1
|
Govaert L, Klauschies T. Eco-phenotypic feedback loops differ in multistressor environments. Ecology 2025; 106:e4480. [PMID: 39592230 PMCID: PMC11733661 DOI: 10.1002/ecy.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024]
Abstract
Natural communities are exposed to multiple environmental stressors, which simultaneously impact the population and trait dynamics of the species embedded within these communities. Given that certain traits, such as body size, are known to rapidly respond to environmental change, and given that they can strongly influence the density of populations, this raises the question of whether the strength of the eco-phenotypic feedback loop depends on the environment, and whether stressful environments would enhance or disrupt this feedback or causal linkage. We use two competing freshwater ciliates-Colpidium striatum and Paramecium aurelia-and expose their populations to a full-factorial design of increasing salinity and temperature conditions as well as interspecific competition. We found that salinity, temperature, and competition significantly affected the density and cell size dynamics of both species. Cell size dynamics strongly influenced density dynamics; however, the strength of this eco-phenotypic feedback loop weakened in stressful conditions and with interspecific competition. Our study highlights the importance of studying eco-phenotypic dynamics in different environments comprising stressful abiotic conditions and species interactions.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary and Integrative EcologyLeibniz‐Institut für Gewässerökologie und Binnenfischerei (IGB)BerlinGermany
| | - Toni Klauschies
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| |
Collapse
|
2
|
Majer A, Skoracka A, Spaak J, Kuczyński L. Higher-order species interactions cause time-dependent niche and fitness differences: Experimental evidence in plant-feeding arthropods. Ecol Lett 2024; 27:e14428. [PMID: 38685715 DOI: 10.1111/ele.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.
Collapse
Affiliation(s)
- Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jürg Spaak
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Tye SP, Fey SB, Gibert JP, Siepielski AM. Predator mass mortality events restructure food webs through trophic decoupling. Nature 2024; 626:335-340. [PMID: 38233526 DOI: 10.1038/s41586-023-06931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Predators have a key role in structuring ecosystems1-4. However, predator loss is accelerating globally4-6, and predator mass-mortality events7 (MMEs)-rapid large-scale die-offs-are now emblematic of the Anthropocene epoch6. Owing to their rare and unpredictable nature7, we lack an understanding of how MMEs immediately impact ecosystems. Past predator-removal studies2,3 may be insufficient to understand the ecological consequences of MMEs because, in nature, dead predators decompose in situ and generate a resource pulse8, which could alter ensuing ecosystem dynamics by temporarily enhancing productivity. Here we experimentally induce MMEs in tritrophic, freshwater lake food webs and report ecological dynamics that are distinct from predator losses2,3 or resource pulses9 alone, but that can be predicted from theory8. MMEs led to the proliferation of diverse consumer and producer communities resulting from weakened top-down predator control1-3 and stronger bottom-up effects through predator decomposition8. In contrast to predator removals alone, enhanced primary production after MMEs dampened the consumer community response. As a consequence, MMEs generated biomass dynamics that were most similar to those of undisturbed systems, indicating that they may be cryptic disturbances in nature. These biomass dynamics led to trophic decoupling, whereby the indirect beneficial effects of predators on primary producers are lost and later materialize as direct bottom-up effects that stimulate primary production amid intensified herbivory. These results reveal ecological signatures of MMEs and demonstrate the feasibility of forecasting novel ecological dynamics arising with intensifying global change.
Collapse
Affiliation(s)
- Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | - Samuel B Fey
- Department of Biology, Reed College, Portland, OR, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Fox JW. The existence and strength of higher order interactions is sensitive to environmental context. Ecology 2023; 104:e4156. [PMID: 37622464 DOI: 10.1002/ecy.4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
One strategy for understanding the dynamics of any complex system, such as a community of competing species, is to study the dynamics of parts of the system in isolation. Ecological communities can be decomposed into single species, and pairs of interacting species. This reductionist strategy assumes that whole-community dynamics are predictable and explainable from knowledge of the dynamics of single species and pairs of species. This assumption will be violated if higher order interactions (HOIs) are strong. Theory predicts that HOIs should be common. But it is difficult to detect HOIs, and to infer their long-term consequences for species coexistence, solely from short-term data. I conducted a protist microcosm experiment to test for HOIs among competing bacterivorous ciliates, and test the sensitivity of HOIs to environmental context. I grew three competing ciliate species in all possible combinations at each of two resource enrichment levels, and used the population dynamic data from the one- and two-species treatments to parameterize a competition model at each enrichment level. I then compared the predictions of the parameterized model to the dynamics of the whole community (three-species treatment). I found that the existence, and thus strength, of HOIs was environment dependent. I found a strong HOI at low enrichment, which enabled the persistence of a species that would otherwise have been competitively excluded. At high enrichment, three-species dynamics could be predicted from a parameterized model of one- and two-species dynamics, provided that the model accounted for nonlinear intraspecific density dependence. The results provide one of the first rigorous demonstrations of the long-term consequences of HOIs for species coexistence, and demonstrate the context dependence of HOIs. HOIs create difficult challenges for predicting and explaining species coexistence in nature.
Collapse
Affiliation(s)
- Jeremy W Fox
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Han ZY, Wieczynski DJ, Yammine A, Gibert JP. Temperature and nutrients drive eco-phenotypic dynamics in a microbial food web. Proc Biol Sci 2023; 290:20222263. [PMID: 36722083 PMCID: PMC9890118 DOI: 10.1098/rspb.2022.2263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
Anthropogenic increases in temperature and nutrient loads will likely impact food web structure and stability. Although their independent effects have been reasonably well studied, their joint effects-particularly on coupled ecological and phenotypic dynamics-remain poorly understood. Here we experimentally manipulated temperature and nutrient levels in microbial food webs and used time-series analysis to quantify the strength of reciprocal effects between ecological and phenotypic dynamics across trophic levels. We found that (1) joint-often interactive-effects of temperature and nutrients on ecological dynamics are more common at higher trophic levels, (2) temperature and nutrients interact to shift the relative strength of top-down versus bottom-up control, and (3) rapid phenotypic change mediates observed ecological responses to changes in temperature and nutrients. Our results uncover how feedback between ecological and phenotypic dynamics mediate food web responses to environmental change. This suggests important but previously unknown ways that temperature and nutrients might jointly control the rapid eco-phenotypic feedback that determine food web dynamics in a changing world.
Collapse
Affiliation(s)
- Ze-Yi Han
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
7
|
Gibert JP, Wieczynski DJ, Han Z, Yammine A. Rapid eco-phenotypic feedback and the temperature response of biomass dynamics. Ecol Evol 2023; 13:e9685. [PMID: 36644704 PMCID: PMC9831973 DOI: 10.1002/ece3.9685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Biomass dynamics capture information on population dynamics and ecosystem-level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time-series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment-dependent eco-phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures.
Collapse
Affiliation(s)
- Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Ze‐Yi Han
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
8
|
Yamamichi M, Gibbs T, Levine JM. Integrating eco-evolutionary dynamics and modern coexistence theory. Ecol Lett 2022; 25:2091-2106. [PMID: 35962483 DOI: 10.1111/ele.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco-evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory-niche and competitive ability differences-to systems where competitors evolve. We define eco-evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco-evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco-evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco-evolutionary dynamics can be further integrated.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Theo Gibbs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|