1
|
Liu M, Fang T, Wang S, Ma H, Kong L, Deng X, Teng Z, Wang J, Zhang P, Xu L. Repurposing tavaborole to combat resistant bacterial infections through competitive inhibition of KPC-2 and metabolic disruption. Bioorg Chem 2025; 159:108421. [PMID: 40179579 DOI: 10.1016/j.bioorg.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
The rise of carbapenem-resistant Enterobacteriaceae (CRE) strains has emerged as an increasing threat to global public health. The development of antibiotic adjuvants presents an economical and promising approach to address this crisis. Through a high-throughput screen of the FDA-approved compound library, we identified tavaborole (AN2690) as a broad-spectrum β-lactamase inhibitor. The mechanistic study revealed that tavaborole formed a reversible binding with the active serine of KPC-2, showing effective competitive inhibition. Its electron-deficient boron atom formed a borate ester bond with hydroxyl group of the serine residue at the active site of KPC-2, transitioning to an sp3-hybridized state that mimicked the tetrahedral intermediate during KPC-2 catalytic. Moreover, transcriptomic analysis and bacterial metabolism assays further unveiled tavaborole addition can inhibit tricarboxylic acid (TCA) cycle, coupled with downregulation of intracellular ATP levels, indicating that tavaborole compromised the bacterial metabolic homeostasis and exerted synergistic antibacterial activity. Notably, the combination treatment further suppressed the development of meropenem resistance. In mouse intraperitoneal infection models, tavaborole effectively restored the efficacy of meropenem against CRE bacteria. These findings elucidate the synergistic mechanisms of tavaborole, expand its potential applications in anti-infection therapeutics, and provide a promising strategy for addressing CRE infections.
Collapse
Affiliation(s)
- Minda Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanshan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Xuming Deng
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zihao Teng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lei Xu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Sinha S, RS N, Devarakonda Y, Rathi A, Reddy Regatti P, Batra S, Syal K. Tale of Twin Bifunctional Second Messenger (p)ppGpp Synthetases and Their Function in Mycobacteria. ACS OMEGA 2023; 8:32258-32270. [PMID: 37720788 PMCID: PMC10500699 DOI: 10.1021/acsomega.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
M. tuberculosis, an etiological agent of tuberculosis, requires a long treatment regimen due to its ability to respond to stress and persist inside the host. The second messenger (p)ppGpp-mediated stress response plays a critical role in such long-term survival, persistence, and antibiotic tolerance which may also lead to the emergence of multiple drug resistance. In mycobacteria, (pp)pGpp molecules are synthesized predominantly by two bifunctional enzymes-long RSH-Rel and short SAS-RelZ. The long RSH-Rel is a major (p)ppGpp synthetase and hydrolase. How it switches its activity from synthesis to hydrolysis remains unclear. RelMtb mutant has been reported to be defective in biofilm formation, cell wall function, and persister cell formation. The survival of such mutants has also been observed to be compromised in infection models. In M. smegmatis, short SAS-RelZ has RNase HII activity in addition to (pp)Gpp synthesis activity. The RNase HII function of RelZ has been implicated in resolving replication-transcription conflicts by degrading R-loops. However, the mechanism and regulatory aspects of such a regulation remain elusive. In this article, we have discussed (p)ppGpp metabolism and its role in managing the stress response network of mycobacteria, which is responsible for long-term survival inside the host, making it an important therapeutic target.
Collapse
Affiliation(s)
- Shubham
Kumar Sinha
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Neethu RS
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Yogeshwar Devarakonda
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Ajita Rathi
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Pavan Reddy Regatti
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Sakshi Batra
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Kirtimaan Syal
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| |
Collapse
|
3
|
Zhang X, Tubergen PJ, Agorsor IDK, Khadka P, Tembe C, Denbow C, Collakova E, Pilot G, Danna CH. Elicitor-induced plant immunity relies on amino acids accumulation to delay the onset of bacterial virulence. PLANT PHYSIOLOGY 2023; 192:601-615. [PMID: 36715647 PMCID: PMC10152640 DOI: 10.1093/plphys/kiad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Plant immunity relies on the perception of microbe-associated molecular patterns (MAMPs) from invading microbes to induce defense responses that suppress attempted infections. It has been proposed that MAMP-triggered immunity (MTI) suppresses bacterial infections by suppressing the onset of bacterial virulence. However, the mechanisms by which plants exert this action are poorly understood. Here, we showed that MAMP perception in Arabidopsis (Arabidopsis thaliana) induces the accumulation of free amino acids in a salicylic acid (SA)-dependent manner. When co-infiltrated with Glutamine and Serine, two of the MAMP-induced highly accumulating amino acids, Pseudomonas syringae pv. tomato DC3000 expressed low levels of virulence genes and failed to produce robust infections in otherwise susceptible plants. When applied exogenously, Glutamine and Serine directly suppressed bacterial virulence and growth, bypassing MAMP perception and SA signaling. In addition, an increased level of endogenous Glutamine in the leaf apoplast of a gain-of-function mutant of Glutamine Dumper-1 rescued the partially compromised bacterial virulence- and growth-suppressing phenotype of the SA-induced deficient-2 (sid2) mutant. Our data suggest that MTI suppresses bacterial infections by delaying the onset of virulence with an excess of amino acids at the early stages of infection.
Collapse
Affiliation(s)
- Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Philip J Tubergen
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Israel D K Agorsor
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Biology & Biotechnology, School of Biological Sciences, College of Agriculture & Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Pramod Khadka
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Connor Tembe
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Cynthia Denbow
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Cristian H Danna
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Sattrapai N, Chaiprom U, Lindow SE, Chatnaparat T. A Phosphate Uptake System Is Required for Xanthomonas citri pv. glycines Virulence in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:261-272. [PMID: 36574016 DOI: 10.1094/mpmi-11-22-0241-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genes encoding the phosphate uptake system in Xanthomonas citri pv. glycines 12-2 were previously found to be upregulated when in soybean leaves. This study thus explored the role of the phosphate uptake system on its virulence to soybean. While phoB and pstSCAB mutants were greatly impaired in both inciting disease symptoms and growth in soybean, the virulence and growth in soybean of a phoU mutant was not reduced when compared with the wild-type strain. The expression of phoB and pstSCAB was highly induced in phosphate-deficient media. In addition, the expression of phoB, assessed with a fusion to a promoterless ice nucleation reporter gene, was greatly increased in soybean leaves, confirming that the soybean apoplast is a phosphorus-limited habitat for X. citri pv. glycines. Global gene expression profiles of phoB and phoU mutants of X. citri pv. glycines conducted under phosphate-limitation conditions in vitro, using RNA-seq, revealed that PhoB positively regulated genes involved in signal transduction, the xcs cluster type II secretion system, cell motility, and chemotaxis, while negatively regulating cell wall and membrane biogenesis, DNA replication and recombination and repair, and several genes with unknown function. PhoU also positively regulated the same genes involved in cell motility and chemotaxis. The severity of bacterial pustule disease was decreased in soybean plants grown under high phosphate fertilization conditions, demonstrating that high phosphate availability in soybean plants can affect infection by X. citri pv. glycines by modulation of the expression of phosphate uptake systems. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Nutthakan Sattrapai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| | - Usawadee Chaiprom
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Lu Z, Li W, Xin Y, Huang Y. The stringent response gene rsh plays multiple roles in Novosphingobium pentaromativorans US6-1's accommodation to different environmental pollutants: Phenanthrene, copper and nZVI. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121315. [PMID: 36813102 DOI: 10.1016/j.envpol.2023.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The rsh based stringent response system is widely employed by bacteria to cope with environmental stresses. However, how does the stringent response involve in bacterial accommodation to environmental pollutant is largely unexplored. In this study, to comprehensively understand the roles of rsh in Novosphingobium pentaromativorans US6-1's metabolism and accommodation to different pollutants, three distinct pollutants, phenanthrene, copper and nanoparticulated zero valent iron (nZVI) were selected as exposure substances. Results indicated that rsh played important roles in US6-1's multiplication and metabolism, including survival rate at stationary phase, amino acid and nucleotide metabolism, extracellular polymeric substance (EPS) production, redox homeostasis, etc. The deletion of rsh affected phenanthrene removal rates through regulating the multiplication of US6-1 and increasing the expression of degradation related genes. The rsh mutant showed higher resistance to copper than the wild type, largely due to higher EPS production and enhanced expression of copper resistance related genes. Finally, the rsh based stringent response helped maintain the redox homeostasis when US6-1 confronted nZVI particles that exerted oxidative stress, thereby improving the survival rate. Overall, this study provides firsthand data that rsh plays multiple roles in US6-1's accommodation to environmental pollutants. The stringent response system could be a powerful tool for environmental scientists and engineers to harness bacterial activities for bioremediation purposes.
Collapse
Affiliation(s)
- Zejia Lu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weiqi Li
- Department of Resources Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yiding Xin
- Department of Resources Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yili Huang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
7
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
8
|
Huang J, Yao C, Sun Y, Ji Q, Deng X. Virulence-related regulatory network of Pseudomonas syringae. Comput Struct Biotechnol J 2022; 20:6259-6270. [PMID: 36420163 PMCID: PMC9678800 DOI: 10.1016/j.csbj.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Transcription factors (TFs) play important roles in regulating multiple biological processes by binding to promoter regions and regulating the global gene transcription levels. Pseudomonas syringae is a Gram-negative phytopathogenic bacterium harbouring 301 putative TFs in its genome, approximately 50 of which are responsible for virulence-related gene and pathway regulation. Over the past decades, RNA sequencing, chromatin immunoprecipitation sequencing, high-throughput systematic evolution of ligands by exponential enrichment, and other technologies have been applied to identify the functions of master regulators and their interactions in virulence-related pathways. This review summarises the recent advances in the regulatory networks of TFs involved in the type III secretion system (T3SS) and non-T3SS virulence-associated pathways, including motility, biofilm formation, quorum sensing, nucleotide-based secondary messengers, phytotoxins, siderophore production, and oxidative stress. Moreover, this review discusses the future perspectives in terms of TF-mediated pathogenesis mechanisms and provides novel insights that will help combat P. syringae infections based on the regulatory networks of TFs.
Collapse
Affiliation(s)
- Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Chunyan Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Yue Sun
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Quanjiang Ji
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Bai K, Jiang N, Chen X, Xu X, Li J, Luo L. RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. PHYTOPATHOLOGY 2022; 112:1844-1858. [PMID: 35341314 DOI: 10.1094/phyto-01-22-0023-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xing Chen
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xiaoli Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| |
Collapse
|
10
|
Zhang X, Khadka P, Puchalski P, Leehan JD, Rossi FR, Okumoto S, Pilot G, Danna CH. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. PLANT PHYSIOLOGY 2022; 189:2315-2331. [PMID: 35579373 PMCID: PMC9342991 DOI: 10.1093/plphys/kiac217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/16/2022] [Indexed: 05/19/2023]
Abstract
Plants live under the constant challenge of microbes that probe the environment in search of potential hosts. Plant cells perceive microbe-associated molecular patterns (MAMPs) from incoming microbes and activate defense responses that suppress attempted infections. Despite the substantial progress made in understanding MAMP-triggered signaling pathways, the downstream mechanisms that suppress bacterial growth and disease remain poorly understood. Here, we uncover how MAMP perception in Arabidopsis (Arabidopsis thaliana) elicits dynamic changes in extracellular concentrations of free L-amino acids (AA). Within the first 3 h of MAMP perception, a fast and transient inhibition of AA uptake produces a transient increase in extracellular AA concentrations. Within 4 and 12 h of MAMP perception, a sustained enhanced uptake activity decreases the extracellular concentrations of AA. Gene expression analysis showed that salicylic acid-mediated signaling contributes to inducing the expression of AA/H+ symporters responsible for the MAMP-induced enhanced uptake. A screening of loss-of-function mutants identified the AA/H+ symporter lysin/histidine transporter-1 as an important contributor to MAMP-induced enhanced uptake of AA. Infection assays in lht1-1 seedlings revealed that high concentrations of extracellular AA promote bacterial growth in the absence of induced defense elicitation but contribute to suppressing bacterial growth upon MAMP perception. Overall, the data presented in this study reveal a mechanistic connection between MAMP-induced plant defense and suppression of bacterial growth through the modulation of AA transport activity.
Collapse
Affiliation(s)
- Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Pramod Khadka
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Patryk Puchalski
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Joss D Leehan
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Franco R Rossi
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires 7130, Argentina
| | | | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
11
|
The Role of RelA and SpoT on ppGpp Production, Stress Response, Growth Regulation, and Pathogenicity in Xanthomonas campestris pv. campestris. Microbiol Spectr 2021; 9:e0205721. [PMID: 34935430 PMCID: PMC8693919 DOI: 10.1128/spectrum.02057-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alarmone ppGpp plays an important role in the survival of bacteria by triggering the stringent response when exposed to environmental stress. Although Xanthomonas campestris pv. campestris (Xcc), which causes black rot disease in crucifers, is a representative species of Gram-negative phytopathogenic bacteria, relatively little is known regarding the factors influencing the stringent response in this species. However, previous studies in other Gram-negative bacteria have indicated that RelA and SpoT play a critical role in ppGpp synthesis. The current study found that these proteins also had an important role in Xcc, with a ΔrelAΔspoT double mutant being unable to produce ppGpp, resulting in changes to phenotype including reduced production of exopolysaccharides (EPS), exoenzymes, and biofilm, as well the loss of swarming motility and pathogenicity. The ppGpp-deficient mutant also exhibited greater sensitivity to environment stress, being almost incapable of growth on modified minimal medium (mMM) and having a much greater propensity to enter the viable but nonculturable (VBNC) state in response to oligotrophic conditions (0.85% NaCl). These findings much advance our understanding of the role of ppGpp in the biology of Xcc and could have important implications for more effective management of this important pathogen. IMPORTANCEXanthomonas campestris pv. campestris (Xcc) is a typical seedborne phytopathogenic bacterium that causes large economic losses worldwide, and this is the first original research article to investigate the role of ppGpp in this important species. Here, we revealed the function of RelA and SpoT in ppGpp production, physiology, pathogenicity, and stress resistance in Xcc. Most intriguingly, we found that ppGpp levels and downstream ppGpp-dependent phenotypes were mediated predominantly by SpoT, with RelA having only a supplementary role. Taken together, the results of the current study provide new insight into the role of ppGpp in the biology of Xcc, which could also have important implications for the role of ppGpp in the survival and pathogenicity of other pathogenic bacteria.
Collapse
|
12
|
Syal K, Rs N, Reddy MVNJ. The extended (p)ppGpp family: New dimensions in Stress response. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100052. [PMID: 34841343 PMCID: PMC8610335 DOI: 10.1016/j.crmicr.2021.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022] Open
Abstract
Second messenger (p)ppGpp mediated stress response plays a crucial role in bacterial persistence and multiple drug resistance. In E. coli, (p)ppGpp binds to RNA polymerase and upregulates the transcription of genes essential for stress response while concurrently downregulating the expression of genes critical for growth and metabolism. Recently, the family of alarmone molecules has expanded to pppGpp, ppGpp, pGpp & (pp)pApp as distinct members. These molecules may help in fine-tuning stress responses in different hostile conditions. Do all of these molecules bind to RNA polymerase? Do they compete with each other or complement each other's functions is still not clear. Earlier, others and we have synthesized artificial analogs of (p)ppGpp that inhibited (p)ppGpp synthesis and long-term survival in M. smegmatis and in B. subtilis suggesting that analogs could compete with each other. Understanding the interplay of these molecules will allow deciphering novel pathways that can be potentially subjected to the therapeutic intervention. In this article, we have reviewed newly characterized second messengers and discussed their mode of action. We have also documented the progress made to-date in understanding the molecular basis of regulation of transcription by second messenger ppGpp, pppGpp, and pGpp.
Collapse
Affiliation(s)
- Kirtimaan Syal
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| | - Neethu Rs
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| | - M V N Janardhan Reddy
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
14
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
15
|
Bai K, Chen X, Jiang N, Lyu Q, Li J, Luo L. Extraction and detection of guanosine 5'-diphosphate-3'-diphosphate in amino acid starvation cells of Clavibacter michiganensis. Braz J Microbiol 2021; 52:1573-1580. [PMID: 33837930 DOI: 10.1007/s42770-021-00488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Guanosine 5'-diphosphate-3'-diphosphate (ppGpp) is a small molecule nucleotide alarmone that can accumulate under the amino acid starvation state and trigger the stringent response. This study reported the extraction of ppGpp from the Gram-positive bacteria Clavibacter michiganensis through methods using formic acid, lysozyme, or methanol. Following extraction, ppGpp was detected through ultra-high-performance liquid chromatography (UHPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methanol method showed the highest extraction efficiency for ppGpp among the three methods tested. C. michiganensis cells in exponential growth phase was induced in amino acid starvation by serine hydroxamate (SHX) and used for ppGpp extraction and detection. When using the methanol extraction method, the results showed that ppGpp concentrations in SHX-treated samples were 15.645 nM, 17.656 nM, 20.372 nM, and 19.280 nM at 0 min, 15 min, 30 min and 1 h, respectively, when detected using LC-MS/MS. This is the first report on ppGpp extraction and detection in Clavibacter providing a new idea and approach for nucleotide detection and extraction in bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xing Chen
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Na Jiang
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qingyang Lyu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jianqiang Li
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Laixin Luo
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
16
|
Vandelle E, Colombo T, Regaiolo A, Maurizio V, Libardi T, Puttilli MR, Danzi D, Polverari A. Transcriptional Profiling of Three Pseudomonas syringae pv. actinidiae Biovars Reveals Different Responses to Apoplast-Like Conditions Related to Strain Virulence on the Host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:376-396. [PMID: 33356409 DOI: 10.1094/mpmi-09-20-0248-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. actinidiae is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical, and virulence traits, P. syringae pv. actinidiae biovar 3 (Psa3) is the most aggressive and is responsible for the most recent reported outbreaks; however, the molecular basis of its heightened virulence is unclear. Therefore, we designed the first P. syringae multistrain whole-genome microarray, encompassing biovars Psa1, Psa2, and Psa3 and the well-established model P. syringae pv. tomato, and analyzed early bacterial responses to an apoplast-like minimal medium. Transcriptomic profiling revealed i) the strong activation in Psa3 of all hypersensitive reaction and pathogenicity (hrp) and hrp conserved (hrc) cluster genes, encoding components of the type III secretion system required for bacterial pathogenicity and involved in responses to environmental signals; ii) potential repression of the hrp/hrc cluster in Psa2; and iii) activation of flagellum-dependent cell motility and chemotaxis genes in Psa1. The detailed investigation of three gene families encoding upstream regulatory proteins (histidine kinases, their cognate response regulators, and proteins with diguanylate cyclase or phosphodiesterase domains) indicated that cyclic di-GMP may be a key regulator of virulence in P. syringae pv. actinidiae biovars. The gene expression data were supported by the quantification of biofilm formation. Our findings suggest that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections. Based on our detailed structural analysis of hrp operons, we also propose a revision of hrp cluster organization and operon regulation in P. syringae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Teresa Colombo
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology (IBPM) c/o Department of Biochemical Sciences "A. Rossi Fanelli", "Sapienza" University of Rome, Rome, 00185, Italy
| | - Alice Regaiolo
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Vanessa Maurizio
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Tommaso Libardi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | |
Collapse
|
17
|
Xie Y, Liu W, Shao X, Zhang W, Deng X. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J 2020; 18:3415-3424. [PMID: 33294136 PMCID: PMC7691447 DOI: 10.1016/j.csbj.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
To cope with their continually fluctuating surroundings, pathovars of the unicellular phytopathogen Pseudomonas syringae have developed rapid and sophisticated signalling networks to sense extracellular stimuli, which allow them to adjust their cellular composition to survive and cause diseases in host plants. Comparative genomic analyses of P. syringae strains have identified various genes that encode several classes of signalling proteins, although how this bacterium directly perceives these environmental cues remains elusive. Recent work has revealed new mechanisms of a cluster of bacterial signal transduction systems that mainly include two-component systems (such as RhpRS, GacAS, CvsRS and AauRS), extracytoplasmic function sigma factors (such as HrpL and AlgU), nucleotide-based secondary messengers, methyl-accepting chemotaxis sensor proteins and several other intracellular surveillance systems. In this review, we compile a list of the signal transduction mechanisms that P. syringae uses to monitor and respond in a timely manner to intracellular and external conditions. Further understanding of these surveillance processes will provide new perspectives from which to combat P. syringae infections.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Wenbao Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
18
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
19
|
Characterization of RelA in Acinetobacter baumannii. J Bacteriol 2020; 202:JB.00045-20. [PMID: 32229531 DOI: 10.1128/jb.00045-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model.IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.
Collapse
|
20
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Yang HW, Yu M, Lee JH, Chatnaparat T, Zhao Y. The stringent response regulator (p) ppGpp mediates virulence gene expression and survival in Erwinia amylovora. BMC Genomics 2020; 21:261. [PMID: 32228459 PMCID: PMC7106674 DOI: 10.1186/s12864-020-6699-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Background The nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora. Here, we present transcriptomic analyses to uncover the overall effect of (p) ppGpp-mediated stringent response in E. amylovora in the hrp-inducing minimal medium (HMM). Results In this study, we investigated the transcriptomic changes of the (p) ppGpp0 mutant under the type III secretion system (T3SS)-inducing condition using RNA-seq. A total of 1314 differentially expressed genes (DEGs) was uncovered, representing more than one third (36.8%) of all genes in the E. amylovora genome. Compared to the wild-type, the (p) ppGpp0 mutant showed down-regulation of genes involved in peptide ATP-binding cassette (ABC) transporters and virulence-related processes, including type III secretion system (T3SS), biofilm, and motility. Interestingly, in contrast to previous reports, the (p) ppGpp0 mutant showed up-regulation of amino acid biosynthesis genes, suggesting that it might be due to that these amino acid biosynthesis genes are indirectly regulated by (p) ppGpp in E. amylovora or represent specific culturing condition used. Furthermore, the (p) ppGpp0 mutant exhibited up-regulation of genes involved in translation, SOS response, DNA replication, chromosome segregation, as well as biosynthesis of nucleotide, fatty acid and lipid. Conclusion These findings suggested that in HMM environment, E. amylovora might use (p) ppGpp as a signal to activate virulence gene expression, and simultaneously mediate the balance between virulence and survival by negatively regulating DNA replication, translation, cell division, as well as biosynthesis of nucleotide, amino acid, fatty acid, and lipid. Therefore, (p) ppGpp could be a promising target for developing novel control measures to fight against this devastating disease of apples and pears.
Collapse
Affiliation(s)
- Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Wu L, Wang Z, Guan Y, Huang X, Shi H, Liu Y, Zhang X. The (p)ppGpp-mediated stringent response regulatory system globally inhibits primary metabolism and activates secondary metabolism in Pseudomonas protegens H78. Appl Microbiol Biotechnol 2020; 104:3061-3079. [PMID: 32009198 DOI: 10.1007/s00253-020-10421-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023]
Abstract
Pseudomonas protegens H78 produces multiple secondary metabolites, including antibiotics and iron carriers. The guanosine pentaphosphate or tetraphosphate ((p)ppGpp)-mediated stringent response is utilized by bacteria to survive during nutritional starvation and other stresses. RelA/SpoT homologues are responsible for the biosynthesis and degradation of the alarmone (p)ppGpp. Here, we investigated the global effect of relA/spoT dual deletion on the transcriptomic profiles, physiology, and metabolism of P. protegens H78 grown to mid- to late log phase. Transcriptomic profiling revealed that relA/spoT deletion globally upregulated the expression of genes involved in DNA replication, transcription, and translation; amino acid metabolism; carbohydrate and energy metabolism; ion transport and metabolism; and secretion systems. Bacterial growth was partially increased, while the cell survival rate was significantly reduced by relA/spoT deletion in H78. The utilization of some nutritional elements (C, P, S, and N) was downregulated due to relA/spoT deletion. In contrast, relA/spoT mutation globally inhibited the expression of secondary metabolic gene clusters (plt, phl, prn, ofa, fit, pch, pvd, and has). Correspondingly, antibiotic and iron carrier biosynthesis, iron utilization, and antibiotic resistance were significantly downregulated by the relA/spoT mutation. This work highlights that the (p)ppGpp-mediated stringent response regulatory system plays an important role in inhibiting primary metabolism and activating secondary metabolism in P. protegens.
Collapse
Affiliation(s)
- Lingyu Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejun Guan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huimin Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Zhang Y, Teper D, Xu J, Wang N. Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of Xanthomonas citri. MOLECULAR PLANT PATHOLOGY 2019; 20:1550-1565. [PMID: 31621195 PMCID: PMC6804348 DOI: 10.1111/mpp.12865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The bacterial stringent response is a response to nutrition deprivation and other stress conditions. In Gram-negative bacteria, this process is mediated by the small signal molecules guanosine pentaphosphate pppGpp and guanosine tetraphosphate ppGpp (collectively referred to as (p)ppGpp), and the RNA polymerase-binding transcription factor DksA. The (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthase/hydrolase SpoT are responsible for cellular (p)ppGpp levels. Here, we investigated the roles of DksA and (p)ppGpp in the virulence traits of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker. ΔdksA and (p)ppGpp-deficient ΔspoTΔrelA strains caused reduced virulence and compromised growth in host plants, indicating that DksA and (p)ppGpp are required for full virulence of Xcc. To characterize the effect of stringent response regulators on gene expression, RNA-seq was conducted using ΔdksA and ΔspoTΔrelA mutant strains grown in hrp-inducing XVM2 medium. Transcriptome analyses showed that DksA and (p)ppGpp repressed the expression of genes encoding tRNAs, ribosome proteins, iron acquisition and flagellum assembly, and enhanced the expression of genes for histidine metabolism, type 3 secretion system (T3SS), type 2 secretion system (T2SS) and TonB-dependent transporters. Phenotypically, the ΔdksA and ΔspoTΔrelA strains displayed altered motility, enhanced siderophore production and were unable to cause the hypersensitive response on non-host plants. In conclusion, stringent response regulators DksA and (p)ppGpp play an important role in virulence, nutrition uptake and host adaptation of Xcc.
Collapse
Affiliation(s)
- Yanan Zhang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceInstitute of Food and Agricultural Sciences, University of FloridaLake Alfred33850 FLUnited States
| | - Doron Teper
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceInstitute of Food and Agricultural Sciences, University of FloridaLake Alfred33850 FLUnited States
| | - Jin Xu
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceInstitute of Food and Agricultural Sciences, University of FloridaLake Alfred33850 FLUnited States
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceInstitute of Food and Agricultural Sciences, University of FloridaLake Alfred33850 FLUnited States
| |
Collapse
|
24
|
Xie Y, Shao X, Deng X. Regulation of type III secretion system inPseudomonas syringae. Environ Microbiol 2019; 21:4465-4477. [DOI: 10.1111/1462-2920.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen 518057 China
| |
Collapse
|
25
|
Cui Z, Yang CH, Kharadi RR, Yuan X, Sundin GW, Triplett LR, Wang J, Zeng Q. Cell-length heterogeneity: a population-level solution to growth/virulence trade-offs in the plant pathogen Dickeya dadantii. PLoS Pathog 2019; 15:e1007703. [PMID: 31381590 PMCID: PMC6695200 DOI: 10.1371/journal.ppat.1007703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/15/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022] Open
Abstract
Necrotrophic plant pathogens acquire nutrients from dead plant cells, which requires the disintegration of the plant cell wall and tissue structures by the pathogen. Infected plants lose tissue integrity and functional immunity as a result, exposing the nutrient rich, decayed tissues to the environment. One challenge for the necrotrophs to successfully cause secondary infection (infection spread from an initially infected plant to the nearby uninfected plants) is to effectively utilize nutrients released from hosts towards building up a large population before other saprophytes come. In this study, we observed that the necrotrophic pathogen Dickeya dadantii exhibited heterogeneity in bacterial cell length in an isogenic population during infection of potato tuber. While some cells were regular rod-shape (<10μm), the rest elongated into filamentous cells (>10μm). Short cells tended to occur at the interface of healthy and diseased tissues, during the early stage of infection when active attacking and killing is occurring, while filamentous cells tended to form at a later stage of infection. Short cells expressed all necessary virulence factors and motility, whereas filamentous cells did not engage in virulence, were non-mobile and more sensitive to environmental stress. However, compared to the short cells, the filamentous cells displayed upregulated metabolic genes and increased growth, which may benefit the pathogens to build up a large population necessary for the secondary infection. The segregation of the two subpopulations was dependent on differential production of the alarmone guanosine tetraphosphate (ppGpp). When exposed to fresh tuber tissues or freestanding water, filamentous cells quickly transformed to short virulent cells. The pathogen adaptation of cell length heterogeneity identified in this study presents a model for how some necrotrophs balance virulence and vegetative growth to maximize fitness during infection. Virulence and vegetative growth are two distinct lifestyles in pathogenic bacteria. Although virulence factors are critical for pathogens to successfully cause infections, producing these factors is costly and imposes growth penalty to the pathogen. Although each single bacterial cell exists in one lifestyle or the other at any moment, we demonstrated in this study that a bacterial population could accomplish the two functions simultaneously by maintaining subpopulations of cells in each of the two lifestyles. During the invasion of potato tuber, the soft rot pathogen Dickeya dadantii formed two distinct subpopulations characterized by their cell morphology. The population consisting of short cells actively produced virulence factors to break down host tissues, whereas the other population, consisting of filamentous cells, was only engaged in vegetative growth and was non-virulent. We hypothesize that this phenotypic heterogeneity allows D. dadantii to break down plant tissues and release nutrients, while efficiently utilizing nutrients needed to build up a large pathogen population at the same time. Our study provides insights into how phenotypic heterogeneity could grant bacteria abilities to “multi-task” distinct functions as a population.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Roshni R. Kharadi
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jie Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Jagmann N, Philipp B. SpoT-Mediated Regulation and Amino Acid Prototrophy Are Essential for Pyocyanin Production During Parasitic Growth of Pseudomonas aeruginosa in a Co-culture Model System With Aeromonas hydrophila. Front Microbiol 2018; 9:761. [PMID: 29720972 PMCID: PMC5915560 DOI: 10.3389/fmicb.2018.00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs its complex quorum sensing (QS) network to regulate the expression of virulence factors such as pyocyanin. Besides cell density, QS in this bacterium is co-regulated by environmental cues. In this study, we employed a previously established co-culture model system to identify metabolic influences that are involved in the regulation of pyocyanin production in P. aeruginosa. In this co-culture consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, parasitic growth of P. aeruginosa is strictly dependent on the production of pyocyanin. We could show that in this co-culture, pyocyanin production is likely induced by the stringent response mediated by SpoT in response to nutrient limitation. Pyocyanin production by stringent response mutants in the co-culture could not be complemented by overexpression of PqsE. Via transposon mutagenesis, several amino acid auxotrophic mutants were identified that were also unable to produce pyocyanin when PqsE was overexpressed or when complementing amino acids were present. The inability to produce pyocyanin even though PqsE was overexpressed was likely a general effect of amino acid auxotrophy. These results show the value of the co-culture approach to identify both extra- and intracellular metabolic influences on QS that might be important in infection processes as well.
Collapse
Affiliation(s)
- Nina Jagmann
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Akgul A, Akgul A, Lawrence ML, Karsi A. Stress-related genes promote Edwardsiella ictaluri pathogenesis. PLoS One 2018; 13:e0194669. [PMID: 29554143 PMCID: PMC5858854 DOI: 10.1371/journal.pone.0194669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobic rod and the causative agent of enteric septicemia of channel catfish (ESC), which is one of the most prevalent diseases of catfish, causing significant economic losses in the catfish industry. E. ictaluri is resistant to complement system and macrophage killing, which results in rapid systemic septicemia. However, mechanisms of E. ictaluri stress responses under conditions of host environment are not studied well. Therefore, in this work, we report E. ictaluri stress responses during hydrogen peroxide, low pH, and catfish serum stresses as well as during catfish invasion. E. ictaluri stress responses were characterized by identifying expression of 13 universal stress protein (USP) genes (usp01-usp13) and seven USP-interacting protein genes (groEL, groES, dnaK, grpE, and clpB, grpE, relA). Data indicated that three usp genes (usp05, usp07, and usp13) were highly expressed in all stress conditions. Similarly, E. ictaluri heat shock proteins groEL, groES, dnaK, grpE, and clpB were highly expressed in oxidative stress. Also, E. ictaluri grpE and relA were highly expressed in catfish spleen and head kidney. These findings contribute to our understanding of stress response mechanisms in E. ictaluri stress response, and stress-related proteins that are essential for E. ictaluri could be potential targets for live attenuated vaccine development against ESC.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Ayfer Akgul
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
- * E-mail:
| |
Collapse
|
28
|
Boniecka J, Prusińska J, Dąbrowska GB, Goc A. Within and beyond the stringent response-RSH and (p)ppGpp in plants. PLANTA 2017; 246:817-842. [PMID: 28948393 PMCID: PMC5633626 DOI: 10.1007/s00425-017-2780-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/17/2017] [Indexed: 05/06/2023]
Abstract
Plant RSH proteins are able to synthetize and/or hydrolyze unusual nucleotides called (p)ppGpp or alarmones. These molecules regulate nuclear and chloroplast transcription, chloroplast translation and plant development and stress response. Homologs of bacterial RelA/SpoT proteins, designated RSH, and products of their activity, (p)ppGpp-guanosine tetra-and pentaphosphates, have been found in algae and higher plants. (p)ppGpp were first identified in bacteria as the effectors of the stringent response, a mechanism that orchestrates pleiotropic adaptations to nutritional deprivation and various stress conditions. (p)ppGpp accumulation in bacteria decreases transcription-with exception to genes that help to withstand or overcome current stressful situations, which are upregulated-and translation as well as DNA replication and eventually reduces metabolism and growth but promotes adaptive responses. In plants, RSH are nuclei-encoded and function in chloroplasts, where alarmones are produced and decrease transcription, translation, hormone, lipid and metabolites accumulation and affect photosynthetic efficiency and eventually plant growth and development. During senescence, alarmones coordinate nutrient remobilization and relocation from vegetative tissues into seeds. Despite the high conservancy of RSH protein domains among bacteria and plants as well as the bacterial origin of plant chloroplasts, in plants, unlike in bacteria, (p)ppGpp promote chloroplast DNA replication and division. Next, (p)ppGpp may also perform their functions in cytoplasm, where they would promote plant growth inhibition. Furthermore, (p)ppGpp accumulation also affects nuclear gene expression, i.a., decreases the level of Arabidopsis defense gene transcripts, and promotes plants susceptibility towards Turnip mosaic virus. In this review, we summarize recent findings that show the importance of RSH and (p)ppGpp in plant growth and development, and open an area of research aiming to understand the function of plant RSH in response to stress.
Collapse
Affiliation(s)
- Justyna Boniecka
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Prusińska
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Grażyna B Dąbrowska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Anna Goc
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
29
|
Shidore T, Triplett LR. Toxin-Antitoxin Systems: Implications for Plant Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:161-179. [PMID: 28525308 DOI: 10.1146/annurev-phyto-080516-035559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Toxin-antitoxin (TA) systems are gene modules that are ubiquitous in free-living prokaryotes. Diverse in structure, cellular function, and fitness roles, TA systems are defined by the presence of a toxin gene that suppresses bacterial growth and a toxin-neutralizing antitoxin gene, usually encoded in a single operon. Originally viewed as DNA maintenance modules, TA systems are now thought to function in many roles, including bacterial stress tolerance, virulence, phage defense, and biofilm formation. However, very few studies have investigated the significance of TA systems in the context of plant-microbe interactions. This review discusses the potential impact and application of TA systems in plant-associated bacteria, guided by insights gained from animal-pathogenic model systems.
Collapse
Affiliation(s)
- T Shidore
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511:
| | - L R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511:
| |
Collapse
|
30
|
Hluska T, Šebela M, Lenobel R, Frébort I, Galuszka P. Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis- Trans Isomerase in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1473. [PMID: 28878803 PMCID: PMC5572937 DOI: 10.3389/fpls.2017.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/08/2017] [Indexed: 05/14/2023]
Abstract
Almost 25 years ago, an enzyme named zeatin cis-trans isomerase from common bean has been described by Bassil et al. (1993). The partially purified enzyme required an external addition of FAD and dithiothreitol for the conversion of cis-zeatin to its trans- isomer that occurred only under light. Although an existence of this important enzyme involved in the metabolism of plant hormones cytokinins was generally accepted by plant biologists, the corresponding protein and encoding gene have not been identified to date. Based on the original paper, we purified and identified an enzyme from maize, which shows the described zeatin cis-trans isomerase activity. The enzyme belongs to nucleotide pyrophosphatase/phosphodiesterase family, which is well characterized in mammals, but less known in plants. Further experiments with the recombinant maize enzyme obtained from yeast expression system showed that rather than the catalytic activity of the enzyme itself, a non-enzymatic flavin induced photoisomerization is responsible for the observed zeatin cis-trans interconversion in vitro. An overexpression of the maize nucleotide pyrophosphatase/phosphodiesterase gene led to decreased FAD and increased FMN and riboflavin contents in transgenic Arabidopsis plants. However, neither contents nor the ratio of zeatin isomers was altered suggesting that the enzyme is unlikely to catalyze the interconversion of zeatin isomers in vivo. Using enhanced expression of a homologous gene, functional nucleotide pyrophosphatase/phosphodiesterase was also identified in rice.
Collapse
Affiliation(s)
- Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
- *Correspondence: Petr Galuszka,
| |
Collapse
|
31
|
McCraw SL, Park DH, Jones R, Bentley MA, Rico A, Ratcliffe RG, Kruger NJ, Collmer A, Preston GM. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:938-949. [PMID: 28001093 DOI: 10.1094/mpmi-08-16-0172-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- S L McCraw
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - D H Park
- 2 Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - R Jones
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - M A Bentley
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Rico
- 3 Departamento de Didáctica de la 9 Matemática y de las Ciencias Experimentales, Faculty of Education and Sport, University of the Basque Country UPV/EHU, Juan Ibañez de Sto. Domingo 1, 01006 Vitoria-Gasteiz, Spain; and
| | - R G Ratcliffe
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - N J Kruger
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Collmer
- 4 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - G M Preston
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| |
Collapse
|
32
|
Regulation of Growth, Cell Shape, Cell Division, and Gene Expression by Second Messengers (p)ppGpp and Cyclic Di-GMP in Mycobacterium smegmatis. J Bacteriol 2016; 198:1414-22. [PMID: 26903417 DOI: 10.1128/jb.00126-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p)ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Δrel(Msm) and ΔdcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015,http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p)ppGpp and c-di-GMP in mycobacteria. We have shown that both (p)ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Δrel(Msm) and ΔdcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p)ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p)ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p)ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Δrel(Msm) and ΔdcpA strains are defective in biofilm formation. In this work, the overproduction of (p)ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p)ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p)ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.
Collapse
|
33
|
Li G, Xie F, Zhang Y, Bossé JT, Langford PR, Wang C. Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8. PLoS One 2015; 10:e0141501. [PMID: 26509499 PMCID: PMC4624843 DOI: 10.1371/journal.pone.0141501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/08/2015] [Indexed: 12/04/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5’-diphosphate 3’-diphosphate (ppGpp) and guanosine 5’-triphosphate 3’-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Janine T. Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Chunlai Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|