1
|
Hu Z, Wu X, Yao D, Liu J, Kong Q, Zhou YJ, Zhang X. Ficolin A and ficolin B aggravate poly(I:C) secondary LPS stimulation-induced acute lung injury by modulating alveolar and interstitial macrophages. Cytokine 2025; 188:156868. [PMID: 39892107 DOI: 10.1016/j.cyto.2025.156868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Respiratory viral infection, represented by influenza virus, is easily followed by bacterial infection, the main cause of death. Clinical studies have shown that even mild influenza virus infection followed by secondary bacterial infection can mediate severe pneumonia and lung injury. In this study, mice were intranasally stimulated by polyinosinic-polycytidylic acid [poly(I:C)] followed by lipopolysaccharide (LPS) to simulate respiratory RNA virus secondary Gram-negative bacterial infection. The results demonstrated that poly(I:C) followed by LPS stimulation induced more weight loss, worse lung pathological injury, additional recruitment of neutrophils and interstitial macrophages, and elevated expression of ficolin A/B in the lung neutrophils, alveolar and interstitial macrophages. Knockout of ficolin A/B alleviated the body weight loss, the lung pathological injury, and the pulmonary inflammatory score. Mechanically, knockout of ficolin A/B was associated with reduced interstitial macrophage recruitment and alveolar macrophage exhaustion. These results suggest that ficolin A/B is a potential therapeutic target for severe pneumonia induced by respiratory RNA virus secondary Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Ziqi Hu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xu Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Duoduo Yao
- Department of Nursing and Hospital Infection Management, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianhua Liu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qingli Kong
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Alshammari AK, Maina M, Blanchard AM, Daly JM, Dunham SP. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025; 14:114. [PMID: 40005491 PMCID: PMC11857950 DOI: 10.3390/pathogens14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Influenza A virus infections are known to predispose infected individuals to bacterial infections of the respiratory tract that result in co-infection with severe disease outcomes. Co-infections involving influenza A viruses and streptococcus bacteria result in protein-protein interactions that can alter disease outcomes, promoting bacterial colonisation, immune evasion, and tissue damage. Focusing on the synergistic effects of proteins from different pathogens during co-infection, this scoping review evaluated evidence for protein-protein interactions between influenza A virus proteins and streptococcus bacterial proteins. Of the 2366 studies initially identified, only 32 satisfied all the inclusion criteria. Analysis of the 32 studies showed that viral and bacterial neuraminidases (including NanA, NanB and NanC) are key players in desialylating host cell receptors, promoting bacterial adherence and colonisation of the respiratory tract. Virus hemagglutinin modulates bacterial virulence factors, hence aiding bacterial internalisation. Pneumococcal surface proteins (PspA and PspK), bacterial M protein, and pneumolysin (PLY) enhance immune evasion during influenza co-infections thus altering disease severity. This review highlights the importance of understanding the interaction of viral and bacterial proteins during influenza virus infection, which could provide opportunities to mitigate the severity of secondary bacterial infections through synergistic mechanisms.
Collapse
Affiliation(s)
- Askar K. Alshammari
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 36388, Saudi Arabia
| | - Meshach Maina
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Adam M. Blanchard
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Stephen P. Dunham
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| |
Collapse
|
3
|
Mania A, Mazur-Melewska K, Witczak C, Cwalińska A, Małecki P, Meissner A, Słopień A, Figlerowicz M. Invasive group A streptococcal infections as a consequence of coexisting or previous viral infection in the post-COVID-19 pandemic period. J Infect Public Health 2025; 18:102622. [PMID: 39708759 DOI: 10.1016/j.jiph.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Group A Streptococci (GAS) may cause infections of the pharynx and soft tissues and invasive infections in children (iGAS). A significant increase in severe iGAS infections has been reported in Europe since the fall of 2022. OBJECTIVES This retrospective study aims to analyse clinical data of children with invasive and non-invasive GAS infections in the post-COVID-19 pandemic era, searching for predisposing factors to developing invasive infections. METHODS History and clinical data of patients hospitalised due to or with coexisting GAS infections were analysed. iGAS and non-iGAS infections were compared. RESULTS The cohort comprised 45 children (median age 7 years). 31(69 %) children developed iGAS infections - sepsis with toxic shock syndrome (TSS) (4 children-13 %), deep soft tissue infections (3-10 %), meningitis (2-6 %), pneumonia (2-6 %) or respiratory tract infections - sinusitis or otitis (4-12 %). iGAS children developed complications more frequently (100 % vs 21 %, p < 0.0001) and required prolonged treatment (median 15 vs 10 days, p = 0.0001). Preceding or coexisting viral infections were more common in iGAS children (87 % vs 14 %; p < 0.0001). CRP and PCT were significantly higher in the iGAS group (median 17.95 vs 3.97 mg/dl, p = 0.0002; 6.8 vs 0.05 ng/ml, p = 0.0001, respectively). The multiple logistic regression revealed that preceding or coexisting viral infections and the rise in CRP level increased the risk of iGAS infections. The CRP cut-off > 14.94 mg/dl showed 68.2 % sensitivity (CI 45.13-86.14 %) and 100 % specificity (69.15-100 %). CONCLUSION Our study shows increased incidence and severity of GAS infections among hospitalised children. Previous or coexisting viral infections and CRP with cut-off > 14.94 mg/dl were significant risk factors.
Collapse
Affiliation(s)
- Anna Mania
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland.
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland
| | - Cezary Witczak
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland
| | - Agnieszka Cwalińska
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland
| | - Paweł Małecki
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland
| | - Adam Meissner
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poland
| | - Agnieszka Słopień
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland
| |
Collapse
|
4
|
Nygaard U, Holm M, Rabie H, Rytter M. The pattern of childhood infections during and after the COVID-19 pandemic. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:910-920. [PMID: 39572124 DOI: 10.1016/s2352-4642(24)00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024]
Abstract
The rates of most paediatric infectious diseases declined during the initial phase of the COVID-19 pandemic due to the implementation of non-pharmaceutical interventions. However, after the gradual release of these interventions, resurgences of infections occurred with notable variations in incidence, clinical manifestations, pathogen strains, and age distribution. This Review seeks to explore these changes and the rare clinical manifestations that were made evident during the resurgence of known childhood infections. The magnitude of resurgences was possibly caused by a profound population immunity debt to specific pathogens in combination with the coinciding reappearance of viral and bacterial infections, rather than novel pathogen variants, increased antimicrobial resistance, or altered childhood immune function. As the usual patterns of paediatric infectious diseases were disrupted during the COVID-19 pandemic, the consequences of a population immunity debt were unravelled, and new insights into pathogen transmissibility, disease pathogenesis, and rare clinical manifestations were revealed.
Collapse
Affiliation(s)
- Ulrikka Nygaard
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mette Holm
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus Denmark
| | - Helena Rabie
- Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Maren Rytter
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Paediatrics and Adolescent Medicine, Slagelse Hospital, Slagelse, Denmark
| |
Collapse
|
5
|
Schöbi N, Duppenthaler A, Horn M, Bartenstein A, Keitel K, Kopp MV, Agyeman P, Aebi C. Preadmission course and management of severe pediatric group A streptococcal infections during the 2022-2023 outbreak: a single-center experience. Infection 2024; 52:1397-1405. [PMID: 38427206 PMCID: PMC11289297 DOI: 10.1007/s15010-024-02198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE The massive increase of infections with Group A Streptococcus (GAS) in 2022-2023 coincided in Switzerland with a change of the recommendations for the management of GAS pharyngitis. Therefore, the objective of the present study was to investigate whether the clinical manifestations and management before hospitalization for GAS infection differed in 2022-2023 compared with 2013-2022. METHODS Retrospective study of GAS infections requiring hospitalization in patients below 16 years. Preadmission illness (modified McIsaac score), oral antibiotic use, and outcome in 2022-2023 were compared with 2013-2022. Time series were compared with surveillance data for respiratory viruses. RESULTS In 2022-2023, the median modified McIsaac score was lower (2 [IQR 2-3] vs. 3 [IQR 2-4], p = < 0.0001) and the duration of preadmission illness was longer (4 days [3-7] vs. 3 [2-6], p = 0.004) than in 2013-2022. In both periods, withholding of preadmission oral antibiotics despite a modified McIsaac score ≥ 3 (12% vs. 18%, n.s.) or ≥ 4 (2.4% vs. 10.0%, p = 0.027) was rare. Respiratory disease, skeletal/muscle infection, and invasive GAS disease were significantly more frequent in 2022-2023, but there were no differences in clinical outcome. The time course of GAS cases in 2022-2023 coincided with the activity of influenza A/B. CONCLUSION We found no evidence supporting the hypothesis that the 2022-2023 GAS outbreak was associated with a change in preadmission management possibly induced by the new recommendation for GAS pharyngitis. However, clinical manifestations before admission and comparative examination of time-series strongly suggest that viral co-circulation played an important role in this outbreak.
Collapse
Affiliation(s)
- Nina Schöbi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland.
| | - Andrea Duppenthaler
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Matthias Horn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Kristina Keitel
- Pediatric Emergency Center, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias V Kopp
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland
- Airway Research Center North (ARCN), Member of the German Lung Research Center (DZL), University of Lübeck, Lübeck, Germany
| | - Philipp Agyeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Christoph Aebi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| |
Collapse
|
6
|
Hernandez-Morfa M, Reinoso-Vizcaino NM, Zappia VE, Olivero NB, Cortes PR, Stempin CC, Perez DR, Echenique J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front Microbiol 2024; 15:1423995. [PMID: 39035445 PMCID: PMC11258013 DOI: 10.3389/fmicb.2024.1423995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Keeley AJ, Groves D, Armitage EP, Senghore E, Jagne YJ, Sallah HJ, Drammeh S, Angyal A, Hornsby H, de Crombrugghe G, Smeesters PR, Rossi O, Carducci M, Peno C, Bogaert D, Kampmann B, Marks M, Shaw HA, Turner CR, de Silva TI. Streptococcus pyogenes Colonization in Children Aged 24-59 Months in the Gambia: Impact of Live Attenuated Influenza Vaccine and Associated Serological Responses. J Infect Dis 2023; 228:957-965. [PMID: 37246259 PMCID: PMC10547459 DOI: 10.1093/infdis/jiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.
Collapse
Affiliation(s)
- Alexander J Keeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Danielle Groves
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Edwin P Armitage
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ya Jankey Jagne
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Hadijatou J Sallah
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainabou Drammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Adri Angyal
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Hailey Hornsby
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Gabrielle de Crombrugghe
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Chikondi Peno
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- Charité Centre for Global Health and Institut für Internationale Gesundheit, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Marks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Helen A Shaw
- Vaccines Division, Scientific Research and Innovation Group, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Claire R Turner
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Thushan I de Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
8
|
Chen J, Wang X, Li J, Sun L, Chen X, Chu Z, Zhang Z, Wu H, Zhao X, Li H, Zhang X. Influenza A Virus Weakens the Immune Response of Mice to Toxoplasma gondii, Thereby Aggravating T. gondii Infection. Vet Sci 2023; 10:vetsci10050354. [PMID: 37235437 DOI: 10.3390/vetsci10050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the relationship between the T. gondii type II strain (Pru) and respiratory viral infections, specifically focusing on the co-infection with PR8 (influenza A/Puerto Rico/8/34). In this study, we found that the number of T. gondii (Pru) in the lungs of co-infected mice was significantly higher and lesions were more severe than those in the group infected with T. gondii (Pru) alone, whereas IAV (influenza A virus) copy numbers of co-infected and PR8 alone infected groups were negligible, suggesting that infection with IAV increased the pathogenicity of T. gondii (Pru) in mice. The invasion and proliferation assays demonstrated no significant effect of co-infection on T. gondii (Pru) infection or replication in vitro. To further explore the factors causing the altered pathogenicity of T. gondii (Pru) caused by co-infection, we found that decreased expression levels of IL-1β, IL-6, and IL-12 in the co-infected group were associated with the early immune responses against T. gondii (Pru), which affected the division of T. gondii (Pru). Moreover, the significant decrease in the CD4+/CD8+ ratio indicated a weakened long-term immune killing ability of the host against T. gondii (Pru) following IAV infection. In conclusion, a T. gondii type II strain (Pru) could not be properly cleared by the host immune system after IAV infection, resulting in toxoplasmosis and even death in mice.
Collapse
Affiliation(s)
- Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| |
Collapse
|
9
|
Gingerich AD, Royer F, McCormick AL, Scasny A, Vidal JE, Mousa JJ. Synergistic Protection against Secondary Pneumococcal Infection by Human Monoclonal Antibodies Targeting Distinct Epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:50-60. [PMID: 36351696 PMCID: PMC9898123 DOI: 10.4049/jimmunol.2200349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 01/04/2023]
Abstract
Streptococcus pneumoniae persists as a leading cause of bacterial pneumonia despite the widespread use of polysaccharide-based vaccines. The limited serotype coverage of current vaccines has led to increased incidence of nonvaccine serotypes, as well as an increase in antibiotic resistance among these serotypes. Pneumococcal infection often follows a primary viral infection such as influenza virus, which hinders host defense and results in bacterial spread to the lungs. We previously isolated human monoclonal Abs (mAbs) against the conserved surface Ag pneumococcal histidine triad protein D (PhtD), and we demonstrated that mAbs to this Ag are protective against lethal pneumococcal challenge prophylactically and therapeutically. In this study, we elucidated the mechanism of protection of a protective anti-pneumococcal human mAb, PhtD3, which is mediated by the presence of complement and macrophages in a mouse model of pneumococcal infection. Treatment with mAb PhtD3 reduced blood and lung bacterial burden in mice, and mAb PhtD3 is able to bind to bacteria in the presence of the capsular polysaccharide, indicating exposure of surface PhtD on encapsulated bacteria. In a mouse model of secondary pneumococcal infection, protection mediated by mAb PhtD3 and another mAb targeting a different epitope, PhtD7, was reduced; however, robust protection was restored by combining mAb PhtD3 with mAb PhtD7, indicating a synergistic effect. Overall, these studies provide new insights into anti-pneumococcal mAb protection and demonstrate, to our knowledge, for the first time, that mAbs to pneumococcal surface proteins can protect against secondary pneumococcal infection in the mouse model.
Collapse
Affiliation(s)
- Aaron D Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Anna L McCormick
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS; and
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS; and
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA
| |
Collapse
|
10
|
Risk stratification for selecting empiric antibiotherapy during and after COVID-19. Curr Opin Infect Dis 2022; 35:605-613. [PMID: 36165454 DOI: 10.1097/qco.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW SARS-CoV-2 deeply modified the risk of bacterial infection, bacterial resistance, and antibiotic strategies. This review summarized what we have learned. RECENT FINDINGS During the COVID-19 pandemic, we observed an increase in healthcare-acquired infection and multidrug-resistant organism-related infection, triggered by several factors: structural factors, such as increased workload and ongoing outbreaks, underlying illnesses, invasive procedures, and treatment-induced immunosuppression. The two most frequently healthcare-acquired infections described in patients hospitalized with COVID-19 were bloodstream infection, related or not to catheters, health-acquired pneumonia (in ventilated or nonventilated patients). The most frequent species involved in bacteremia were Gram-positive cocci and Gram-negative bacilli in health-acquired pneumonia. The rate of Gram-negative bacilli is particularly high in late-onset ventilator-associated pneumonia, and the specific risk of Pseudomonas aeruginosa- related pneumonia increased when the duration of ventilation was longer than 7 days. A specificity that remains unexplained so far is the increase in enterococci bacteremia. SUMMARY The choice of empiric antibiotimicrobials depends on several factors such as the site of the infection, time of onset and previous length of stay, previous antibiotic therapy, and known multidrug-resistant organism colonization. Pharmacokinetics of antimicrobials could be markedly altered during SARS-CoV-2 acute respiratory failure, which should encourage to perform therapeutic drug monitoring.
Collapse
|
11
|
Oral mitis group streptococci reduce infectivity of influenza A virus via acidification and H2O2 production. PLoS One 2022; 17:e0276293. [DOI: 10.1371/journal.pone.0276293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Members of the mitis group streptococci are the most abundant inhabitants of the oral cavity and dental plaque. Influenza A virus (IAV), the causative agent of influenza, infects the upper respiratory tract, and co-infection with Streptococcus pneumoniae is a major cause of morbidity during influenza epidemics. S. pneumoniae is a member of mitis group streptococci and shares many features with oral mitis group streptococci. In this study, we investigated the effect of viable Streptococcus oralis, a representative member of oral mitis group, on the infectivity of H1N1 IAV. The infectivity of IAV was measured by a plaque assay using Madin-Darby canine kidney cells. When IAV was incubated in growing culture of S. oralis, the IAV titer decreased in a time- and dose-dependent manner and became less than 100-fold, whereas heat-inactivated S. oralis had no effect. Other oral streptococci such as Streptococcus mutans and Streptococcus salivarius also reduced the viral infectivity to a lesser extent compared to S. oralis and Streptococcus gordonii, another member of the oral mitis group. S. oralis produces hydrogen peroxide (H2O2) at a concentration of 1–2 mM, and its mutant deficient in H2O2 production showed a weaker effect on the inactivation of IAV, suggesting that H2O2 contributes to viral inactivation. The contribution of H2O2 was confirmed by an inhibition assay using catalase, an H2O2-decomposing enzyme. These oral streptococci produce short chain fatty acids (SCFA) such as acetic acid as a by-product of sugar metabolism, and we also found that the inactivation of IAV was dependent on the mildly acidic pH (around pH 5.0) of these streptococcal cultures. Although inactivation of IAV in buffers of pH 5.0 was limited, incubation in the same buffer containing 2 mM H2O2 resulted in marked inactivation of IAV, which was similar to the effect of growing S. oralis culture. Taken together, these results reveal that viable S. oralis can inactivate IAV via the production of SCFAs and H2O2. This finding also suggests that the combination of mildly acidic pH and H2O2 at low concentrations could be an effective method to inactivate IAV.
Collapse
|
12
|
Sun J, Bai Y, Yu EY, Ding G, Zhang H, Duan M, Huang P, Zhang M, Jin H, Kwok RT, Li Y, Shan GG, Tang BZ, Wang H. Self-cleaning wearable masks for respiratory infectious pathogen inactivation by type I and type II AIE photosensitizer. Biomaterials 2022; 291:121898. [PMID: 36379162 PMCID: PMC9647237 DOI: 10.1016/j.biomaterials.2022.121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Although face masks as personal protective equipment (PPE) are recommended to control respiratory diseases with the on-going COVID-19 pandemic, improper handling and disinfection increase the risk of cross-contamination and compromise the effectiveness of PPE. Here, we prepared a self-cleaning mask based on a highly efficient aggregation-induced emission photosensitizer (TTCP-PF6) that can destroy pathogens by generating Type I and Type II reactive oxygen species (ROS). The respiratory pathogens, including influenza A virus H1N1 strain and Streptococcus pneumoniae (S. pneumoniae) can be inactivated within 10 min of ultra-low power (20 W/m2) white light or simulated sunlight irradiation. This TTCP-PF6-based self-cleaning strategy can also be used against other airborne pathogens, providing a strategy for dealing with different microbes.
Collapse
Affiliation(s)
- Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Guanyu Ding
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Duan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ryan Tk Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|