1
|
Nagarajan R, Ayyasamy L, Ganeshkumar P, Velusamy S, Murhekar M. Seropositivity of Chikungunya in Hospital Setting, India: A Systematic Review and Meta-Analysis. Indian J Community Med 2024; 49:805-811. [PMID: 39668927 PMCID: PMC11633274 DOI: 10.4103/ijcm.ijcm_63_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 12/14/2024] Open
Abstract
Backround Information about the chikungunya disease burden by age groups and geographic distribution is necessary to guide appropriate control measures. With this, we conducted a systematic review and meta-analysis to estimate the disease burden of chikungunya fever in India. Material and Methods We conducted this systematic review according to the Cochrane Collaboration guidelines. We retrieved relevant articles from PubMed and a free online search. Two investigators screened titles and abstracts and extracted data from the relevant articles. Our primary outcome is the proportion of laboratory-confirmed Chikungunya fever among clinically suspected patients. We used a random effect model to estimate the pooled proportion of Chikungunya fever. Result A total of 20 articles were included in the quantitative syntheses. The pooled proportion of laboratory-confirmed chikungunya fever from 20 studies estimated using the random effects model is 24% (95%CI: 15-34%). We found the pooled proportion in the southern region was 35% (95%CI: 4-66%), 28% (95%CI: 3-58%) in the western region, 24% (95%CI: 1-48%) in the eastern region, 20% (95%CI: 12-29%) in the northern region, and 4% (95%CI: 1-6%) in North-eastern region. Conclusion This review emphasizes the need to strengthen the surveillance of disease burden using multiple diagnostic tests and the need for an appropriate molecular diagnostic for early detection of the chikungunya virus.
Collapse
Affiliation(s)
- Ramya Nagarajan
- Division of Non-Communicable Disease, Indian Council of Medical Research- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Lavanya Ayyasamy
- Division of Non-Communicable Disease, Indian Council of Medical Research- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Parasuraman Ganeshkumar
- Division of Non-Communicable Disease, Indian Council of Medical Research- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Saravanakumar Velusamy
- Division of Infectious Disease and Epidemiology, Indian Council of Medical Research- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Manoj Murhekar
- Division of Infectious Disease and Epidemiology, Indian Council of Medical Research- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Mahin A, Chikmagalur Ravindra S, Ramesh P, Naik P, Raju R, Keshava Prasad TS, Abhinand CS. Unveiling Actin Cytoskeleton Role in Mediating Chikungunya-Associated Arthritis: An Integrative Proteome-Metabolome Study. Vector Borne Zoonotic Dis 2024; 24:753-762. [PMID: 38717066 DOI: 10.1089/vbz.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Background: Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Materials and Methods: Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. Results: The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Conclusion: Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Sourav Chikmagalur Ravindra
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
3
|
Badoni G, Gupta PK, Gupta P, Kaistha N, Mathuria YP, Pai MO, Kant R. Dengue-chikungunya infection in the tertiary care hospital of northern India: Cross-sectional latent class cluster analysis in viral infection. Heliyon 2023; 9:e14019. [PMID: 36925523 PMCID: PMC10011203 DOI: 10.1016/j.heliyon.2023.e14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cases of dengue and chikungunya fever are escalating all over India. Both viruses share a common vector, the "Aedes" mosquito. Due to similar clinical symptoms, both the dengue (DENV) and chikungunya (CHIKV) virus can circulate as co-infection. There is very limited data available on dengue-chikungunya co-infection in Uttarakhand, India. The purpose of this study was to determine the seroprevalence of dengue and chikungunya virus infections, as well as their co-infection, in patients presenting with clinical symptoms. Serum samples of clinically suspected patients from the tertiary care hospital of Uttarakhand were collected, and Latent Class Cluster Analysis was performed for clinical profiling. ELISA was performed for DENV and CHIKV. 279 cases were enrolled, out of which 222 (79.5%) came positive for dengue NS1 Ag, 143 (51.2%) for dengue IgM, 98 (35.1%) for IgG followed by 16 (5.7%) of CHIKV IgM, and 4 (1.4%) were NS1 Ag with CHIKV IgM. Among the clinical features, fever (n = 270, 96.8%) was the most common symptom in all suspected dengue and chikungunya cases. Other symptoms like chills (n = 254, 91.0%), arthralgia (n = 241, 86.4%), and headache (n = 240, 86.0%) were present in a significant number. Results showed fewer odds of getting both DENV and CHIKV infection simultaneously, but the risk is still not negligible. This study explores the clinical presentation of the suspected dengue-chikungunya case. The increasing incidence of dengue and chikungunya and their co-infection necessitate the authorities' active surveillance of endemic regions and effective patient care management.
Collapse
Affiliation(s)
- Gaurav Badoni
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Puneet Kumar Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, India
| | - Pratima Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, India
- Corresponding author.
| | - Neelam Kaistha
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, India
| | | | - Manju O. Pai
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ravi Kant
- Department of General Medicine, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
4
|
Zeyaullah M, Muzammil K, AlShahrani AM, Khan N, Ahmad I, Alam MS, Ahmad R, Khan WH. Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach. Vaccines (Basel) 2022; 10:1940. [PMID: 36423035 PMCID: PMC9697487 DOI: 10.3390/vaccines10111940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 08/08/2023] Open
Abstract
Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1-4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern.
Collapse
Affiliation(s)
- Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Md. Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wajihul H. Khan
- Department of Microbiology, All India Institute of Medical Sciences Delhi, New Delhi 110029, India
| |
Collapse
|
5
|
Ibemgbo SA, Nyodu R, Chaudhary S, Verma DK, Dixit K, Nayak K, Rani V, Gaind R, Chandele A, Sunil S. Short communication: Virological and B cell profiles of chikungunya and Dengue virus co-infections in Delhi during 2017-2019. Virus Res 2022; 320:198888. [PMID: 35977625 DOI: 10.1016/j.virusres.2022.198888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
With explosive epidemics of chikungunya in India since 2004, chikungunya virus (CHIKV) now co-circulates in geographical areas where Dengue virus (DENV) is already endemic and thus provides opportunity for the same mosquito to be infected with both viruses. Although there are excellent studies that have addressed the clinical of mono and co-infection, we have little to no knowledge on the current viral sequences that pre-dominate co-infections, and the B cell response elicited. In this study, we analyzed febrile patients that were confirmed to have DENV-CHIKV co-infections and asked the following questions: 1) what is the frequency of co-infections found in a single cycle of transmission; 2) what are the viral sequences associated with them; 3) what does the antibody secreting cell / plasmablast response look like in patients that are co-infected with both viruses. We report those co-infections occur at a frequency of 6.7% in the transmission cycle, and while DENV-3 is now frequently detected, we do not see a serotype bias in the patients that are co-infected with ESCA strain of CHIKV. Moreover, the effector B cell response (plasmablasts) observed are specific to both infecting viruses indicating no overt bias. Further studies to associate whether any of these properties have a bearing on clinical disease manifestation will be both timely and important.
Collapse
Affiliation(s)
- Sylvester Agha Ibemgbo
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajni Nyodu
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dileep Kumar Verma
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandana Rani
- Dept of Microbiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Rajni Gaind
- Dept of Microbiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
6
|
Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants. Acta Trop 2022; 231:106408. [PMID: 35305942 DOI: 10.1016/j.actatropica.2022.106408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Dengue and chikungunya virus are important arboviruses of public health concern. In the past decades, they have accounted for numerous outbreaks of dengue and chikungunya in different parts of the world. Several cases of concurrent infection of dengue and chikungunya have been documented. However, the true burden of this concurrent infection is unknown. Here, a systematic review and meta-analysis of published data on the prevalence of dengue and chikungunya coinfection in the human population was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Six electronic databases (Web of science, Embase, PubMed, ScienceDirect, Scopus, and Google Scholar) were searched without year or language restrictions for relevant studies. The study protocol was registered with PROSPERO (CRD42020175344). Eighty-three studies involving a total of 43,341 participants were included. The random-effects model was employed to calculate the summary estimates. A pooled global prevalence of 2.5% (95% CI: 1.8-3.4) was obtained for dengue and chikungunya coinfection. Males and females appear to be coinfected at a fairly similar rate. Among the regions, Asia accounted for the highest prevalence (3.3%, 95% CI: 2.3-4.6) while North America was the least (0.8%, 95% CI: 0.3-2.4). The prevalence estimates varied across different countries. A much higher prevalence rates were obtained for Colombia (37.4%, 95% CI: 9.1-78.1), Madagascar (18.2%, 95% CI: 10.1-30.6), Laos (12.5%, 95% CI: 5.3-26.7), Maldives (4.5%, 95% CI: 1.5-13.0) and Thailand (3.7%, 95% CI: 0.4-26.3). This first extensive systematic review and meta-analysis reveals dengue and chikungunya coinfection as a global problem worthy of consideration. It is therefore pertinent that both infections be assessed during diagnosis, mosquito vector control practices be implemented, and vaccine development strides be supported globally.
Collapse
|
7
|
Gupta M, Singla N, Mohi G. An encounter with potentially reemerging chikungunya infection during 2016-2017. APOLLO MEDICINE 2022. [DOI: 10.4103/am.am_98_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Anukumar B, Asia Devi T, Koshy J, Nikhil NT, Sugunan AP. Molecular characterization of chikungunya virus isolates from two localized outbreaks during 2014-2019 in Kerala, India. Arch Virol 2021; 166:2895-2899. [PMID: 34351521 DOI: 10.1007/s00705-021-05186-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
After the 2005-2009 chikungunya epidemic, intermittent outbreaks were reported in many parts of India. The outbreaks were caused by either locally circulating strains or imported viruses. Virus transmission routes can be traced by complete genome sequencing studies. We investigated two outbreaks in 2014 and 2019 in Kerala, India. Chikungunya virus (CHIKV) was isolated from the samples, and whole genomes were sequenced for a 2014 isolate and a 2019 isolate. Phylogenetic analysis revealed that the isolates formed a separate group with a 2019 isolate from Pune, Maharashtra, and belonged to the East/Central/South African (ECSA) genotype, Indian subcontinent sublineage of the Indian Ocean Lineage (IOL). A novel mutation at amino acid position 76 of the E2 gene was observed in the group. The phylogenetic results suggest that the outbreaks might have been caused by a virus that had been circulating in India since 2014. A detailed study is needed to investigate the evolution of CHIKV in India.
Collapse
Affiliation(s)
- B Anukumar
- ICMR-National Institute of Virology, Kerala Unit, Govt. T. D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India.
| | - T Asia Devi
- ICMR-National Institute of Virology, Kerala Unit, Govt. T. D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India
| | - Jijo Koshy
- ICMR-National Institute of Virology, Kerala Unit, Govt. T. D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India
| | - N T Nikhil
- ICMR-National Institute of Virology, Kerala Unit, Govt. T. D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India
| | - A P Sugunan
- ICMR-National Institute of Virology, Kerala Unit, Govt. T. D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India
| |
Collapse
|
9
|
Chipwaza B, Sumaye RD, Weisser M, Gingo W, Yeo NKW, Amrun SN, Okumu FO, Ng LFP. Occurrence of 4 Dengue Virus Serotypes and Chikungunya Virus in Kilombero Valley, Tanzania, During the Dengue Outbreak in 2018. Open Forum Infect Dis 2021; 8:ofaa626. [PMID: 33511240 PMCID: PMC7814382 DOI: 10.1093/ofid/ofaa626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dengue and Chikungunya viruses can cause large-scale epidemics, with attack rates of up to 80%. In Tanzania, there have been repeated outbreaks of dengue fever, the most recent in 2018 and 2019, mostly affecting the coastal areas. Despite the importance of these viruses, there is limited knowledge on the epidemiology of dengue (DENV) and Chikungunya (CHIKV) in Tanzania. This study was conducted to investigate the prevalence of DENV and CHIKV in Kilombero Valley, Tanzania. METHODS A cross-sectional study was conducted at Kibaoni Health Center in Kilombero Valley, Southeastern Tanzania, in the rainy and dry seasons of 2018. Febrile patients of any age and gender were enrolled from the outpatient department. Blood samples were taken and screened for DENV and CHIKV viral RNA by real-time reverse transcription polymerase chain reaction assays. RESULTS Overall, 294 patients were recruited. Most were females (65%), and one-third of patients were aged 14-25 years. DENV and CHIKV were detected in 29 (9.9%) and 3 (1.0%) patients, respectively. DENV was detected across all age groups during both the dry and rainy seasons. Although all 4 DENV serotypes were detected, serotypes 1 and 3 dominated and were present in 14 patients (42.4%) each. Additionally, the study showed DENV-1 and DENV-3 co-infections. CONCLUSIONS This study reveals the co-circulation of all 4 DENV serotypes and CHIKV in Kilombero. Importantly, we report the first occurrence of DENV-4 in Tanzania. Unlike previous DENV outbreaks caused by DENV-2, the 2018 outbreak was dominated by DENV-1 and DENV-3. The occurrence of all serotypes suggests the possibility of severe clinical outcomes in future DENV epidemics in Tanzania.
Collapse
Affiliation(s)
- Beatrice Chipwaza
- St. Francis University College of Health and Allied Sciences (SFUCHAS), Ifakara, Tanzania
- Ifakara Health Institute, Ifakara, Tanzania
| | | | - Maja Weisser
- Ifakara Health Institute, Ifakara, Tanzania
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Winfrid Gingo
- St. Francis Referral Hospital (SFRH), Ifakara, Tanzania
| | - Nicholas Kim-Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
| | - Fredros O Okumu
- Ifakara Health Institute, Ifakara, Tanzania
- Faculty of Health Science, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Castellanos JE, Jaimes N, Coronel-Ruiza C, Rojas JP, Mejía LF, Villarreal VH, Maya LE, Claros LM, Orjuela C, Calvo E, Muñoz MV, Velandia-Romero ML. Dengue-chikungunya coinfection outbreak in children from Cali, Colombia in 2018-2019. Int J Infect Dis 2020; 102:97-102. [PMID: 33075526 DOI: 10.1016/j.ijid.2020.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To identify the arbovirus involved in febrile cases identified in a pediatric clinic in Cali, Valle del Cauca province, Colombia, and study the clinical characteristics. METHODS A descriptive, prospective study enrolled 345 febrile children for 12 months in a pediatric clinic. Medical record registers documenting signs and symptoms, and serum samples were analyzed to detect DENV, CHIKV, and ZIKV by reverse transcription-polymerase chain reaction and serology methods. Diagnosis at the time of admission and discharge were compared based on laboratory test results. RESULTS All patients were diagnosed as severe dengue at admission. Molecular detection and serology tests identified 143 CHIKV-positive (41.4%), 20 DENV-positive (5.8%), and 123 DENV-CHIKV coinfection patients (35.7%). DENV or CHIKV serology test results of these double-infected patients yield poor performance to confirm patient cases. ZIKV infection was detected in 5 patients (1.4%), every time as double or triple infections. CONCLUSION . A sustained CHIKV circulation and transmission was confirmed causing febrile illness in children and indicating that this virus spreads even during the regular DENV season, leading to double infections and altering clinical symptoms. Specific clinical tests are necessary to closely identify the arbovirus involved in causing infectious diseases that can help in better treatment and mosquito-transmitted virus surveillance.
Collapse
Affiliation(s)
| | - Nayeli Jaimes
- Grupo de Virología, Universidad El Bosque, Bogotá, Colombia
| | - Carolina Coronel-Ruiza
- Grupo de Virología, Universidad El Bosque, Bogotá, Colombia; Fundación Clínica Infantil Club Noel, Cali, Colombia
| | | | - Luis F Mejía
- Fundación Clínica Infantil Club Noel, Cali, Colombia
| | | | - Luz E Maya
- Fundación Clínica Infantil Club Noel, Cali, Colombia
| | - Luz M Claros
- Fundación Clínica Infantil Club Noel, Cali, Colombia
| | - Cielo Orjuela
- Fundación Clínica Infantil Club Noel, Cali, Colombia
| | - Eliana Calvo
- Grupo de Virología, Universidad El Bosque, Bogotá, Colombia
| | | | | |
Collapse
|
11
|
Ghosh A, Mullapudi T, Bomanna S, Tyagi BK, Ravi V, Desai A. Understanding the mechanism of Chikungunya virus vector competence in three species of mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:375-387. [PMID: 30913314 DOI: 10.1111/mve.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/28/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE-06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non-permissiveness of these mosquitoes to infection.
Collapse
Affiliation(s)
- A Ghosh
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - T Mullapudi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - S Bomanna
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - B K Tyagi
- Centre for Research in Medical Entomology, Madurai, Tamil Nadu, India
| | - V Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - A Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| |
Collapse
|
12
|
Rao PN, van Eijk AM, Choubey S, Ali SZ, Dash A, Barla P, Oraon RR, Patel G, Nandini P, Acharya S, Mohanty S, Carlton JM, Satpathi S. Dengue, chikungunya, and scrub typhus are important etiologies of non-malarial febrile illness in Rourkela, Odisha, India. BMC Infect Dis 2019; 19:572. [PMID: 31269906 PMCID: PMC6607595 DOI: 10.1186/s12879-019-4161-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We conducted a diagnostic surveillance study to identify Plasmodium, dengue virus, chikungunya virus, and Orientia tsutsugamushi infections among febrile patients who underwent triage for malaria in the outpatient department at Ispat General Hospital, Rourkela, Odisha, India. METHODS Febrile patients were enrolled from January 2016-January 2017. Blood smears and small volumes or vacutainers of blood were collected from study participants to carry out diagnostic assays. Malaria was diagnosed using rapid diagnostic tests (RDT), microscopy, and PCR. Dengue, chikungunya, and scrub typhus infections were identified using rapid diagnostic test kits and ELISA. RESULTS Nine hundred and fifty-four patients were prospectively enrolled in our study. The majority of patients were male (58.4%) and more than 15 years of age (66.4%). All 954 enrollees underwent additional testing for malaria; a subset of enrollees (293/954) that had larger volumes of plasma available was also tested for dengue, chikungunya and scrub typhus by either RDT or ELISA or both tests. Fifty-four of 954 patients (5.7%) were positive for malaria by RDT, or microscopy, or PCR. Seventy-four of 293 patients (25.3%) tested positive for dengue by either RDT or ELISA, and 17 of 293 patients (5.8%) tested positive for chikungunya-specific IgM by either ELISA or RDT. Ten of 287 patients tested (3.5%) were positive for scrub typhus by ELISA specific for scrub typhus IgM. Seventeen patients among 290 (5.9%) with results for ≥3 infections tested positive for more than one infection. Patients with scrub typhus and chikungunya had high rates of co-infection: of the 10 patients positive for scrub typhus, six were positive for dengue (p = 0.009), and five of 17 patients positive for chikungunya (by RDT or ELISA) were also diagnosed with malaria (p < 0.001). CONCLUSIONS Dengue, chikungunya and scrub typhus are important etiologies of non-malarial febrile illness in Rourkela, Odisha, and comorbidity should be considered. Routine febrile illness surveillance is required to accurately establish the prevalence of these infections in this region, to offer timely treatment, and to implement appropriate methods of control.
Collapse
Affiliation(s)
- Pavitra N Rao
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.,, Present Address: Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Sandhya Choubey
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Syed Zeeshan Ali
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Aditee Dash
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Punam Barla
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Rajshri Rani Oraon
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Gautam Patel
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - P Nandini
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Subrata Acharya
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | | |
Collapse
|
13
|
Agarwal A, Gupta S, Yadav AK, Nema RK, Ansari K, Biswas D. Molecular and phylogenetic analysis of Chikungunya virus in Central India during 2016 and 2017 outbreaks reveal high similarity with recent New Delhi and Bangladesh strains. INFECTION GENETICS AND EVOLUTION 2019; 75:103940. [PMID: 31247338 DOI: 10.1016/j.meegid.2019.103940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/09/2019] [Accepted: 06/22/2019] [Indexed: 11/26/2022]
Abstract
Central India witnessed Chikungunya virus (CHIKV) outbreaks in 2016 and 2017. The present report is a hospital based cross-sectional study on the serological and molecular epidemiology of the outbreak. Mutational and phylogenetic analysis was conducted to ascertain the genetic relatedness of the central Indian strains with other Indian and global strains. Chikungunya infection was confirmed in the clinically suspected patients by the detection of anti-CHIKV IgM antibody by ELISA and viral RNA by RT-PCR. A representative set of the RT-PCR positive samples were sequenced for E1 gene and analyzed to identify the emerging mutations and establish their phylogenetic relationship, particularly with other contemporary strains. Phylogenetic analysis revealed the present strains to be of East Central South African (ECSA) genotype. Emergence of a variant strain was observed in the year 2016, which became the predominant strain in this region in 2017. The strains showed significant identity with recent New Delhi strains of 2015 and 2016 and Bangladesh strains of 2017. The epidemic mutation A226V which emerged in 2006 outbreaks of India and Indian Ocean Islands was found to be absent in the current strains. Among the important mutations viz. K211E, M269 V, D284E, I317V & V322A observed in the recent strains. I317V is a novel mutation which has emerged very recently as it was found only in central Indian (2016, 2017), New Delhi strains (2015, 2016) and Bangladesh strains (2017). This study has identified a unique mutation E1:I317V in the Central Indian strains, which is present only in recent New Delhi and Bangladesh strains till date. This study highlights the need for continuous molecular surveillance of circulating CHIKV strains in order to facilitate the prompt identification of novel strains of this virus and enable the elucidation of their clinical correlates.
Collapse
Affiliation(s)
- Ankita Agarwal
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India
| | - Sudheer Gupta
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India
| | - Ashvini Kumar Yadav
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India
| | - Ram Kumar Nema
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India
| | - Kudsia Ansari
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India
| | - Debasis Biswas
- Regional Virology Laboratory, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India.
| |
Collapse
|
14
|
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol 2019; 17:e3000130. [PMID: 30668574 PMCID: PMC6358106 DOI: 10.1371/journal.pbio.3000130] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sean M. Cavany
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Parveen N, Islam A, Tazeen A, Hisamuddin M, Abdullah M, Naqvi IH, Faizan MI, Gulyani D, Ahmed A, Parveen S. Circulation of single serotype of Dengue Virus (DENV-3) in New Delhi, India during 2016: A change in the epidemiological trend. J Infect Public Health 2019; 12:49-56. [DOI: 10.1016/j.jiph.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/20/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
|
16
|
Saswat T, Sahoo N, Muduli S, Debata NK, Chattopadhyay S, Chattopadhyay S. Epidemiological trends and molecular dynamics of dengue, chikungunya virus infection, coinfection, and other undifferentiated fever during 2015-2016 in Odisha, India. J Med Virol 2018; 91:163-170. [PMID: 30192396 DOI: 10.1002/jmv.25307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Chikungunya virus (CHIKV) infection is spatiotemporally related to dengue virus (DENV) infection and mostly undiagnosed due to similar primary symptoms. In 2013, a high rate (36%) of coinfection of DENV and CHIKV was reported in Odisha. Hence, the hospital-based study was continued to synthesis current epidemiological understanding of their single distribution or coinfection. Suspected DENV patients serum samples were tested for DENV and CHIKV by serology and reverse-transcription polymerase chain reaction. The positive samples were used for analysis of mutation, selection pressure, and phylogenetic relationship. Clinical information was also analyzed. Among 648 (2015 and 2016) suspected DENV patients, 141 (21.7%) were positive for DENV (serotypes 1-3), 22 (3.4%) were positive for CHIKV (ECSA) and 4 (2.8%) were coinfected with both. Sequence analysis showed four consistent mutations (M104V, V112A, K166N, and F169L) in CprM gene of DENV 2 and two consistent mutations (M269V, D284E) in E1 gene of CHIKV. Interestingly, the CHIKV- E1 A226V mutation was absent in the studied population. It was also noticed that the peak incidence of both the infections occurs in August-September in 2015-16. Moreover, Plasmodium species, Salmonella typhi, and Rickettsial typhi infections were also observed in DENV patients. Different etiology was also detected in other undifferentiated fever patients as mixed infections (malaria, S. typhi, and R. typhi ). Hence, this investigation shows the significant reduction of DENV-CHIKV coinfection as compared with previous report, the burden of arboviruses and acute undifferentiated fever in Odisha in 2015-2016, highlighting the importance of epidemiological picture of febrile patients for appropriate patient management.
Collapse
Affiliation(s)
- Tanuja Saswat
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Nalinee Sahoo
- Department of Microbiology, IMS & Sum Hospital, Bhubaneswar, India
| | - Sagarika Muduli
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, India
| | - Soma Chattopadhyay
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
17
|
Sukla S, Ghosh A, Saha R, De A, Adhya S, Biswas S. In-depth molecular analysis of a small cohort of human and Aedes mosquito (adults and larvae) samples from Kolkata revealed absence of Zika but high prevalence of dengue virus. J Med Microbiol 2018; 67:1109-1119. [PMID: 29897327 DOI: 10.1099/jmm.0.000769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Soumi Sukla
- 1CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Anisa Ghosh
- 1CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Rajdeep Saha
- 2Department of Microbiology, Calcutta National Medical College and Hospital, Kolkata 700014, West Bengal, India
| | - Abhishek De
- 3Department of Dermatology, Calcutta National Medical College and Hospital, Kolkata 700014, West Bengal, India
| | - Samit Adhya
- 1CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Subhajit Biswas
- 1CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
18
|
Co-circulation of Chikungunya and Dengue viruses in Dengue endemic region of New Delhi, India during 2016. Epidemiol Infect 2018; 146:1642-1653. [PMID: 29986778 DOI: 10.1017/s0950268818001590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-circulation of Chikungunya and Dengue viral infections (CHIKV and DENV) have been reported mainly due to transmission by common Aedes vector. The purpose of the study was to identify and characterise the circulating strains of CHIKV and DENV in DENV endemic region of New Delhi during 2016. CHIKV and DENV were identified in the blood samples (n = 130) collected from suspected patients by RT-PCR. CHIKV was identified in 26 of 65 samples (40%). Similarly, DENV was detected in 48 of 120 samples (40%). Co-infection with both the viruses was identified in five (9%) of the samples. Interestingly, concurrent infection with DENV, CHIKV and Plasmodium vivax was detected in two samples. CHIKV strains (n = 11) belonged to the ECSA genotype whereas DENV-3 sequences (n = eight) clustered in Genotype III by phylogenetic analysis. Selection pressure of E1 protein of CHIKV and CprM protein of DENV-3 revealed purifying selection with four and two positive sites, respectively. Four amino acids of the CHIKV were positively selected and had high entropy suggesting probable variations. Co-circulation of both viruses in DENV endemic regions warrants effective monitoring of these emerging pathogens via comprehensive surveillance for implementation of effective control measures.
Collapse
|
19
|
Dinkar A, Singh J, Prakash P, Das A, Nath G. Hidden burden of chikungunya in North India; A prospective study in a tertiary care centre. J Infect Public Health 2018; 11:586-591. [DOI: 10.1016/j.jiph.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022] Open
|
20
|
Ganeshkumar P, Murhekar MV, Poornima V, Saravanakumar V, Sukumaran K, Anandaselvasankar A, John D, Mehendale SM. Dengue infection in India: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018; 12:e0006618. [PMID: 30011275 PMCID: PMC6078327 DOI: 10.1371/journal.pntd.0006618] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/06/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Dengue is the most extensively spread mosquito-borne disease; endemic in more than 100 countries. Information about dengue disease burden, its prevalence, incidence and geographic distribution is critical in planning appropriate control measures against dengue fever. We conducted a systematic review and meta-analysis of dengue fever in India. METHODS We searched for studies published until 2017 reporting the incidence, the prevalence or case fatality of dengue in India. Our primary outcomes were (a) prevalence of laboratory confirmed dengue infection among clinically suspected patients, (b) seroprevalence in the general population and (c) case fatality ratio among laboratory confirmed dengue patients. We used binomial-normal mixed effects regression model to estimate the pooled proportion of dengue infections. Forest plots were used to display pooled estimates. The metafor package of R software was used to conduct meta-analysis. RESULTS Of the 2285 identified articles on dengue, we included 233 in the analysis wherein 180 reported prevalence of laboratory confirmed dengue infection, seven reported seroprevalence as evidenced by IgG or neutralizing antibodies against dengue and 77 reported case fatality. The overall estimate of the prevalence of laboratory confirmed dengue infection among clinically suspected patients was 38.3% (95% CI: 34.8%-41.8%). The pooled estimate of dengue seroprevalence in the general population and CFR among laboratory confirmed patients was 56.9% (95% CI: 37.5-74.4) and 2.6% (95% CI: 2-3.4) respectively. There was significant heterogeneity in reported outcomes (p-values<0.001). CONCLUSIONS Identified gaps in the understanding of dengue epidemiology in India emphasize the need to initiate community-based cohort studies representing different geographic regions to generate reliable estimates of age-specific incidence of dengue and studies to generate dengue seroprevalence data in the country.
Collapse
Affiliation(s)
| | - Manoj V. Murhekar
- Department of Epidemiology, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Veeraraghavadoss Poornima
- School of Public Health, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Velusamy Saravanakumar
- Department of Epidemiology, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Krishnendu Sukumaran
- School of Public Health, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Anandan Anandaselvasankar
- School of Public Health, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Denny John
- Campbell Collaboration, New Delhi, India
| | - Sanjay M. Mehendale
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
21
|
Singh J, Dinkar A, Singh RG, Siddiqui MS, Sinha N, Singh SK. Clinical profile of dengue fever and coinfection with chikungunya. Tzu Chi Med J 2018; 30:158-164. [PMID: 30069124 PMCID: PMC6047329 DOI: 10.4103/tcmj.tcmj_138_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/09/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Arthropod-borne viral diseases are a major burden on the health-care system worldwide. Only a few studies have reported on coinfection of dengue fever (DF) with the chikungunya virus in North India. We investigated the seroprevalence and significance of the clinicobiochemical profile of dengue and chikungunya coinfection. Besides this, the authors try to emphasize rationalize platelets transfusion. MATERIAL AND METHODS The present study was conducted at the Heritage Institute of Medical Science, Varanasi, India, from July to December 2016. A total of 1800 suspected cases with acute viral febrile illness (age >18 years) were investigated to exclude other causes of acute febrile illnesses. Of these, 121 patients (6.72%) were diagnosed as seropositive for dengue and chikungunya mono or coinfection using IgM ELISA and were included in the study. RESULTS The male gender was predominant. The majority were in the 20-30-year age group with cases peaking in November. There were 102 (84.29%) cases of dengue, 6 (4.95%) cases of chikungunya, and 13 (10.74%) cases positive for coinfection. Fever was present in all cases. Headache followed by nausea/vomiting and generalized weakness were the most common symptoms in patients with DF while body aches and joint pain were most common in those with chikungunya fever. Deranged liver function and leukopenia were the most common complications in dengue. CONCLUSION Joint-related symptoms (pain and restricted movements) were statistically significant in chikungunya monoinfection. Two patients with DF were died. There was no significant added severity of clinical features and blood investigations in patients with coinfection with dengue and chikungunya compared to those with monoinfections.
Collapse
Affiliation(s)
- Jitendra Singh
- Department of Medicine, Heritage Institute of Medical Science, Varanasi, Uttar Pradesh, India
| | - Anju Dinkar
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rana Gopal Singh
- Department of Medicine, Heritage Institute of Medical Science, Varanasi, Uttar Pradesh, India
| | - Mohammad Si Siddiqui
- Department of Medicine, Heritage Institute of Medical Science, Varanasi, Uttar Pradesh, India
| | - Nikhil Sinha
- Department of Medicine, Heritage Institute of Medical Science, Varanasi, Uttar Pradesh, India
| | - Sanjiv Kumar Singh
- Department of Medicine, Heritage Institute of Medical Science, Varanasi, Uttar Pradesh, India
| |
Collapse
|
22
|
Salam N, Mustafa S, Hafiz A, Chaudhary AA, Deeba F, Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health 2018; 18:710. [PMID: 29879935 PMCID: PMC5992662 DOI: 10.1186/s12889-018-5626-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria, Dengue and Chikungunya are vector borne diseases with shared endemic profiles and symptoms. Coinfections with any of these diseases could have fatal outcomes if left undiagnosed. Understanding the prevalence and distribution of coinfections is necessary to improve diagnosis and designing therapeutic interventions. METHODS We have carried out a systematic search of the published literature based on PRISMA guidelines to identify cases of Malaria, Dengue and Chikungunya coinfections. We systematically reviewed the literature to identify eligible studies and extracted data regarding cases of coinfection from cross sectional studies, case reports, retrospective studies, prospective observational studies and surveillance reports. RESULTS Care full screening resulted in 104 publications that met the eligibility criteria and reported Malaria/Dengue, Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. These coinfections were spread over six geographical locations and 42 different countries and are reported more frequently in the last 15 years possibly due to expanding epidemiology of Dengue and Chikungunya. Few of these reports have also analysed distinguishing features of coinfections. Malaria/Dengue coinfections were the most common coinfection followed by Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. P. falciparum and P. vivax were the commonest species found in cases of malaria coinfections and Dengue serotype-4 commonest serotype in cases of dengue coinfections. Most studies were reported from India. Nigeria and India were the only two countries from where all possible combinations of coinfections were reported. CONCLUSION We have comprehensively reviewed the literature associated with cases of coinfections of three important vector borne diseases to present a clear picture of their prevalence and distribution across the globe. The frequency of coinfections presented in the study suggests proper diagnosis, surveillance and management of cases of coinfection to avoid poor prognosis of the underlying etiology.
Collapse
Affiliation(s)
- Nasir Salam
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shoeb Mustafa
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Hafiz
- Department of Parasitology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Anis Ahmad Chaudhary
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
23
|
Contopoulos-Ioannidis D, Newman-Lindsay S, Chow C, LaBeaud AD. Mother-to-child transmission of Chikungunya virus: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018; 12:e0006510. [PMID: 29897898 PMCID: PMC6075784 DOI: 10.1371/journal.pntd.0006510] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/03/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an emerging arboviral infection with a global distribution and may cause fetal and neonatal infections after maternal CHIKV-infections during gestation. METHODOLOGY We performed a systematic review to evaluate the risk for: a) mother-to-child transmission (MTCT), b) antepartum fetal deaths (APFD), c) symptomatic neonatal disease, and d) neonatal deaths from maternal CHIKV-infections during gestation. We also recorded the neonatal clinical manifestations after such maternal infections (qualitative data synthesis). We searched PubMed (last search 3/2017) for articles, of any study design, with any of the above outcomes. We calculated the overall risk of MTCT, APFDs and risk of symptomatic neonatal disease by simple pooling. For endpoints with ≥5 events in more than one study, we also synthesized the data by random-effect-model (REM) meta-analysis. PRINCIPAL FINDINGS Among 563 identified articles, 13 articles from 8 cohorts were included in the quantitative data synthesis and 33 articles in the qualitative data synthesis. Most cohorts reported data only on symptomatic rather than on all neonatal infections. By extrapolation also of these data, the overall pooled-MTCT-risk across cohorts was at least 15.5% (206/1331), (12.6% by REMs). The pooled APFD-risk was 1.7% (20/1203); while the risk of CHIKV-confirmed-APFDs was 0.3% (3/1203). Overall, the pooled-risk of symptomatic neonatal disease was 15.3% (203/1331), (11.9% by REMs). The pooled risk of symptomatic disease was 50.0% (23/46) among intrapartum vs 0% (0/712) among antepartum/peripartum maternal infections. Infected newborns, from maternal infections during gestation were either asymptomatic or presented within their first week of life, but not at birth, with fever, irritability, hyperalgesia, diffuse limb edema, rashes and occasionally sepsis-like illness and meningoencephalitis. The pooled-risk of neonatal death was 0.6% (5/832) among maternal infections and 2.8% (5/182) among neonatal infections; long-term neurodevelopmental delays occurred in 50% of symptomatic neonatal infections. CONCLUSIONS/SIGNIFICANCE Published cohorts with data on the risk to the fetus and/or newborn from maternal CHIKV-infections during gestation were sparse compared to the number of recently reported CHIKV-infection outbreaks worldwide; however perinatal infections do occur, at high rates during intrapartum period, and can be related to neonatal death and long-term disabilities.
Collapse
Affiliation(s)
- Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shoshana Newman-Lindsay
- Department of Pediatrics, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Camille Chow
- Department of Internal Medicine, St. Agnes Medical Center, Fresno, CA, United States of America
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
24
|
Sánchez-Carbonel J, Tantaléan-Yépez D, Aguilar-Luis MA, Silva-Caso W, Weilg P, Vásquez-Achaya F, Costa L, Martins-Luna J, Sandoval I, Del Valle-Mendoza J. Identification of infection by Chikungunya, Zika, and Dengue in an area of the Peruvian coast. Molecular diagnosis and clinical characteristics. BMC Res Notes 2018. [PMID: 29540220 PMCID: PMC5853164 DOI: 10.1186/s13104-018-3290-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To assess the presence of Dengue, Chikungunya, and Zika in serum samples of patients with acute febrile illness in Piura, Peru and describe the most common clinical features. Results Dengue was the most common arbovirus detected in 170/496 (34.3%), followed by Zika in 39/496 (7.9%) and Chikungunya in 23/496 (4.6%). Among the 170 samples positive for Dengue, serotype 2 was the most predominant type present in 97/170 (57.1%) of samples, followed by the serotype 3 in 9/170 (5.3%). Headaches, muscle pain, and joint pain were the most common symptoms associated with fever in patients with Dengue and Zika. No symptoms predominance was observed in patients with Chikungunya.Dengue is considered the most frequent arbovirus in Peru and the number of cases has increased dramatically in the last 5 years. However, it is not the only arbovirus that circulates along the northern coast of Peru. It has also been determined the presence of Zika and Chikungunya in our population, which may suggest the circulation of other arboviruses that have not been detected.
Collapse
Affiliation(s)
- José Sánchez-Carbonel
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Derek Tantaléan-Yépez
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru.,Instituto de Investigación de Enfermedades Infecciosas (IIEI), Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru
| | - Pablo Weilg
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Fernando Vásquez-Achaya
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru
| | - Luis Costa
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Johanna Martins-Luna
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Isabel Sandoval
- Red de Salud de Morropon Chulucanas, Dirección Regional de Salud de Piura (DIRESA-Piura), Piura, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional (IIN), Lima, Peru.
| |
Collapse
|
25
|
Abdullah M, Tazeen A, Hisamuddin M, Naqvi IH, Verma HN, Ahmed A, Parveen S. A clinical report on mixed infection of malaria, dengue and chikungunya from New Delhi, India. Virusdisease 2017; 28:422-424. [PMID: 29291234 PMCID: PMC5747841 DOI: 10.1007/s13337-017-0404-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022] Open
Abstract
Arthropod-borne infections like malaria, dengue and chikungunya fever are transmitted by mosquitoes. The present report describes an unusual case of mixed infection with malaria, dengue and chikungunya viruses in a 21 year old male patient from New Delhi, India during monsoon season of 2016. The malarial fever was diagnosed by thin slide microscopy and antigen test. Chikungunya virus IgM was detected in the sample by the card test. Dengue and chikungunya viruses were further confirmed by RT-PCR for CprM and E1 gene respectively. Phylogenetic analysis clustered the study dengue virus serotype 3 sequence in the genotype III. Thus, the mono infections can not be differentiated from concurrent infections on the basis of clinical symptoms, the appropriate laboratory diagnosis is essential for the accurate pathogen confirmation. Precise and appropriate identification of the multiple pathogens in such clinical cases will assist in the effective management of these arthropod mediated infections.
Collapse
Affiliation(s)
- Mohd Abdullah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Schools of Life and Basic Sciences, Jaipur National University, Jaipur, India
| | - Ayesha Tazeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Malik Hisamuddin
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Schools of Life and Basic Sciences, Jaipur National University, Jaipur, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Hirday N. Verma
- Schools of Life and Basic Sciences, Jaipur National University, Jaipur, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
Parvez MK, Parveen S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology 2017; 60:1-7. [PMID: 28772262 PMCID: PMC7179518 DOI: 10.1159/000478729] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/14/2017] [Indexed: 12/14/2022] Open
Abstract
Incidences of emerging/re-emerging deadly viral infections have significantly affected human health despite extraordinary progress in the area of biomedical knowledge. The best examples are the recurring outbreaks of dengue and chikungunya fever in tropical and sub-tropical regions, the recent epidemic of Zika in the Americas and the Caribbean, and the SARS, MERS, and influenza A outbreaks across the globe. The established natural reservoirs of human viruses are mainly farm animals, and, to a lesser extent, wild animals and arthropods. The intricate "host-pathogen-environment" relationship remains the key to understanding the emergence/re-emergence of pathogenic viruses. High population density, rampant constructions, poor sanitation, changing climate, and the introduction of anthropophilic vectors create selective pressure on host-pathogen reservoirs. Nevertheless, the knowledge and understanding of such zoonoses and pathogen diversity in their known non-human reservoirs are very limited. Prevention of arboviral infections using vector control methods has not been very successful. Currently, new approaches to protect against food-borne infections, such as consuming only properly cooked meats and animal products, are the most effective control measures. Though significant progress in controlling human immunodeficiency virus and hepatitis viruses has been achieved, the unpredictable nature of evolving viruses and the rare occasions of outbreaks severely hamper control and preventive modalities.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Ruiz Silva M, Aguilar Briseño JA, Upasani V, van der Ende-Metselaar H, Smit JM, Rodenhuis-Zybert IA. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus. PLoS Negl Trop Dis 2017; 11:e0005712. [PMID: 28644900 PMCID: PMC5500378 DOI: 10.1371/journal.pntd.0005712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/06/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022] Open
Abstract
Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large outbreaks and has expanded its territory causing millions of cases in Asia, Africa and America. The viruses share a common mosquito vector and during the acute phase cause similar flu-like symptoms that can proceed to more severe or debilitating symptoms. The growing overlap in the geographical distribution of these mosquito-borne infections has led to an upsurge in reported cases of DENV/CHIKV co-infections. Unfortunately, at present we have little understanding of consequences of the co-infections to the human host. The overall aim of this study was to define viral replication dynamics and the innate immune signature involved in concurrent DENV and CHIKV infections in human peripheral blood mononuclear cells (PBMCs). We demonstrate that concomitant infection resulted in a significant reduction of CHIKV progeny and moderate enhancement of DENV production. Remarkably, the inhibitory effect of DENV on CHIKV infection occurred independently of DENV replication. Furthermore, changes in type I IFN, IL-6, IL-8, TNF-α, MCP-1 and IP-10 production were observed during concomitant infections. Notably, co-infections led to a significant increase in the levels of TNF-α and IL-6, cytokines that are widely considered to play a crucial role in the early pathogenesis of both viral diseases. In conclusion, our study reveals the interplay of DENV/CHIKV during concomitant infection and provides a framework to investigate viral interaction during co-infections.
Collapse
Affiliation(s)
- Mariana Ruiz Silva
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - José A. Aguilar Briseño
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Vinit Upasani
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Heidi van der Ende-Metselaar
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Jain J, Dubey SK, Shrinet J, Sunil S. Dengue Chikungunya co-infection: A live-in relationship?? Biochem Biophys Res Commun 2017; 492:608-616. [PMID: 28189673 DOI: 10.1016/j.bbrc.2017.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 11/24/2022]
Abstract
Dengue and Chikungunya are viral infections that are a major public health hazard in recent times. Both these infections are caused by RNA viruses termed arboviruses owing to their requirement of an arthropod vector to get transmitted to vertebrate hosts. Apart from sharing a common vector, namely Aedes mosquitoes, these infections are also characterized by overlapping clinical presentations and are known to exist as co-infection. The present review traces the history and evolution of co-infection across the globe and provides specific compilation of the scenario in India. Furthermore, clinical manifestations during co-infection are discussed. Lastly, up-to-date information with respect to vector behaviour during co-infection both under laboratory conditions and in natural Aedes populations is reviewed.
Collapse
Affiliation(s)
- Jaspreet Jain
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Dubey
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jatin Shrinet
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
29
|
Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: in silico structural modeling, docking and molecular dynamic studies. Virusdisease 2017; 28:39-49. [PMID: 28466054 DOI: 10.1007/s13337-016-0356-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
Chikungunya fever is an arboviral infection caused by the Chikungunya virus (CHIKV) and is transmitted by Aedes mosquito. The envelope protein (E2) of Chikungunya virus is involved in attachment of virion with the host cell. The present study was conceptualized to determine the structure of E2 protein of CHIKV and to identify the potential viral entry inhibitors. The secondary and tertiary structure of E2 protein was determined using bioinformatics tools. The mutational analysis of the E2 protein suggested that mutations may stabilize or de-stabilize the structure which may affect the structure-function relationship. In silico screening of various compounds from different databases identified two lead molecules i.e. phenothiazine and bafilomycin. Molecular docking and MD simulation studies of the E2 protein and compound complexes was carried out. This analysis revealed that bafilomycin has high docking score and thus high binding affinity with E2 protein suggesting stable protein-ligand interaction. Further, MD simulations suggested that both the compounds were stabilizing E2 protein. Thus, bafilomycin and phenothiazine may be considered as the lead compounds in terms of potential entry inhibitor for CHIKV. Further, these results should be confirmed by comprehensive cell culture, cytotoxic assays and animal experiments. Certain derivatives of phenothiazines can also be explored in future studies for entry inhibitors against CHIKV. The present investigation thus provides insight into protein structural dynamics of the envelope protein of CHIKV. In addition the study also provides information on the dynamics of interaction of E2 protein with entry inhibitors that will contribute towards structure based drug design.
Collapse
|
30
|
Abstract
Dengue fever is an arthropod-borne viral infection that has become endemic in several parts of India including Delhi. We studied occurrence of co-infection with dengue viruses during an outbreak in New Delhi, India in 2014. For the present study, blood samples collected from symptomatic patients were analysed by RT-PCR. Eighty percent of the samples were positive for dengue virus. The result showed that DENV-1 (77%) was the predominant serotype followed by DENV-2 (60%). Concurrent infection with more than one serotype was identified in 43% of the positive samples. Phylogenetic analysis clustered DENV-1 strains with the American African and DENV-2 strains in Cosmopolitan genotypes. Four common amino-acid mutations were identified in the envelope gene of DENV-1 sequences (F337I, A369T, V380I and L402F) and one common mutation (N390S) in the DENV-2 sequences. Further analysis revealed purifying selection in both the serotypes. A significant number of patients were co-infected with DENV-1 and DENV-2 serotypes. Although we do not have direct evidence to demonstrate co-evolution of these two stereotypes, nonetheless their simultaneous occurrence does indicate that they are favoured by evolutionary forces. An ongoing surveillance and careful analysis of future outbreaks will strengthen the concept of co-evolution or otherwise. Whether the concurrent dengue viral infection is correlated with disease severity in a given population is another aspect to be pursued. This study is envisaged to be useful for future reference in the context of overall epidemiology.
Collapse
|
31
|
Phommanivong V, Kanda S, Shimono T, Lamaningao P, Darcy AW, Mishima N, Phaytanavanh B, Nishiyama T. Co-circulation of the dengue with chikungunya virus during the 2013 outbreak in the southern part of Lao PDR. Trop Med Health 2016; 44:24. [PMID: 27524929 PMCID: PMC4973078 DOI: 10.1186/s41182-016-0020-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background During the 2013 outbreak, 4638 infection cases and 32 deaths have been recorded in the southern part of Laos. In recent years, the chikungunya virus (CHIKV) emerged in the part of the country bordering Cambodia. Dengue virus (DENV) and CHIKV are transmitted by common mosquito vectors. Both diseases have similar clinical presentations; therefore, CHIKV infections might go undiagnosed in DENV-endemic areas. Thus, rapid detection and accurate diagnosis are crucial for differentiating between the two viruses (DENV and CHIKV). In this study, we demonstrated that CHIKV and two serotypes of DENV are circulating in Laos. In addition, we encountered patients that had been concurrently infected with multiple DENV serotypes or DENV and CHIKV. Methods Plasma samples were collected from 40 patients with suspected DENV infections during an outbreak between July and August 2013. The reverse transcription polymerase chain reaction was performed to detect the four DENV serotypes and CHIKV using specific primers. Specifically, the complete envelope gene sequences of the viruses were sequenced and subjected to phylogenetic analysis. Results Forty acute-phase plasma samples from patients with suspected dengue infections were tested for the presence of DENV viral RNA using molecular methods. Among the 40 samples, 14 samples were positive for DENV, 2 samples were positive for both viruses (DENV-2 and DENV-3), whereas DENV-1 and DENV-4 were not detected during the study period. We also encountered 10 samples that were positive for CHIKV. Of the 10 CHIKV-positive samples, 3 samples were co-infected by DENV-2, and 2 samples were co-infected by DENV-3. Phylogenetic analysis revealed that the 2013 dengue outbreak in Laos involved DENV-2 genotype Asian I and DENV-3 genotype II. Moreover, the Laotian CHIKV strains grouped together with those isolated during outbreaks on the Indian Ocean Islands within the East Central South African genotype. Conclusions These findings revealed that two serotypes (DENV-2 and DENV-3) and CHIKV were detected. Furthermore, infection of multiple DENV serotypes and CHIKV was also observed in the 2013 dengue outbreak. This is the first documented evidence of co-infection with CHIKV and one of two DENV serotypes.
Collapse
Affiliation(s)
- Viengvaly Phommanivong
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Seiji Kanda
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Takaki Shimono
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Pheophet Lamaningao
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Andrew Waleluma Darcy
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Nobuyuki Mishima
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | | | - Toshimasa Nishiyama
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| |
Collapse
|
32
|
Chikungunya: a reemerging infection spreading during 2010 dengue fever outbreak in National Capital Region of India. Virusdisease 2016; 27:183-6. [PMID: 27366770 DOI: 10.1007/s13337-016-0314-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
Abstract
Chikungunya fever is an important reemerging arbovirus illness, which is transmitted by the same vector as of dengue virus. Many cases of concurrent infections with multiple dengue virus serotypes have been reported in many countries. Also, concurrent infection with Chikungunya virus and dengue virus has been reported in the past in Delhi. Therefore, this study was done to detect Chikungunya IgM antibodies in suspected dengue fever patients. In this study, 1666 serum samples suspected of dengue fever and collected during the outbreak period (August 2010-December 2010) were tested for dengue IgM antibodies, of which 736 tested negative. Of the 736 dengue IgM negative sera, 666 were tested for Chikungunya IgM antibodies. The demographic profile and essential laboratory investigations were recorded. Chikungunya IgM was detected in 9.91 % of the patients. During the post-monsoon period though dengue dominated in numbers, the number of Chikungunya fever cases increased gradually followed by an abrupt decrease with the onset of winter. The Chikungunya IgM positive patients were suffering from fever of more than 5 days duration and had thrombocytopenia. Due to similarity in clinical features and vector transmitting dengue and Chikungunya virus, continuous surveillance of both dengue fever and Chikungunya fever is desirable for better management and epidemiological assessment.
Collapse
|
33
|
Furuya-Kanamori L, Liang S, Milinovich G, Soares Magalhaes RJ, Clements ACA, Hu W, Brasil P, Frentiu FD, Dunning R, Yakob L. Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infect Dis 2016; 16:84. [PMID: 26936191 PMCID: PMC4776349 DOI: 10.1186/s12879-016-1417-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. Methods Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. Results Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. Conclusions Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1417-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Furuya-Kanamori
- Research School of Population Health, Australian National University, Acton, ACT 2601, Australia.
| | - Shaohong Liang
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore.
| | - Gabriel Milinovich
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Ricardo J Soares Magalhaes
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia. .,UQ Children's Health Research Centre, University of Queensland, South Brisbane, QLD, 4101, Australia.
| | - Archie C A Clements
- Research School of Population Health, Australian National University, Acton, ACT 2601, Australia.
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas/ Fiocruz, Rio de Janeiro, Brazil.
| | - Francesca D Frentiu
- School of Biomedical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Rebecca Dunning
- Formerly School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
34
|
Afreen N, Naqvi IH, Broor S, Ahmed A, Kazim SN, Dohare R, Kumar M, Parveen S. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India. PLoS Negl Trop Dis 2016; 10:e0004511. [PMID: 26977703 PMCID: PMC4792444 DOI: 10.1371/journal.pntd.0004511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.
Collapse
Affiliation(s)
- Nazia Afreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manoj Kumar
- Centre for Culture, Media & Governance, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Deeba F, Islam A, Kazim SN, Naqvi IH, Broor S, Ahmed A, Parveen S. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathog Dis 2015; 74:ftv119. [PMID: 26657109 DOI: 10.1093/femspd/ftv119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.
Collapse
Affiliation(s)
- Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Shobha Broor
- Department of Microbiology, SGT University, Gurgaon 122001, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
36
|
Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and Molecular Clock Analysis of Dengue Serotype 1 and 3 from New Delhi, India. PLoS One 2015; 10:e0141628. [PMID: 26536458 PMCID: PMC4633233 DOI: 10.1371/journal.pone.0141628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 11/21/2022] Open
Abstract
Dengue fever is the most prevalent arboviral disease in the tropical and sub-tropical regions of the world. The present report describes molecular detection and serotyping of dengue viruses in acute phase blood samples collected from New Delhi, India. Phylogenetic and molecular clock analysis of dengue virus serotype 1 and 3 strains were also investigated. Dengue virus infection was detected in 68.87% out of 604 samples tested by RT-PCR between 2011 & 2014. Dengue serotype 1 was detected in 25.48% samples, dengue serotype 2 in 79.56% samples and dengue serotype 3 in 11.29% samples. Dengue serotype 4 was not detected. Co-infection by more than one dengue serotype was detected in 18.26% samples. Envelope gene of 29 DENV-1 and 14 DENV-3 strains were sequenced in the study. All the DENV-1 strains grouped with the American African genotype. All DENV-3 strains were found to belong to Genotype III. Nucleotide substitution rates of dengue 1 and 3 viruses were determined in the study. Time to the most recent common ancestor (TMRCA) of dengue 1 viruses was determined to be 132 years. TMRCA of DENV-3 viruses was estimated to be 149 years. Bayesian skyline plots were constructed for Indian DENV-1 and 3 strains which showed a decrease in population size since 2005 in case of DENV- 1 strains while no change was observed in recent years in case of DENV-3 strains. The study also revealed a change in the dominating serotype in Delhi, India in recent years. The study will be helpful in formulating control strategies for the outbreaks. In addition, it will also assist in tracking the movement and evolution of this emerging virus.
Collapse
Affiliation(s)
- Nazia Afreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
37
|
Saswat T, Kumar A, Kumar S, Mamidi P, Muduli S, Debata NK, Pal NS, Pratheek BM, Chattopadhyay S, Chattopadhyay S. High rates of co-infection of Dengue and Chikungunya virus in Odisha and Maharashtra, India during 2013. INFECTION GENETICS AND EVOLUTION 2015; 35:134-41. [PMID: 26247719 DOI: 10.1016/j.meegid.2015.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
Dengue viral (DENV) infection is endemic in different parts of India and because of similar primary signs and symptoms, Chikungunya virus (CHIKV) is mostly undiagnosed. Hence, we investigated 204 suspected Dengue cases in a hospital based cross-sectional study in Odisha, India in 2013. It was observed that 50 samples were positive for DENV only, 28 were positive for CHIKV only and interestingly, 28 patients were co-infected with both DENV and CHIKV. Additionally, a total of 18 confirmed Dengue samples from Maharashtra, India were screened for CHIKV and out of those, 15 were co-infected. All CHIKV strains were of East Central South African (ECSA) type and serotype 2 (genotype IV) was predominant in the DENV samples. Additionally, Dengue serotype 1 and 3 were also detected during this time. Further, sequence analysis of E1 gene of CHIKV strains revealed that two substitution mutations (M269V and D284E) were observed in almost 50% strains and they were from co-infected patients. Similarly, sequence analysis of C-prM gene showed the presence of five substitution mutations, (G70S, L72F, N90S, S93N and I150L) in all serotype 1 and two consistent mutations (A101V and V112A) in serotype 2 Dengue samples. Together, it appears that a significantly high number of dengue patients (43, 44.8%) were co-infected with DENV and CHIKV during this study. This emphasizes the need of a routine diagnosis of CHIKV along with DENV for febrile patients. This will be useful in early and proper recognition of infecting pathogen to study the correlation of clinical symptoms with single or co-infection which will ultimately help to implement proper patient care in future.
Collapse
Affiliation(s)
- Tanuja Saswat
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Abhishek Kumar
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Sameer Kumar
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Sagarika Muduli
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Nagen Kumar Debata
- Department of Microbiology, IMS & Sum Hospital, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Niladri Shekhar Pal
- Department of Pathology, Mahatma Gandhi Mission Medical College, Aurangabad 431003, Maharashtra, India
| | - B M Pratheek
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar 751005, Odisha, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar 751005, Odisha, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751 023, Odisha, India.
| |
Collapse
|