laurent
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | | | - Damien Leleu
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Emeline Levionnois
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Cyrielle Grenier
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Blanca Jurado‐Mestre
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Estibaliz Lazaro
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Pierre Duffau
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Christophe Richez
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | | | | | - Joel Constans
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | | | - Isabelle Douchet
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Dorothée Duluc
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Thomas Pradeu
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
| | - Carlo Chizzolini
- Pathology and Immunology, School of Medicine Geneva University Switzerland
| | - Patrick Blanco
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Marie‐Elise Truchetet
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| | - Cécile Contin‐Bordes
- ImmunoConcEpt Laboratory, CNRS UMR 5164 Bordeaux University F‐33076 Bordeaux France
- University Hospital Centre Bordeaux F‐33000 Bordeaux France
| |
Collapse
|
40
|
Sawada K, Hamaguchi Y, Mizumaki K, Oishi K, Maeda S, Ikawa Y, Komuro A, Takehara K, Matsushita T. A role for FcγRIIB in the development of murine bleomycin-induced fibrosis. J Dermatol Sci 2021; 104:201-209. [PMID: 34844843 DOI: 10.1016/j.jdermsci.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by excessive fibrosis. FcγRIIB is a low-affinity receptor for the Fc fragment of IgG. FcγRIIB is expressed on the surface of various leukocyte subsets and signals negative feedback pathways to down-regulate B-cell antigen receptor signaling. OBJECTIVE The aim of the present study was to investigate the role of FcγRIIB in the development of a murine bleomycin-induced scleroderma model. METHODS The experimental fibrosis model was generated by the intradermal injection of bleomycin into wild-type (WT) and FcγRIIB-deficient (FcγRIIB-/-) mice. We histologically assessed skin and lung fibrosis as well as inflammatory cell infiltration. Cytokine and chemokine expression levels were measured with RT-PCR. RESULTS The severity of fibrosis in the skin and lung was significantly worse in FcγRIIB-/- mice than in WT mice. In the skin of bleomycin-treated mice, the numbers of CD8+ T cells, F4/80+ macrophages, MPO+ neutrophils, NK1.1+NK cells, and B220+ B cells were significantly higher in FcγRIIB-/- mice than in WT mice. The expression of TNF-α and IL-1β was significantly higher in FcγRIIB-/- mice than in WT mice as was the expression of ICAM-1, CXCL2, and CCL3 in the affected skin. An adoptive transfer of splenic leukocytes from FcγRIIB-/- mice into WT mice showed exacerbated skin and lung fibrosis compared to WT mice without an adoptive transfer. CONCLUSION These results indicate that FcγRIIB plays an inhibitory role in skin and lung fibrosis. Moreover, modulating FcγRIIB signaling has potential as a therapeutic approach for SSc.
Collapse
Affiliation(s)
- Kaori Sawada
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Oishi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shintaro Maeda
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Ikawa
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akito Komuro
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
41
|
Ikawa T, Ichimura Y, Miyagawa T, Fukui Y, Toyama S, Omatsu J, Awaji K, Norimatsu Y, Watanabe Y, Yoshizaki A, Sato S, Asano Y. The Contribution of LIGHT to the Development of Systemic Sclerosis by Modulating IL-6 and T Helper Type 1 Chemokine Expression in Dermal Fibroblasts. J Invest Dermatol 2021; 142:1541-1551.e3. [PMID: 34838790 DOI: 10.1016/j.jid.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune and vascular disease resulting in multiple organ fibrosis, in which IL-6 and T helper (Th)2/Th17 cytokines serve as critical disease drivers. LIGHT is a proinflammatory cytokine promoting IL-6 production in lung fibroblasts and Th1 chemokine expression in dermal fibroblasts (DFs) stimulated with IFN-γ. In this study, we investigated the potential contribution of LIGHT to SSc development using clinical samples and animal models. In SSc-involved skin, LIGHT was upregulated in inflammatory cells, whereas herpesvirus entry mediator (HVEM), a receptor of LIGHT, was downregulated in DFs. Similar expression profiles of LIGHT and HVEM were reproduced in bleomycin-treated mice. Transcription factor FLI1 bound to the HVEM promoter, and FLI1 small interfering RNA suppressed HVEM expression in normal DFs. In SSc DFs, LIGHT significantly increased IL-6 production, whereas IFN-γ/LIGHT-dependent Th1 chemokine induction was decreased compared with that in normal DFs. Importantly, LIGHT small interfering RNA significantly attenuated bleomycin-induced skin fibrosis, and serum LIGHT levels were elevated in patients with diffuse cutaneous SSc and positively correlated with clinical parameters reflecting skin and pulmonary fibrosis. Taken together, these results suggest that altered response of DFs to LIGHT, namely increased IL-6 production and decreased Th1 chemokine expression, contributes to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Tetsuya Ikawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Martin Calderon L, Chaudhury M, Pope JE. Healthcare utilization and economic burden in systemic sclerosis: a systematic review. Rheumatology (Oxford) 2021; 61:3123-3131. [PMID: 34849627 DOI: 10.1093/rheumatology/keab847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Systemic Sclerosis (SSc) is characterized by vasculopathy, fibrosis of skin and internal organs, and autoimmunity with complications including interstitial lung disease, pulmonary hypertension, and digital ulcers with substantial morbidity and disability. Patients with SSc may require considerable healthcare resources with economic impact. The purpose of this systematic review was to provide a narrative synthesis of the economic impact and healthcare resource utilization associated with SSc. METHODS MEDLINE and EMBASE were searched from inception to January 20th, 2021. Studies were included if they provided information regarding the total, direct and indirect cost of SSc. The cost of SSc subtypes and associated complications was determined. Risk of bias assessments through the Joanna Briggs Institute cross-sectional and case series checklists, and the Newcastle-Ottawa Cohort and Case-Control study scales were performed. A narrative synthesis of included studies was planned. RESULTS 1777 publications were retrieved, of which 33 were included representing 20 cross-sectional, 10 cohort, and 3 case-control studies. Studies used various methods of calculating cost including prevalence-based cost-of-illness approach and health resource units cost analysis. Overall SSc total annual cost ranged from USD$14 959-$23 268 in USA, CAD$10 673-$18 453 in Canada, €4,607-€30 797 in Europe, and AUD$7,060-$11 607 in Oceania. Annual cost for SSc-associated interstitial lung disease and pulmonary hypertension was USD$31 285-$55 446 and $44 454-$63 320, respectively. CONCLUSION Cost-calculation methodology varied greatly between included studies. SSc represents significant patient and health resource economic burden. SSc-associated complications increase economic burden and are variable depending on geographical location, and access.
Collapse
Affiliation(s)
- Leonardo Martin Calderon
- Schulich School of Medicine and Dentistry, University of Western Ontario, Department of Medicine, London, Ontario, Canada
| | - Mitali Chaudhury
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Janet E Pope
- Schulich School of Medicine and Dentistry, University of Western Ontario, Division of Rheumatology, St. Joseph's Health Care, London, Ontario, Canada
| |
Collapse
|
43
|
Scleroderma-like Impairment in the Network of Telocytes/CD34 + Stromal Cells in the Experimental Mouse Model of Bleomycin-Induced Dermal Fibrosis. Int J Mol Sci 2021; 22:ijms222212407. [PMID: 34830288 PMCID: PMC8620338 DOI: 10.3390/ijms222212407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Considerable evidence accumulated over the past decade supports that telocytes (TCs)/CD34+ stromal cells represent an exclusive type of interstitial cells identifiable by transmission electron microscopy (TEM) or immunohistochemistry in various organs of the human body, including the skin. By means of their characteristic cellular extensions (telopodes), dermal TCs are arranged in networks intermingled with a multitude of neighboring cells and, hence, they are thought to contribute to skin homeostasis through both intercellular contacts and releasing extracellular vesicles. In this context, fibrotic skin lesions from patients with systemic sclerosis (SSc, scleroderma) appear to be characterized by a disruption of the dermal network of TCs, which has been ascribed to either cell degenerative processes or possible transformation into profibrotic myofibroblasts. In the present study, we utilized the well-established mouse model of bleomycin-induced scleroderma to gain further insights into the TC alterations found in cutaneous fibrosis. CD34 immunofluorescence revealed a severe impairment in the dermal network of TCs/CD34+ stromal cells in bleomycin-treated mice. CD31/CD34 double immunofluorescence confirmed that CD31-/CD34+ TC counts were greatly reduced in the skin of bleomycin-treated mice compared with control mice. Ultrastructural signs of TC injury were detected in the skin of bleomycin-treated mice by TEM. The analyses of skin samples from mice treated with bleomycin for different times by either TEM or double immunostaining and immunoblotting for the CD34/α-SMA antigens collectively suggested that, although a few TCs may transition to α-SMA+ myofibroblasts in the early disease stage, most of these cells rather undergo degeneration, and then are lost. Taken together, our data demonstrate that TC changes in the skin of bleomycin-treated mice mimic very closely those observed in human SSc skin, which makes this experimental model a suitable tool to (i) unravel the pathological mechanisms underlying TC damage and (ii) clarify the possible contribution of the TC loss to the development/progression of dermal fibrosis. In perspective, these findings may have important implications in the field of skin regenerative medicine.
Collapse
|
44
|
Expression of macrophage migration inhibitory factor and its receptor CD74 in systemic sclerosis. Cent Eur J Immunol 2021; 46:375-383. [PMID: 34764810 PMCID: PMC8574103 DOI: 10.5114/ceji.2021.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been associated with the
pathogenesis of several rheumatic diseases. In systemic sclerosis (SSc) it has
been shown that MIF expression is dysregulated in serum and skin. However, the
MIF receptor, CD74, has been poorly investigated and its potential role in the
pathogenesis of SSc remains unknown. This study aimed to analyze mRNA, tissue,
and serum expression of MIF and CD74 in patients with limited (lcSSc) and
diffuse (dcSSc) systemic sclerosis. A case-control study in 20 SSc patients and
20 control subjects (CS) from southern México was conducted. MIF and CD74
mRNA expression levels were quantified by real-time PCR, MIF serum levels were
measured by an ELISA kit, and MIF and its receptor CD74 were evaluated by
immunohistochemistry of skin biopsies. MIF mRNA expression was significantly
higher in CS than in SSc patients (p = 0.02), while CD74 showed no differences
between patients and CS. MIF serum levels were similar between SSc patients and
CS: dcSSc = 3.82 ng/ml, lcSSc = 3.57 ng/ml, and CS = 3.28 ng/ml. In skin
biopsies of SSc, MIF and CD74 were enhanced in keratinocytes, while they showed
decreased expression in endothelial cells. On the other hand, the staining of
CD74 was high in fibroblasts of dcSSc patients. Our findings show MIF and CD74
deregulation at the transcriptional and translational levels in SSc, which might
be associated with the proinflammatory process leading to tissue remodeling and
excessive fibrosis in SSc.
Collapse
|
45
|
Ikawa T, Miyagawa T, Fukui Y, Toyama S, Omatsu J, Awaji K, Norimatsu Y, Watanabe Y, Yoshizaki A, Sato S, Asano Y. Endothelial CCR6 expression due to FLI1 deficiency contributes to vasculopathy associated with systemic sclerosis. Arthritis Res Ther 2021; 23:283. [PMID: 34774095 PMCID: PMC8590233 DOI: 10.1186/s13075-021-02667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/31/2021] [Indexed: 12/03/2022] Open
Abstract
Background We have recently demonstrated that serum CCL20 levels positively correlate with mean pulmonary arterial pressure in patients with systemic sclerosis (SSc). Considering a proangiogenic effect of CCL20 on endothelial cells via CCR6, the CCL20/CCR6 axis may contribute to the development of SSc vasculopathy. Therefore, we explored this hypothesis using clinical samples, cultured cells, and murine SSc models. Methods The expression levels of CCL20 and CCR6 in the skin, mRNA levels of target genes, and the binding of transcription factor FLI1 to the target gene promoter were evaluated by immunostaining, quantitative reverse transcription PCR, and chromatin immunoprecipitation, respectively. Vascular permeability was evaluated by Evans blue dye injection in bleomycin-treated mice. Angiogenic activity of endothelial cells was assessed by in vitro angiogenesis assay. Results CCL20 expression was significantly elevated in dermal fibroblasts of patients with early diffuse cutaneous SSc, while CCR6 was significantly up-regulated in dermal small vessels of SSc patients irrespective of disease subtypes and disease duration. In human dermal microvascular endothelial cells, FLI1 siRNA induced the expression of CCR6, but not CCL20, and FLI1 bound to the CCR6 promoter. Importantly, vascular permeability, a representative SSc-like vascular feature of bleomycin-treated mice, was attenuated by Ccr6 siRNA treatment, and CCR6 siRNA suppressed the angiogenic activity of human dermal microvascular endothelial cells assayed by in vitro tube formation. Conclusions The increased expression of endothelial CCR6 due to FLI1 deficiency may contribute to the development of SSc vasculopathy.
Collapse
Affiliation(s)
- Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Asano Y. Insights Into the Preclinical Models of SSc. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Halo perifolicular blanquecino a la dermatoscopia del signo de sal y pimienta en el diagnóstico de esclerosis sistémica y enfermedad pulmonar intersticial. ACTAS DERMO-SIFILIOGRAFICAS 2021; 113:970-972. [DOI: 10.1016/j.ad.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
|
48
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
49
|
Li M, Chen J, Liu S, Sun X, Xu H, Gao Q, Chen X, Xi C, Huang D, Deng Y, Zhang F, Gao S, Qiu S, Tao X, Zhai J, Wei H, Yao H, Chen W. Spermine-Related DNA Hypermethylation and Elevated Expression of Genes for Collagen Formation are Susceptible Factors for Chemotherapy-Induced Hand-Foot Syndrome in Chinese Colorectal Cancer Patients. Front Pharmacol 2021; 12:746910. [PMID: 34539419 PMCID: PMC8440935 DOI: 10.3389/fphar.2021.746910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Hand-foot syndrome (HFS) is a common capecitabine-based chemotherapy-related adverse event (CRAE) in patients with colorectal cancer (CRC). It is of great significance to comprehensively identify susceptible factors for HFS, and further to elucidate the biomolecular mechanism of HFS susceptibility. We performed an untargeted multi-omics analysis integrating DNA methylation, transcriptome, and metabolome data of 63 Chinese CRC patients who had complete CRAE records during capecitabine-based chemotherapy. We found that the metabolome changes for each of matched plasma, urine, and normal colorectal tissue (CRT) in relation to HFS were characterized by chronic tissue damage, which was indicated by reduced nucleotide salvage, elevated spermine level, and increased production of endogenous cytotoxic metabolites. HFS-related transcriptome changes of CRT showed an overall suppressed inflammation profile but increased M2 macrophage polarization. HFS-related DNA methylation of CRT presented gene-specific hypermethylation on genes mainly for collagen formation. The hypermethylation was accumulated in the opensea and shore regions, which elicited a positive effect on gene expression. Additionally, we developed and validated models combining relevant biomarkers showing reasonably good discrimination performance with the area under the receiver operating characteristic curve values from 0.833 to 0.955. Our results demonstrated that the multi-omics variations associated with a profibrotic phenotype were closely related to HFS susceptibility. HFS-related biomolecular variations in CRT contributed more to the relevant biomolecular mechanism of HFS than in plasma and urine. Spermine-related DNA hypermethylation and elevated expression of genes for collagen formation were closely associated with HFS susceptibility. These findings provided new insights into the susceptible factors for chemotherapy-induced HFS, which can promote the implementation of individualized treatment against HFS.
Collapse
Affiliation(s)
- Mingming Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shaoqun Liu
- Department of Gastric Intestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Sun
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Huilin Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qianmin Gao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xintao Chen
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chaowen Xi
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Doudou Huang
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jingwen Zhai
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hua Wei
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Pharmacy, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, China
| | - Houshan Yao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Giordo R, Thuan DTB, Posadino AM, Cossu A, Zinellu A, Erre GL, Pintus G. Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells. Molecules 2021; 26:4729. [PMID: 34443317 PMCID: PMC8399120 DOI: 10.3390/molecules26164729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell injury is an early event in systemic sclerosis (SSc) pathogenesis and several studies indicate oxidative stress as the trigger of SSc-associated vasculopathy. Here, we show that circulating factors present in sera of SSc patients increased reactive oxygen species (ROS) production and collagen synthesis in human pulmonary microvascular endothelial cells (HPMECs). In addition, the possibility that iloprost, a drug commonly used in SSc therapy, might modulate the above-mentioned biological phenomena has been also investigated. In this regard, as compared to sera of SSc patients, sera of iloprost-treated SSc patients failed to increased ROS levels and collagen synthesis in HPMEC, suggesting a potential antioxidant mechanism of this drug.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| | - Duong Thi Bich Thuan
- Faculty of Biochemistry, College of Health Sciences, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi 132002, Vietnam;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| |
Collapse
|