1
|
Chen S, Zhang C, Liu X, Shi Y, Lyu L, Gao G, Yang T, Fan K, Zhang L, Li J, Song L, Yan S, Chu H. Trophic transfer efficiency of microbial food webs differs in water and sediment in alpine wetlands across the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2025; 274:121291. [PMID: 40049352 DOI: 10.1016/j.envres.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
The Tibetan Plateau contains the world's largest area of alpine wetlands, where coexisting water and sediment environments provide habitats for multitrophic microbial communities. However, the microbial food web (MFW) of coexisting water and sediment in wetland ecosystems and their responses to environmental changes remain unclear. In this study, we investigated MFWs (including archaea, bacteria, and eukaryotes) across 21 paired samples from alpine wetlands on the Tibetan Plateau along a salinity gradient. In both water and sediment, the MFWs exhibited enhanced predation and decreased mutualism with increasing salinity, with the total trophic transfer efficiency (TTE) community of bacteria, protists and metazoa increasing. The TTE of MFWs in sediment was higher than that in water, and the competition associations among species decreased while the cooperation associations increased. Compared to sediment, the MFWs in water were more complex and vulnerable. Salinity exerted top-down control on MFWs by directly influencing higher trophic levels (e.g., metazoa) in water. In contrast, salinity affected the MFWs through bottom-up effects by impacting lower trophic levels (heterotrophic archaea, heterotrophic bacteria) in sediment. Overall, this study provides new insights into understanding the trophic cycle and interactions of multi-trophic biological communities in coexisting water and sediment, and how MFWs adapt to environmental change.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lihui Lyu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Luyao Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Subo Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Kohler P, Yates RE, Tomlinson GR, Harwood AD. Evaluating the Effects of Diet on the Sensitivity of Hyalella azteca to an "Eco-friendly" Deicing Agent. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2608-2615. [PMID: 39222015 DOI: 10.1002/etc.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Salting of roadways contaminates local waterways via snowmelt and precipitation runoff, eliciting various toxicological impacts on aquatic ecosystems. Recently, "eco-friendly" deicing alternatives have been introduced in hopes of mitigating environmental impacts of deicing agents, while maintaining human safety. These "eco-friendly" alternatives may pose their own set of environmental concerns that require further study. While the potential toxicity of road salts has been evaluated for various aquatic species, the environmental factors that may influence this toxicity are less understood; and for emerging deicing alternatives, there is a lack of literature documenting these potential implications. For aquatic organisms, the highest exposure to road salts may coincide with reduced food availability, namely during the winter months. The present study evaluates the effect of a conditioning diet on the sensitivity of adult Hyalella azteca to an "eco-friendly"-labeled beet deicer (Snow Joe MELT Beet-IT). Various conditioning diets were examined, including TetraMinTM, TetraMin and diatom (Thalassiosira weissflogii) combinations, and TetraMin and conditioned Acer sacharum leaves. For each diet type, 48- and 96-h water-only toxicity bioassays were conducted with adult H. azteca. These results were compared to organisms which experienced a 96-h starvation period prior to exposure and culture organisms. Diet types representing excess quality and quantity of food significantly decreased the toxicity of beet deicer to the organisms. However, starvation likely increases the toxicity of road salts to H. azteca. Therefore, the quantity and quality of food available to H. azteca may influence their sensitivity to deicing agents. Environ Toxicol Chem 2024;43:2608-2615. © 2024 SETAC.
Collapse
Affiliation(s)
- Paige Kohler
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Rebecca E Yates
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Greysen R Tomlinson
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Amanda D Harwood
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| |
Collapse
|
3
|
Vigil JP, Schuler MS. Salt pollution reduces turbidity, dissolved organic matter, and cyanobacteria in experimental vernal pool communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172948. [PMID: 38703853 DOI: 10.1016/j.scitotenv.2024.172948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
Collapse
Affiliation(s)
- Jared P Vigil
- Department of Biology, Montclair State University, Montclair, NJ 07043, United States of America
| | - Matthew S Schuler
- Department of Biology, Montclair State University, Montclair, NJ 07043, United States of America.
| |
Collapse
|
4
|
Farnan J, Vanden Heuvel JP, Dorman FL, Warner NR, Burgos WD. Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122184. [PMID: 37453689 DOI: 10.1016/j.envpol.2023.122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.
Collapse
Affiliation(s)
- James Farnan
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA ,16802, USA; INDIGO Biosciences, Inc., 3006 Research Drive, Suite A1, PA, 16801, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA ,16802, USA.
| | - Nathaniel R Warner
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - William D Burgos
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Reeve C, Robichaud JA, Fernandes T, Bates AE, Bramburger AJ, Brownscombe JW, Davy CM, Henry HAL, McMeans BC, Moise ERD, Sharma S, Smith PA, Studd EK, O’Sullivan A, Sutton AO, Templer PH, Cooke SJ. Applied winter biology: threats, conservation and management of biological resources during winter in cold climate regions. CONSERVATION PHYSIOLOGY 2023; 11:coad027. [PMID: 37179705 PMCID: PMC10170328 DOI: 10.1093/conphys/coad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Winter at high latitudes is characterized by low temperatures, dampened light levels and short photoperiods which shape ecological and evolutionary outcomes from cells to populations to ecosystems. Advances in our understanding of winter biological processes (spanning physiology, behaviour and ecology) highlight that biodiversity threats (e.g. climate change driven shifts in reproductive windows) may interact with winter conditions, leading to greater ecological impacts. As such, conservation and management strategies that consider winter processes and their consequences on biological mechanisms may lead to greater resilience of high altitude and latitude ecosystems. Here, we use well-established threat and action taxonomies produced by the International Union of Conservation of Nature-Conservation Measures Partnership (IUCN-CMP) to synthesize current threats to biota that emerge during, or as the result of, winter processes then discuss targeted management approaches for winter-based conservation. We demonstrate the importance of considering winter when identifying threats to biodiversity and deciding on appropriate management strategies across species and ecosystems. We confirm our expectation that threats are prevalent during the winter and are especially important considering the physiologically challenging conditions that winter presents. Moreover, our findings emphasize that climate change and winter-related constraints on organisms will intersect with other stressors to potentially magnify threats and further complicate management. Though conservation and management practices are less commonly considered during the winter season, we identified several potential or already realized applications relevant to winter that could be beneficial. Many of the examples are quite recent, suggesting a potential turning point for applied winter biology. This growing body of literature is promising but we submit that more research is needed to identify and address threats to wintering biota for targeted and proactive conservation. We suggest that management decisions consider the importance of winter and incorporate winter specific strategies for holistic and mechanistic conservation and resource management.
Collapse
Affiliation(s)
- Connor Reeve
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jessica A Robichaud
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Timothy Fernandes
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Amanda E Bates
- Department of Biology, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia, V8P 5C2 Canada
| | - Andrew J Bramburger
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Christina M Davy
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Eric R D Moise
- Natural Resources Canada – Canadian Forest Service, 26 University Drive, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Sapna Sharma
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Paul A Smith
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
- Wildlife Research Division, Environment and Climate Change Canada, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Emily K Studd
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Antóin O’Sullivan
- Biology Department, Canadian Rivers Institute, University of New Brunswick, 550 Windsor St., Fredericton, New Brunswick, E3B 5A3, Canada
| | - Alex O Sutton
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, Gwynedd, LL57 2UR, UK
| | - Pamela H Templer
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
6
|
Ersoy Z, Abril M, Cañedo-Argüelles M, Espinosa C, Vendrell-Puigmitja L, Proia L. Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120127. [PMID: 36089138 DOI: 10.1016/j.envpol.2022.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Collapse
Affiliation(s)
- Zeynep Ersoy
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Meritxell Abril
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Carmen Espinosa
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lidia Vendrell-Puigmitja
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
7
|
Klauschies T, Isanta-Navarro J. The joint effects of salt and 6PPD contamination on a freshwater herbivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154675. [PMID: 35314241 DOI: 10.1016/j.scitotenv.2022.154675] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/26/2023]
Abstract
Using sodium chloride (NaCl) for de-icing roads is known to have severe consequences on freshwater organisms when washed into water bodies. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, also known as 6PPD, is an antiozonant mainly found in automobile tire rubber to prevent ozone mediated cracking or wear-out. Especially the ozonated derivate, 6PPD-quinone, which is washed into streams after storm events, has been found to be toxic for coho salmon. Studies on other freshwater organisms could not confirm those findings, pointing towards distinct species-specific differences. Storm events result in greater run-offs from all water-soluble contaminants into freshwater bodies, potentially enhancing the concentrations of both chloride and 6PPD during winter. Here we show that these two contaminants have synergistic negative effects on the population growth of the rotifer Brachionus calyciflorus, a common freshwater herbivore. Hence, while only high concentrations of 6PPD and even higher concentrations of 6PPD-quinone, beyond environmentally relevant concentrations, had lethal effects on rotifers, the addition of NaCl enhanced the sensitivity of the rotifers towards the application of 6PPD so that their negative effects were more pronounced at lower concentrations. Similarly, 6PPD increased the lethal effect of NaCl. Our results support the species-specific toxicity of 6PPD and demonstrate a synergistic effect of the antiozonant on the toxicity of other environmentally relevant stressors, such as road salt contamination.
Collapse
Affiliation(s)
- Toni Klauschies
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany.
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, United States.
| |
Collapse
|
8
|
Szeligowski RV, Scanley JA, Broadbridge CC, Brady SP. Road salt compromises functional morphology of larval gills in populations of an amphibian. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118441. [PMID: 34728326 DOI: 10.1016/j.envpol.2021.118441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts-where ionoregulation and gas exchange occur-and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.
Collapse
Affiliation(s)
- Richard V Szeligowski
- Biology Department, Southern Connecticut State University, New Haven, CT, 06515, USA.
| | - Jules A Scanley
- Center for Nanotechnology, Connecticut State Colleges and Universities, New Haven, CT, 06515, USA
| | - Christine C Broadbridge
- Center for Nanotechnology, Connecticut State Colleges and Universities, New Haven, CT, 06515, USA
| | - Steven P Brady
- Biology Department, Southern Connecticut State University, New Haven, CT, 06515, USA
| |
Collapse
|
9
|
Coldsnow KD, Relyea RA. The combined effects of macrophytes and three road salts on aquatic communities in outdoor mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117652. [PMID: 34186499 DOI: 10.1016/j.envpol.2021.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Because of environmental and societal concerns, new strategies are being developed to mitigate the effects of road salt. These include new deicers that are alternatives to or mixtures with the most common road salt, sodium chloride (NaCl), improved techniques and equipment, and biotic mitigation methods. Using outdoor mesocosms, we investigated the impacts of NaCl and two common alternatives, magnesium chloride (MgCl2) and calcium chloride (CaCl2) on freshwater communities. We also investigated the mitigation ability of a common macrophyte, Elodea. We hypothesized that road salt exposure reduces filamentous algae, zooplankton, and macrocrustaceans, but results in increases in phytoplankton and gastropods. We also hypothesized that MgCl2 is the most toxic salt to communities, followed by CaCl2, and then NaCl. Lastly, we hypothesized that macrophytes mitigate some of the effects of road salt, specifically the effects on primary producers. We found that all three salts reduced filamentous algal biomass and amphipod abundance, but only MgCl2 reduced Elodea biomass. MgCl2 had the largest and longest lasting effects on zooplankton, specifically cladocerans and copepods, which resulted in a significant increase in phytoplankton and rotifers. CaCl2 increased ostracods and decreased snail abundance, but NaCl increased snail abundance. Lastly, while we did not find many interactions between road salt and macrophyte treatments, macrophytes did counteract many of the salt effects on producers, leading to decreased phytoplankton, increased filamentous algae, and altered abiotic responses. Thus, at similar chloride concentrations, NaCl alternatives, specifically MgCl2, are not safer for aquatic ecosystems and more research is needed to find safer road management strategies to protect freshwater ecosystems.
Collapse
Affiliation(s)
- Kayla D Coldsnow
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA.
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
10
|
Honarvar Nazari M, Mousavi SZ, Potapova A, McIntyre J, Shi X. Toxicological impacts of roadway deicers on aquatic resources and human health: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1855-1881. [PMID: 33978278 DOI: 10.1002/wer.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
During winter, snow and ice on roads in regions with cold weather can increase traffic crashes and casualties, resulting in travel delays and financial burdens to society. Anti-icing or deicing the roads can serve a cost-effective method to significantly reduce such risks. Although traditionally the main priorities of winter road maintenance (WRM) have been level of service, cost-effectiveness, and corrosion reduction, it is increasingly clear that understanding the environmental impacts of deicers is vital. One of the most important problems in this regard is environmental contamination caused by cumulative use of deicers, which has many detrimental effects on the aquatic systems. Among the deicers, the chloride-based ones raise the most toxicological concerns because they are highly soluble, can migrate quickly in the environment and have cumulative effects over time. In this review, we summarize and organize existing data, including the latest findings about the adverse effects of deicers on surface water and groundwater, aquatic species, and human health, and identify future research priorities. In addition, the data provided can be used to develop a framework for quantifying some of the variables that stakeholders and agencies use when preparing guidelines and standards for WRM programs. PRACTITIONER POINTS: Pollution from the increasing use of roadway deicers may have detrimental effects on the environment. Of particular concern are the acute and cumulative risks that chloride salts pose to aquatic species. Chloride salts are water-soluble, very difficult to remove, highly mobile, and non-degradable. Deicers cause water stratification, change the chemicophysical properties of water, and affect aquatic species and human health. Current guidelines may not be appropriate for environmental protection and need to be revised.
Collapse
Affiliation(s)
- Mehdi Honarvar Nazari
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - S Zeinab Mousavi
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - Anna Potapova
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - Jenifer McIntyre
- School of the Environment, Puyallup Research & Extension Center, Washington State University, Puyallup, WA, USA
| | - Xianming Shi
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Schuler MS, Hintz WD, Jones DK, Mattes BM, Stoler AB, Relyea RA. The effects of nutrient enrichment and invasive mollusks on freshwater environments. Ecosphere 2020. [DOI: 10.1002/ecs2.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Matthew S. Schuler
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
- Department of Biology Montclair State University Montclair New Jersey07043USA
| | - William D. Hintz
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
- Department of Environmental Sciences and Lake Erie Center University of Toledo 6200 Bay Shore Rd Oregon Ohio USA
| | - Devin K. Jones
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana46556USA
| | - Brian M. Mattes
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
| | - Aaron B. Stoler
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
- School of Natural Sciences and Mathematics Stockton University Galloway New Jersey08205USA
| | - Rick A. Relyea
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York12180USA
| |
Collapse
|
12
|
Nutile SA, Simpson AM, Solan ME. Bridging the Information Gap Between Science and Society: A Solution to Nonpoint Source Contamination? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:415-420. [PMID: 32190962 DOI: 10.1002/ieam.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The dissemination of information associated with scientific achievement serves to advance research and guide future experimentation. In the sphere of environmental science, such advancements aim to better characterize harmful chemicals and the factors that influence in situ toxicity, which is central to the protection of the environments upon which humans depend. While some information regarding the dangers associated with common anthropogenic contaminants reaches wider audiences, the nuance of this information is often lost, potentially leading to ineffective solutions, specifically as it relates to nonpoint source contamination. Bridging the divide between scientific research, regulatory implementation, and product innovation is imperative in order to find meaningful and lasting environmental solutions. Road de-icing salts are applied to impervious surfaces to protect human health and maintain the efficient transportation of goods by roadways during winter months. The toxicity of these salts in freshwater ecosystems is well understood and researched within the scientific community. Tentative regulations and solutions developed to mitigate the environmental damage caused by road de-icing salts, however, perfectly represent the disconnect between the scientific community and the general public. Here, we use road de-icing salt as an example of how such a disconnect can manifest in the form of ineffective solutions and regulatory standards, and we present a general framework by which environmental scientists can more effectively bridge the gap between the scientific community and society at large. Integr Environ Assess Manag 2020;16:415-420. © 2020 SETAC.
Collapse
Affiliation(s)
- Samuel A Nutile
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, Pennsylvania, USA
| | - Adam M Simpson
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, Pennsylvania, USA
| | - Megan E Solan
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, Pennsylvania, USA
| |
Collapse
|
13
|
Advanced biofilm analysis in streams receiving organic deicer runoff. PLoS One 2020; 15:e0227567. [PMID: 31968006 PMCID: PMC6975536 DOI: 10.1371/journal.pone.0227567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicers and anti-icers, which are composed of low-molecular weight organic compounds. This study investigated biofilm spatiotemporal patterns and responses to concurrent and antecedent (i.e., preceding biofilm sampling) environmental conditions at stream sites upstream and downstream from Milwaukee Mitchell International Airport in Milwaukee, Wisconsin, during two deicing seasons (2009-2010; 2010-2011). Biofilm abundance and community composition were investigated along spatial and temporal gradients using field surveys and microarray analyses, respectively. Given the recognized role of Sphaerotilus in organically enriched environments, additional analyses were pursued to specifically characterize its abundance: a consensus sthA sequence was determined via comparison of whole metagenome sequences with a previously identified sthA sequence, the primers developed for this gene were used to characterize relative Sphaerotilus abundance using quantitative real-time PCR, and a Sphaerotilus strain was isolated to validate the determined sthA sequence. Results indicated that biofilm abundance was stimulated by elevated antecedent chemical oxygen demand concentrations, a surrogate for deicer concentrations, with minimal biofilm volumes observed when antecedent chemical oxygen demand concentrations remained below 48 mg/L. Biofilms were composed of diverse communities (including sheathed bacterium Thiothrix) whose composition appeared to shift in relation to antecedent temperature and chemical oxygen demand. The relative abundance of sthA correlated most strongly with heterotrophic biofilm volume (positive) and dissolved oxygen (negative), indicating that Sphaerotilus was likely a consistent biofilm member and thrived under low oxygen conditions. Additional investigations identified the isolate as a new strain of Sphaerotilus montanus (strain KMKE) able to use deicer components as carbon sources and found that stream dissolved oxygen concentrations related inversely to biofilm volume as well as to antecedent temperature and chemical oxygen demand. The airport setting provides insight into potential consequences of widescale adoption of organic deicers for roadway deicing.
Collapse
|
14
|
Sowa A, Krodkiewska M, Halabowski D, Lewin I. Response of the mollusc communities to environmental factors along an anthropogenic salinity gradient. Naturwissenschaften 2019; 106:60. [PMID: 31758263 DOI: 10.1007/s00114-019-1655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022]
Abstract
Anthropogenic salinisation of freshwater ecosystems is frequent across the world. The scale of this phenomenon remains unrecognised, and therefore, monitoring and management of such ecosystems is very important. We conducted a study on the mollusc communities in inland anthropogenic ponds covering a large gradient of salinity located in an area of underground coal mining activity. A total of 14 gastropod and 6 bivalve species were noted. No molluscs were found in waters with total dissolved solids (TDS) higher than 17.1 g L-1. The share of alien species in the communities was very high in waters with elevated salinity and significantly lower in the freshwaters. Canonical correspondence analysis (CCA) showed that TDS, pH, alkalinity, nitrate nitrogen, ammonium nitrogen, iron, the content of organic matter in sediments, the type of substrate and the content of sand and gravel in sediments were the variables that were significantly associated with the distribution of molluscs. The regression analysis revealed that total mollusc density was positively related to alkalinity and negatively related to nitrate nitrogen. The taxa richness was negatively related to TDS, which is consistent with previous studies which indicated that a high salinity level is a significant threat to freshwater malacofauna, causing a loss of biodiversity and contributing to the colonisation and establishment of alien species in aquatic ecosystems.
Collapse
Affiliation(s)
- Agnieszka Sowa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Mariola Krodkiewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Halabowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Iga Lewin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
15
|
Bracewell S, Verdonschot RCM, Schäfer RB, Bush A, Lapen DR, Van den Brink PJ. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:727-740. [PMID: 30981441 DOI: 10.1016/j.scitotenv.2019.03.497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 05/12/2023]
Abstract
In September 2017, a workshop was held at Wageningen University and Research to determine the current state of knowledge of multiple stressor effects on aquatic ecosystems and to assess how to improve prediction of these effects. We developed a theoretical framework that integrates species-level responses to stressors to predict how these effects propagate through higher levels of biological organisation. Here, we present the application of the framework for drainage ditch ecosystems in the Netherlands. We used food webs to assess single and multiple stressor effects of common stressors on ditch communities. We reviewed the literature for the effects of targeted stressors (nutrients, pesticides, dredging and mowing, salinization, and siltation) on each functional group present in the food web and qualitatively assessed the relative sensitivity of groups. Using this information, we created a stressor-response matrix of positive and negative direct effects of each stressor-functional group combination. Fungicides, salinization, and sedimentation were identified as particularly detrimental to most groups, although destructive management practices, such as dredging with almost complete community removal, would take precedence depending on frequency. Using the stressor-response matrix we built, first, a series of conceptual null models of single stressor effects on food web structure and, second, a series of additive null models to illustrate potential paired-stressor effects. We compared these additive null models with published studies of the same pairs of combined single stressors to explore more complex interactions. Our approach serves as a first-step to considering multiple stressor scenarios in systems that are understudied or data-poor and as a baseline from which more complex models that include indirect effects and quantitative data may be developed. We make specific suggestions for appropriate management strategies that could be taken to support the biodiversity of these systems for individual stressors and their combined impacts.
Collapse
Affiliation(s)
- Sally Bracewell
- Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Alex Bush
- Environment Canada, Canadian Rivers Institute, Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
16
|
Nutile SA, Solan ME. Toxicity testing of "eco-friendly" de-icing formulations using Chironomus dilutus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:408-413. [PMID: 30577009 DOI: 10.1016/j.envpol.2018.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
An influx of chloride ions from road de-icing solutions can result in toxicological effects to organisms in terrestrial and aquatic environments. As such, "eco-friendly" de-icing alternatives are sought to mitigate environmental impacts of de-icing impervious surfaces, while maintaining human safety. While many alternative de-icers are economically impractical for municipal use, the residential commercial market is flooded with de-icing formulations claiming to be "eco-friendly". Given the little regulation and guidance that surrounds eco-labeling, the meaning of "eco-friendly" remains unclear in the context of biological systems. The objective of the current study was to determine the toxicity of three "eco-friendly" de-icing formulations to Chironomus dilutus using 10 d toxicity tests. The toxicity of these three formulations was compared to a traditional formulation composed entirely of chloride salts. Two of the "eco-friendly" de-icers demonstrated LC50s of 6.61 and 6.32 g/L, which were similar in toxicity to the traditional sodium chloride formulation with a LC50 6.29 g/L. The comparable toxicities of these formulations is likely due to the presence of chloride salts in each of the "eco-friendly" de-icers. The third "eco-friendly" formulation, a urea-based de-icer, demonstrated toxicity an order of magnitude higher than that of the traditional formulation with an LC50 of 0.63 g/L. While C. dilutus may not have been the intended endpoint in consideration when marketing these products as "eco-friendly", consideration of how eco-labeling is utilized and the role of environmental scientists in determining the meaning of such claims must be considered to ensure continued and future protection of the environment.
Collapse
Affiliation(s)
- Samuel A Nutile
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA.
| | - Megan E Solan
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| |
Collapse
|
17
|
Cañedo-Argüelles M, Kefford B, Schäfer R. Salt in freshwaters: causes, effects and prospects - introduction to the theme issue. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0002. [PMID: 30509904 DOI: 10.1098/rstb.2018.0002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Humans are globally increasing the salt concentration of freshwaters (i.e. freshwater salinization), leading to significant effects at the population, community and ecosystem level. The present theme issue focuses on priority research questions and delivers results that contribute to shaping the future research agenda on freshwater salinization as well as fostering our capacity to manage salinization. The issue is structured along five topics: (i) the estimation of future salinity and evaluation of the relative contribution of the different drivers; (ii) the physiological responses of organisms to alterations in ion concentrations with a specific focus on the osmophysiology of freshwater insects and the responses of different organisims to seawater intrusion; (iii) the impact of salinization on ecosystem functioning, also considering the connections between riparian and stream ecosystems; (iv) the role of context in moderating the response to salinization. The contributions scrutinise the role of additional stressors, biotic interactions, the identify of the ions and their ratios, as well as of the biogeographic and evolutionary context; and (v) the public discourse on salinization and recommendations for management and regulation. In this paper we introduce the general background of salinization, outline research gaps and report key findings from the contributions to this theme issue.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Miguel Cañedo-Argüelles
- Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciència Ambientals, Universitat de Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Ben Kefford
- Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
| | - Ralf Schäfer
- Department of Quantitative Landscape Ecology, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| |
Collapse
|
18
|
Hintz WD, Jones DK, Relyea RA. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0012. [PMID: 30509914 DOI: 10.1098/rstb.2018.0012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries have documented evolutionary responses to freshwater salinization. We investigated if evolutionary responses to salinization exhibit life-history trade-offs or if they can mitigate ecological impacts such as cascading effects through mechanisms of tolerance and cross-tolerance. We conducted an outdoor mesocosm experiment using populations of Daphnia pulex-a ubiquitous algal grazer-that were either naive or had previously experienced selection to become more tolerant to sodium chloride (NaCl). During the initial phase of population growth, we discovered that evolved tolerance comes at the cost of slower population growth in the absence of salt. We found evolved Daphnia populations maintained a tolerance to NaCl approximately 30 generations after the initial discovery. Evolved tolerance to NaCl also conferred cross-tolerance to a high concentration of CaCl2 (3559 µS cm-1) and a moderate concentration of MgCl2 (967 µS cm-1). A higher concentration of MgCl2 (2188 µS cm-1) overwhelmed the cross-tolerance and killed all Daphnia Tolerance to NaCl did not mitigate NaCl-induced cascades leading to phytoplankton blooms, but cross-tolerance at moderate concentrations of MgCl2 and high concentrations of CaCl2 mitigated such cascading effects caused by these two salts. These discoveries highlight the important interplay between ecology and evolution in understanding the full impacts of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
19
|
Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA. Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0019. [PMID: 30509918 DOI: 10.1098/rstb.2018.0019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Matthew S Schuler
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miguel Cañedo-Argüelles
- Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - William D Hintz
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brenda Dyack
- Institute for Applied Ecology, University of Canberra, Canberra 2601, Australia
| | - Sebastian Birk
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
Lind L, Schuler MS, Hintz WD, Stoler AB, Jones DK, Mattes BM, Relyea RA. Salty fertile lakes: how salinization and eutrophication alter the structure of freshwater communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lovisa Lind
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Ecology and Environmental Science; Umeå University; 90187 Umeå Sweden
| | - Matthew S. Schuler
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - William D. Hintz
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - Aaron B. Stoler
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Natural Sciences and Mathematics; Stockton University; Galloway New Jersey 08205 USA
| | - Devin K. Jones
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Integrative Biology; University of South Florida; Tampa Florida 33620 USA
| | - Brian M. Mattes
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - Rick A. Relyea
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| |
Collapse
|
21
|
Coldsnow KD, Relyea RA. Toxicity of various road-deicing salts to Asian clams (Corbicula fluminea). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1839-1845. [PMID: 29508902 DOI: 10.1002/etc.4126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Humans are altering environments by destroying habitats, introducing species, and releasing pollution. One emergent pollutant is the salinization of freshwater habitats from road-deicing salts. Government agencies have set thresholds to protect freshwater ecosystems, yet these values are exceeded in many systems. The present study investigated the tolerance of Asian clams (Corbicula fluminea), a common invasive bivalve, to the common road salt (sodium chloride [NaCl]) and 2 alternatives (magnesium chloride [MgCl2 ] and calcium chloride [CaCl2 ]). Experiments conducted at 4 and 8 d revealed that Asian clams are very salt tolerant. The median lethal concentration after 4 d of exposure (LC504-d ) estimate was 2162 mg Cl- /L for MgCl2 , 3554 mg Cl- /L for CaCl2 , and more than 22 581 mg Cl- /L for NaCl, which were all significantly different from each other (p ≤ 0.05). The LC508-d values were significantly different (p ≤ 0.05) from each other and from the LC504-d values, and were estimated to be 1769 mg Cl- /L for MgCl2 , 2235 Cl- /L for CaCl2 , and 10 069 mg Cl- /L for NaCl. Mortality was determined using 2 methods: either no response after exposure or no response after being in freshwater following exposure. For the majority of the LC50s, these methods were not significantly different (p > 0.05). The high salt tolerance of Asian clams is a concern because of their transportation in ballast water between aquatic ecosystems. Furthermore, salt-tolerant organisms may outcompete sensitive organisms in salinized ecosystems, which may alter ecosystem services. Environ Toxicol Chem 2018;37:1839-1845. © 2018 SETAC.
Collapse
Affiliation(s)
- Kayla D Coldsnow
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
22
|
Schuler MS, Relyea RA. A Review of the Combined Threats of Road Salts and Heavy Metals to Freshwater Systems. Bioscience 2018. [DOI: 10.1093/biosci/biy018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Matthew S Schuler
- Department of Biological Sciences at the Darrin Fresh Water Institute of the Rensselaer Polytechnic Institute, in Troy, New York
| | - Rick A Relyea
- Department of Biological Sciences at the Darrin Fresh Water Institute of the Rensselaer Polytechnic Institute, in Troy, New York
| |
Collapse
|
23
|
Schuler MS, Relyea RA. Road salt and organic additives affect mosquito growth and survival: an emerging problem in wetlands. OIKOS 2018. [DOI: 10.1111/oik.04837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Matthew S. Schuler
- Dept of Biological Sciences; Darrin Fresh Water Inst., Rensselaer Polytechnic Inst.; Troy NY 12180 USA
| | - Rick A. Relyea
- Dept of Biological Sciences; Darrin Fresh Water Inst., Rensselaer Polytechnic Inst.; Troy NY 12180 USA
| |
Collapse
|
24
|
Brady SP, Richardson JL, Kunz BK. Incorporating evolutionary insights to improve ecotoxicology for freshwater species. Evol Appl 2017; 10:829-838. [PMID: 29151874 PMCID: PMC5680426 DOI: 10.1111/eva.12507] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Ecotoxicological studies have provided extensive insights into the lethal and sublethal effects of environmental contaminants. These insights are critical for environmental regulatory frameworks, which rely on knowledge of toxicity for developing policies to manage contaminants. While varied approaches have been applied to ecotoxicological questions, perspectives related to the evolutionary history of focal species or populations have received little consideration. Here, we evaluate chloride toxicity from the perspectives of both macroevolution and contemporary evolution. First, by mapping chloride toxicity values derived from the literature onto a phylogeny of macroinvertebrates, fish, and amphibians, we tested whether macroevolutionary relationships across species and taxa are predictive of chloride tolerance. Next, we conducted chloride exposure tests for two amphibian species to assess whether potential contemporary evolutionary change associated with environmental chloride contamination influences chloride tolerance across local populations. We show that explicitly evaluating both macroevolution and contemporary evolution can provide important and even qualitatively different insights from those obtained via traditional ecotoxicological studies. While macroevolutionary perspectives can help forecast toxicological end points for species with untested sensitivities, contemporary evolutionary perspectives demonstrate the need to consider the environmental context of exposed populations when measuring toxicity. Accounting for divergence among populations of interest can provide more accurate and relevant information related to the sensitivity of populations that may be evolving in response to selection from contaminant exposure. Our data show that approaches accounting for and specifically examining variation among natural populations should become standard practice in ecotoxicology.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenCTUSA
- School of Forestry and Environmental StudiesYale UniversityNew HavenCTUSA
| | | | - Bethany K. Kunz
- U.S. Geological SurveyColumbia Environmental Research CenterColumbiaMOUSA
| |
Collapse
|