1
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
2
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
4
|
Collins AE, Saleh TM, Kalisch BE. VANL-100 Attenuates Beta-Amyloid-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 24:ijms24010442. [PMID: 36613883 PMCID: PMC9820495 DOI: 10.3390/ijms24010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidants are being explored as novel therapeutics for the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) through strategies such as chemically linking antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cytoprotective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid (Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant compounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide (MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA), or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h incubation with 20 μM non-fibril or fibril Aβ25-35. Co-treatment experiments consisted of simultaneous treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly attenuated Aβ-induced cell death. There were no significant differences between the protective effects of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100 between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.
Collapse
|
5
|
Sharma S, Hafeez A, Usmani SA. Nanoformulation approaches of naringenin- an updated review on leveraging pharmaceutical and preclinical attributes from the bioactive. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Alifarsangi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M. The citrus flavanone naringenin prevents the development of morphine analgesic tolerance and conditioned place preference in male rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:43-51. [PMID: 33006902 DOI: 10.1080/00952990.2020.1813296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Opioids are effective analgesics in the management of chronic pain. However, their clinical use is hindered by adverse side effects such as addiction and analgesic tolerance. Naringenin is a common polyphenolic constituent of the citrus fruits and is one of the most commonly consumed flavonoids within our regular diet. However, its influences on opioid tolerance and addiction have not yet been clarified. OBJECTIVES To examine the effect of different doses of naringenin on analgesic tolerance, conditioned place preference and neuroinflammation in morphine-exposed rats. METHODS Analgesic tolerance was induced by the injection of 10 mg/kg morphine twice daily for 8 days in 70 male Wistar rats. To evaluate the effect of naringenin on the development of morphine tolerance, different doses (10, 25 and 50 mg/kg i.p.) were injected 15 min before morphine. The tail-flick test was used to assess nociceptive threshold. Conditioned place preference test was used to evaluate morphine-seeking behaviors. The lumbar spinal cord was assayed to determine glial fibrillary acidic protein (GFAP) and cyclooxygenase-2 (COX-2) levels by Western blotting. RESULTS The data showed that naringenin could significantly prevent morphine tolerance (p < .001) and conditioned place preference. In addition, chronic morphine-induced GFAP and COX-2 overexpression was significantly reversed by 50 mg/kg naringenin (p < .05 and p < .01, respectively). CONCLUSION Our results suggest that naringenin may have a potential anti-tolerant/anti-addiction property against chronic morphine misuse and that this preventive effect is associated with its anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Atena Alifarsangi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|
8
|
Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen JT. On the Neuroprotective Effects of Naringenin: Pharmacological Targets, Signaling Pathways, Molecular Mechanisms, and Clinical Perspective. Biomolecules 2019; 9:E690. [PMID: 31684142 PMCID: PMC6920995 DOI: 10.3390/biom9110690] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
As a group of progressive, chronic, and disabling disorders, neurodegenerative diseases (NDs) affect millions of people worldwide, and are on the rise. NDs are known as the gradual loss of neurons; however, their pathophysiological mechanisms have not been precisely revealed. Due to the complex pathophysiological mechanisms behind the neurodegeneration, investigating effective and multi-target treatments has remained a clinical challenge. Besides, appropriate neuroprotective agents are still lacking, which raises the need for new therapeutic agents. In recent years, several reports have introduced naturally-derived compounds as promising alternative treatments for NDs. Among natural entities, flavonoids are multi-target alternatives affecting different pathogenesis mechanisms in neurodegeneration. Naringenin is a natural flavonoid possessing neuroprotective activities. Increasing evidence has attained special attention on the variety of therapeutic targets along with complex signaling pathways for naringenin, which suggest its possible therapeutic applications in several NDs. Here, in this review, the neuroprotective effects of naringenin, as well as its related pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective, are described. Moreover, the need to develop novel naringenin delivery systems is also discussed to solve its widespread pharmacokinetic limitation.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student's Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol 7383198616, Iran.
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, Brazil.
| | - Ghada E Abd-ElGhani
- Department of Chemistry, Faculty of Science, University of Mansoura, 35516 Mansoura, Egypt.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
| |
Collapse
|
9
|
Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin. 3 Biotech 2019; 9:312. [PMID: 31406634 DOI: 10.1007/s13205-019-1835-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present study was to improve the aqueous solubility of naringenin by conjugating with water-soluble polysaccharide carrier, pectin. The pectin-naringenin conjugate was synthesized employing dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugation was confirmed by various physicochemical characterizations. The results of differential scanning calorimetry, X-ray diffraction and morphological analyses revealed semi-crystalline nature of the conjugate. The chromatographic analysis showed 37.069 µg naringenin/mg of conjugate. The conjugate was determined to have molecular weight of 6.22 × 104 kDa by static light scattering. In silico molecular mechanistic simulations performed for pectin and naringenin revealed the energetic and geometrical stability within the polysaccharide-polyphenol conjugate. The critical aggregation concentration was in the range of 44.67-56.23 μg/mL as determined by dynamic light scattering and fluorescence spectroscopy. On in vitro release, 99.4% (pH 1.2) and 57.62% (pH 7.4) of naringenin were found to be released over a period of 30 h and 48 h, respectively. Further, the release of naringenin followed Higuchi's square-root kinetics with diffusion as the possible release mechanism. A comparative evaluation for antioxidant activity revealed a significantly higher radical scavenging activity of conjugate over the naringenin. Further, the conjugate exhibited significantly higher antimicrobial action against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa while a comparable antimicrobial activity was observed against Escherichia coli and Bacillus subtilis. The cytotoxicity studies of the synthesized conjugate showed anti-cancer activity against NIH: OVCAR-5 cells. In conclusion, the pectin-naringenin conjugate presented hydrocolloidal properties with improved therapeutic efficacy and delivery over the native polyphenol.
Collapse
|
10
|
Cichon N, Bijak M, Synowiec E, Miller E, Sliwinski T, Saluk-Bijak J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 78:626-631. [DOI: 10.1080/00365513.2018.1542540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Cichon
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elzbieta Miller
- Department of Physical Medicine, Medical University of Lodz, Lodz, Poland
- Neurorehabilitation Ward III General Hospital in Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Department of Molecular Genetics, Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Ahmad A, Fauzia E, Kumar M, Mishra RK, Kumar A, Khan MA, Raza SS, Khan R. Gelatin-Coated Polycaprolactone Nanoparticle-Mediated Naringenin Delivery Rescue Human Mesenchymal Stem Cells from Oxygen Glucose Deprivation-Induced Inflammatory Stress. ACS Biomater Sci Eng 2018; 5:683-695. [PMID: 33405831 DOI: 10.1021/acsbiomaterials.8b01081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ischemic stroke involves pro-inflammatory species, which implicates inflammation in the disease mechanism. Recent studies indicate that the prevalence of therapeutic choice such as stem cell transplantation has seen an upsurge in ischemic stroke. However, after transplantation the fate of transplanted cells is largely unknown. Human mesenchymal stem cells (MSCs), due to their robust survival rate upon transplantation in brain tissue, are being widely employed to treat ischemic stroke. In the present study, we have evaluated naringenin-loaded gelatin-coated polycaprolactone nanoparticles (nar-gel-c-PCL NPs) to rescue MSCs against oxygen glucose deprived insult. Naringenin, due to its strong anti-inflammatory effects, remains a therapeutic choice in neurological disorders. Though, the low solubility and inefficient delivery remain challenges in using naringenin as a therapeutic drug. The present study showed that inflammation occurred in MSCs during their treatment with oxygen glucose deprivation (OGD) and was well overturned by treatment with nar-gel-c-PCL NPs. In brief, the results indicated that nar-gel-c-PCL NPs were able to protect the loss of cell membrane integrity and restored neuronal morphology. Then nar-gel-c-PCL NPs successfully protected the human MSCs against OGD-induced inflammation as evident by reduced level of pro-inflammatory cytokine (TNF-α, IFN-γ, and IL-1β) and other inflammatory biomarkers (COX2, iNOS, and MPO activity). Therefore, the modulation of inflammation by treatment with nar-gel-c-PCL NPs in MSCs could provide a novel strategy to improve MSC-based therapy, and thus, our nanoformulation may find a wide therapeutic application in ischemic stroke and other neuro-inflammatory diseases.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Eram Fauzia
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Manish Kumar
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Mohsin Ali Khan
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India.,Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
12
|
A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci 2018; 208:111-122. [DOI: 10.1016/j.lfs.2018.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|