1
|
Zhao Y, Zhao S, Wang X, Luan S, Xiao C, Huang Q. Revealing TCA Cycle Flow Dynamics in Fungicide-Adapted Botrytis cinerea through Anionic Chromatographic Simultaneous Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40393930 DOI: 10.1021/acs.jafc.5c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The exploration of new strategies to monitor Botrytis cinerea populations is critical for disease management. This study achieved efficient and simultaneous separation of all TCA cycle intermediates in mycelia treated with pyraclostrobin (PYR), tebuconazole (TEB), and carbendazim (CAR) using anionic chromatography. Resolutions of nine organic acids and six inorganic anions, including all TCA cycle intermediates, exceeded 1.5. The fungicides inhibited mycelial growth concentration-dependently, but prolonged exposure reduced the level of inhibition. TEB decreased fumarate and malate levels at 48 h, increased citrate, isocitrate, and oxalate levels and reduced α-ketoglutarate levels at 96 h. PYR showed biphasic effects, elevating fumarate, malate, and succinate at both time points but reducing citrate and succinate at 96 h. CAR attenuated TCA cycle flow, with isocitrate and α-ketoglutarate declining continuously. Moreover, TEB promoted oxalate accumulation, PYR had no effect, and CAR suppressed it. These findings enable precise TCA cycle assessment for fungicide adaption in B. cinerea, aiding Botrytis management.
Collapse
Affiliation(s)
- Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sijia Zhao
- Research Center of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaowei Wang
- Research Center of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shaorong Luan
- Research Center of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ciying Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
2
|
Babińska-Wensierska W, Motyka-Pomagruk A, Mengoni A, diCenzo GC, Lojkowska E. Gene expression analyses on Dickeya solani strains of diverse virulence levels unveil important pathogenicity factors for this species. Sci Rep 2025; 15:14531. [PMID: 40281029 PMCID: PMC12032288 DOI: 10.1038/s41598-025-98321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Dickeya solani causes soft rot and blackleg mainly on potato crops. High pathogenicity of this species results from efficient production of plant cell wall-degrading enzymes, especially pectate lyases, potent root colonization, and fast vascular movement. Despite genomic homogeneity, variations in virulence-related phenotypes suggest differences in the gene expression patterns between diverse strains. Therefore, the methylomes and transcriptomes of two strains (virulent IFB0099 and low virulent IFB0223), differing in tissue maceration capacity and virulence factors production, have been studied. Methylation analysis revealed no significant differences. However, the analysis of transcriptomes, studied under both non-induced and induced by polygalacturonic acid conditions (in order to mimic diverse stages of plant infection process), unveiled higher expression of pectate lyases (pelD, pelE, pelL), pectin esterase (pemA), proteases (prtE, prtD) and Vfm-associated quorum-sensing genes (vfmC, vfmD, vfmE) in IFB0099 strain compared to IFB0223. Additionally, the genes related to the secretion system II (T2SS) (gspJ, nipE) displayed higher induction of expression in IFB0099. Furthermore, IFB0099 showed more elevated expression of genes involved in flagella formation, which coincides with enhanced motility and pathogenicity of this strain compared to IFB0223. To sum up, differential expression analysis of genes important for the virulence of D. solani indicated candidate genes, which might be crucial for the pathogenicity of this species.
Collapse
Affiliation(s)
- Weronika Babińska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy
| | - George C diCenzo
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3N6, Canada
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland.
| |
Collapse
|
3
|
Borowicz M, Krzyżanowska DM, Sobolewska M, Narajczyk M, Mruk I, Czaplewska P, Pédron J, Barny M, Canto PY, Dziadkowiec J, Czajkowski R. Tailocin-Mediated Interactions Among Soft Rot Pectobacteriaceae. Mol Ecol 2025; 34:e17728. [PMID: 40087984 PMCID: PMC11974492 DOI: 10.1111/mec.17728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Bacteria carry phage-derived elements within their genomes, some of which can produce phage-like particles (tailocins) used as weapons to kill kin strains in response to environmental conditions. This study investigates the production and activity of tailocins by plant-pathogenic bacteria: Pectobacterium, Dickeya, and Musicola genera, which compete for niche, providing an attractive model to study the ecological role of tailocins. Microscopy revealed that most analysed strains (88%) produced tailocins. Tailocin-mediated killing interactions were assessed across 351 strain pairs, showing that Dickeya spp. had a higher likelihood of killing neighbours (57.1%) than Pectobacterium spp. (21.6%). Additionally, Dickeya spp. strains exhibited broader phylogenetic killing, targeting both Pectobacterium spp. and Musicola sp., while Pectobacterium spp. tailocins were genus-specific. The mutual (bilateral) killing was observed in 33.9% of interactions, predominantly within Dickeya spp. Although tailocins were morphologically indistinguishable between producers, genomic analyses identified conserved clusters having diverse structural and organisational differences between Pectobacterium spp. and Dickeya spp. tailocins. This suggests different origins of these particles. Induction experiments demonstrated that tailocin production was boosted by hydrogen peroxide, supporting the role of these particles in bacteria-bacteria competition during plant infection when plants produce ROS to protect themselves from pathogens. Tailocins were detectable in infected potato tissue but not in river water, highlighting the particular ecological relevance of tailocins in these studied environments.
Collapse
Affiliation(s)
- Marcin Borowicz
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Marta Sobolewska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | | | - Inez Mruk
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Marie‐Anne Barny
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Pierre Yves Canto
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Joanna Dziadkowiec
- Departments of Geosciences and Physics, The Njord CentreUniversity of OsloOsloNorway
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| |
Collapse
|
4
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Molina A, Sánchez-Vallet A, Jordá L, Carrasco-López C, Rodríguez-Herva JJ, López-Solanilla E. Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102630. [PMID: 39306957 DOI: 10.1016/j.pbi.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 12/06/2024]
Abstract
Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
6
|
Muskhelishvili G, Nasser W, Reverchon S, Travers A. DNA as a Double-Coding Device for Information Conversion and Organization of a Self-Referential Unity. DNA 2024; 4:473-493. [PMID: 40098770 PMCID: PMC7617498 DOI: 10.3390/dna4040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Living systems are capable on the one hand of eliciting a coordinated response to changing environments (also known as adaptation), and on the other hand, they are capable of reproducing themselves. Notably, adaptation to environmental change requires the monitoring of the surroundings, while reproduction requires monitoring oneself. These two tasks appear separate and make use of different sources of information. Yet, both the process of adaptation as well as that of reproduction are inextricably coupled to alterations in genomic DNA expression, while a cell behaves as an indivisible unity in which apparently independent processes and mechanisms are both integrated and coordinated. We argue that at the most basic level, this integration is enabled by the unique property of the DNA to act as a double coding device harboring two logically distinct types of information. We review biological systems of different complexities and infer that the inter-conversion of these two distinct types of DNA information represents a fundamental self-referential device underlying both systemic integration and coordinated adaptive responses.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences and Biotechnology, Agricultural University of Georgia, 0159Tbilisi, Georgia
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| |
Collapse
|
7
|
Xie SY, Fang B, Chen J, Zhao N, Lin S, Ma T, Huang L. Comparative analyses of RNA-seq and phytohormone data of sweetpotatoes inoculated with Dickeya dadantii causing bacterial stem and root rot of sweetpotato. BMC PLANT BIOLOGY 2024; 24:1082. [PMID: 39543491 PMCID: PMC11566469 DOI: 10.1186/s12870-024-05774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bacterial stem and root rot (BSRR) in sweetpotato caused by Dickeya dadantii is one of the ten major diseases of sweetpotatoes in China. However, the molecular mechanism underlying the resistance of sweetpotato to D. dadantii remains unclear. This study adopted a resistance identification assay that conformed Guangshu87 (GS87) as BSRR-resistant and Xinxiang (XX) as susceptible. Compared to XX, GS87 effectively prevented the invasion and dissemination of D. dadantii in planta. An RNA sequencing (RNA-seq) analysis identified 54,844 expressed unigenes between GS87 and XX at four different stages. Further, it revealed that GS87 was more able to regulate the expressions of more unigenes after the inoculation with D. dadantii, including resistance (R) and transcription factors (TF) genes. Moreover, content measurements of disease resistance-related phytohormones showed that both jasmonic acids (JAs) and salicylic acids (SAs) accumulated in D. dadantii-inoculated sweetpotatoes, and JAs may negatively regulate sweetpotato resistance against D. dadantii and accumulated faster than SAs. Meanwhile, determinations of ROS production rate and relevant enzymatic/non-enzymatic activity highlighted the vital roles of reactive oxygen species (ROS) and superoxide dismutase (SOD) in confering GS87 resistance against D. dadantii. Additionally, several hub genes with high connectivity were highlighted through Protein-Protein interaction (PPI) network analysis. In summary, the findings in this study contribute to the understanding of the different responses of resistant and susceptible sweetpotato cultivars to D. dadantii infection, and it also provide the first insight into the relevant candidate genes and phytohormones involved in the resistance of sweetpotato to D. dadantii.
Collapse
Affiliation(s)
- Shu-Yan Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- Present address: Shu-Yan Xie, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences &Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Boping Fang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Jingyi Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Nan Zhao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Shuyun Lin
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Tingting Ma
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Zhou J, Hu M, Zhang L. Dickeya Diversity and Pathogenic Mechanisms. Annu Rev Microbiol 2024; 78:621-642. [PMID: 39565948 DOI: 10.1146/annurev-micro-041222-012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Dickeya genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified Dickeya-associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of Dickeya species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of Dickeya spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.
Collapse
Affiliation(s)
- Jianuan Zhou
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Ming Hu
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianhui Zhang
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
9
|
Gonzalez-Tobon J, Helmann T, Stodghill P, Filiatrault M. Surviving the Potato Stems: Differences in Genes Required for Fitness by Dickeya dadantii and Dickeya dianthicola. PHYTOPATHOLOGY 2024; 114:1106-1117. [PMID: 38170668 DOI: 10.1094/phyto-09-23-0351-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteria belonging to the genus Dickeya cause blackleg and soft rot symptoms on many plant hosts, including potato. Although there is considerable knowledge about the genetic determinants that allow Dickeya to colonize host plants, as well as the genes that contribute to virulence, much is still unknown. To identify the genes important for fitness in potato stems, we constructed and evaluated randomly barcoded transposon mutant (RB-TnSeq) libraries of Dickeya dadantii and Dickeya dianthicola. We identified 169 and 157 genes important for growth in D. dadantii and D. dianthicola in stems, respectively. This included genes related to metabolic pathways, chemotaxis and motility, transcriptional regulation, transport across membranes, membrane biogenesis, detoxification mechanisms, and virulence-related genes, including a potential virulence cluster srfABC, c-di-GMP modulating genes, and pectin degradation genes. When we compared the results of the stem assay with other datasets, we identified genes important for growth in stems versus tubers and in vitro conditions. Additionally, our data showed differences in fitness determinants for D. dadantii and D. dianthicola. These data provide important insights into the mechanisms used by Dickeya when interacting with and colonizing plants and thus might provide targets for management.
Collapse
Affiliation(s)
- Juliana Gonzalez-Tobon
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Tyler Helmann
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Melanie Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
10
|
Czajkowski R, Krzyżanowska DM, Sokolova D, Rąbalski Ł, Kosiński M, Jafra S, Królicka A. Genetic Loci of Plant Pathogenic Dickeya solani IPO 2222 Expressed in Contact with Weed-Host Bittersweet Nightshade ( Solanum dulcamara L.) Plants. Int J Mol Sci 2024; 25:2794. [PMID: 38474041 PMCID: PMC10931765 DOI: 10.3390/ijms25052794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.
Collapse
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143 Kyiv, Ukraine
| | - Łukasz Rąbalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Maciej Kosiński
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland;
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| |
Collapse
|
11
|
Yin R, Cheng J, Lin J. The role of the type VI secretion system in the stress resistance of plant-associated bacteria. STRESS BIOLOGY 2024; 4:16. [PMID: 38376647 PMCID: PMC10879055 DOI: 10.1007/s44154-024-00151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
Collapse
Affiliation(s)
- Rui Yin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
12
|
Yang Y, Chen Y, Bo Y, Liu Q, Zhai H. Research Progress in the Mechanisms of Resistance to Biotic Stress in Sweet Potato. Genes (Basel) 2023; 14:2106. [PMID: 38003049 PMCID: PMC10671456 DOI: 10.3390/genes14112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important food, feed, industrial raw materials, and new energy crops, and is widely cultivated around the world. China is the largest sweet potato producer in the world, and the sweet potato industry plays an important role in China's agriculture. During the growth of sweet potato, it is often affected by biotic stresses, such as fungi, nematodes, insects, viruses, and bacteria. These stressors are widespread worldwide and have severely restricted the production of sweet potato. In recent years, with the rapid development and maturity of biotechnology, an increasing number of stress-related genes have been introduced into sweet potato, which improves its quality and resistance of sweet potato. This paper summarizes the discovery of biological stress-related genes in sweet potato and the related mechanisms of stress resistance from the perspectives of genomics analysis, transcriptomics analysis, genetic engineering, and physiological and biochemical indicators. The mechanisms of stress resistance provide a reference for analyzing the molecular breeding of disease resistance mechanisms and biotic stress resistance in sweet potato.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.Y.); (Y.C.); (Y.B.); (Q.L.)
| |
Collapse
|
13
|
Cochard C, Caby M, Gruau P, Madec E, Marceau M, Macavei I, Lemoine J, Le Danvic C, Bouchart F, Delrue B, Bontemps-Gallo S, Lacroix JM. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. Microbiol Spectr 2023; 11:e0083323. [PMID: 37642428 PMCID: PMC10581057 DOI: 10.1128/spectrum.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Genome evolution, and more specifically gene duplication, is a key process shaping host-microorganism interaction. The conserved paralogs usually provide an advantage to the bacterium to thrive. If not, these genes become pseudogenes and disappear. Here, we show that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated. Our results show that the ompF2 expression is deleterious to the virulence of Dickeya dadantii, the agent causing soft rot disease. Interestingly, ompF2 is regulated while ompF is constitutive but activated by the EnvZ-OmpR two-component system. In vitro, acidic pH triggers the system. The pH measured in four eudicotyledons increased from an initial pH of 5.5 to 7 within 8 h post-infection. Then, the pH decreased to 5.5 at 10 h post-infection and until full maceration of the plant tissue. Yet, the production of phenolic acids by the plant's defenses prevents the activation of the EnvZ-OmpR system to avoid the ompF2 expression even though environmental conditions should trigger this system. We highlight that gene duplication in a pathogen is not automatically an advantage for the infectious process and that, there was a need for our model organism to adapt its genetic regulatory networks to conserve these duplicated genes. IMPORTANCE Dickeya species cause various diseases in a wide range of crops and ornamental plants. Understanding the molecular program that allows the bacterium to colonize the plant is key to developing new pest control methods. Unlike other enterobacterial pathogens, Dickeya dadantii, the causal agent of soft rot disease, does not require the EnvZ-OmpR system for virulence. Here, we showed that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated and that the expression of ompF2 was deleterious for virulence. We revealed that while the EnvZ-OmpR system was activated in vitro by acidic pH and even though the pH was acidic when the plant is colonized, this system was repressed by phenolic acid (generated by the plant's defenses). These results provide a unique- biologically relevant-perspective on the consequence of gene duplication and the adaptive nature of regulatory networks to retain the duplicated gene.
Collapse
Affiliation(s)
- Clémence Cochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marine Caby
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Peggy Gruau
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edwige Madec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Iulia Macavei
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Jérôme Lemoine
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Chrystelle Le Danvic
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- R&D Department, ALLICE, Paris, France
| | - Franck Bouchart
- Université Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
| | - Brigitte Delrue
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
14
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
15
|
Forquet R, Jiang X, Nasser W, Hommais F, Reverchon S, Meyer S. Mapping the Complex Transcriptional Landscape of the Phytopathogenic Bacterium Dickeya dadantii. mBio 2022; 13:e0052422. [PMID: 35491820 PMCID: PMC9239193 DOI: 10.1128/mbio.00524-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Dickeya dadantii is a phytopathogenic bacterium that causes soft rot in a wide range of plant hosts worldwide and a model organism for studying virulence gene regulation. The present study provides a comprehensive and annotated transcriptomic map of D. dadantii obtained by a computational method combining five independent transcriptomic data sets: (i) paired-end RNA sequencing (RNA-seq) data for a precise reconstruction of the RNA landscape; (ii) DNA microarray data providing transcriptional responses to a broad variety of environmental conditions; (iii) long-read Nanopore native RNA-seq data for isoform-level transcriptome validation and determination of transcription termination sites; (iv) differential RNA sequencing (dRNA-seq) data for the precise mapping of transcription start sites; (v) in planta DNA microarray data for a comparison of gene expression profiles between in vitro experiments and the early stages of plant infection. Our results show that transcription units sometimes coincide with predicted operons but are generally longer, most of them comprising internal promoters and terminators that generate alternative transcripts of variable gene composition. We characterize the occurrence of transcriptional read-through at terminators, which might play a basal regulation role and explain the extent of transcription beyond the scale of operons. We finally highlight the presence of noncontiguous operons and excludons in the D. dadantii genome, novel genomic arrangements that might contribute to the basal coordination of transcription. The highlighted transcriptional organization may allow D. dadantii to finely adjust its gene expression program for a rapid adaptation to fast-changing environments. IMPORTANCE This is the first transcriptomic map of a Dickeya species. It may therefore significantly contribute to further progress in the field of phytopathogenicity. It is also one of the first reported applications of long-read Nanopore native RNA-seq in prokaryotes. Our findings yield insights into basal rules of coordination of transcription that might be valid for other bacteria and may raise interest in the field of microbiology in general. In particular, we demonstrate that gene expression is coordinated at the scale of transcription units rather than operons, which are larger functional genomic units capable of generating transcripts with variable gene composition for a fine-tuning of gene expression in response to environmental changes. In line with recent studies, our findings indicate that the canonical operon model is insufficient to explain the complexity of bacterial transcriptomes.
Collapse
Affiliation(s)
- Raphaël Forquet
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Xuejiao Jiang
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| |
Collapse
|
16
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
17
|
Condemine G, Le Derout B. Identification of new Dickeya dadantii virulence factors secreted by the type 2 secretion system. PLoS One 2022; 17:e0265075. [PMID: 35417462 PMCID: PMC9007343 DOI: 10.1371/journal.pone.0265075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Dickeya are plant pathogenic bacteria able to provoke disease on a wide range of plants. A type 2 secretion system (T2SS) named Out is necessary for Dickeya virulence. Previous studies showed that the D. dadantii T2SS secretes a wide range of plant cell wall degrading enzymes, including pectinases and a cellulase. However, the full repertoire of exoproteins it can secrete has probably not yet been identified. Secreted proteins possess a signal peptide and are first addressed to the periplasm before their recruitment by Out. T2SS-specific secretion signals remain unknown which prevents in silico identification of T2SS substrates. To identify new Out substrates, we analyzed D. dadantii transcriptome data obtained in plant infection condition and searched for genes strongly induced and encoding proteins with a signal sequence. We identified four new Out-secreted proteins: the expansin YoaJ, the putative virulence factor VirK and two proteins of the DUF 4879 family, SvfA and SvfB. We showed that SvfA and SvfB are required for full virulence of D. dadantii and that svf genes are present in a variable number of copies in other Pectobacteriaceae, up to three in D. fanghzongdai. This work opens the way to the study of the role of non-pectinolytic proteins secreted by the Out pathway in Pectobacteriaceae.
Collapse
Affiliation(s)
- Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
- * E-mail:
| | - Bastien Le Derout
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| |
Collapse
|
18
|
Franzino T, Boubakri H, Cernava T, Abrouk D, Achouak W, Reverchon S, Nasser W, Haichar FEZ. Implications of carbon catabolite repression for plant-microbe interactions. PLANT COMMUNICATIONS 2022; 3:100272. [PMID: 35529946 PMCID: PMC9073323 DOI: 10.1016/j.xplc.2021.100272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Carbon catabolite repression (CCR) plays a key role in many physiological and adaptive responses in a broad range of microorganisms that are commonly associated with eukaryotic hosts. When a mixture of different carbon sources is available, CCR, a global regulatory mechanism, inhibits the expression and activity of cellular processes associated with utilization of secondary carbon sources in the presence of the preferred carbon source. CCR is known to be executed by completely different mechanisms in different bacteria, yeast, and fungi. In addition to regulating catabolic genes, CCR also appears to play a key role in the expression of genes involved in plant-microbe interactions. Here, we present a detailed overview of CCR mechanisms in various bacteria. We highlight the role of CCR in beneficial as well as deleterious plant-microbe interactions based on the available literature. In addition, we explore the global distribution of known regulatory mechanisms within bacterial genomes retrieved from public repositories and within metatranscriptomes obtained from different plant rhizospheres. By integrating the available literature and performing targeted meta-analyses, we argue that CCR-regulated substrate use preferences of microorganisms should be considered an important trait involved in prevailing plant-microbe interactions.
Collapse
Affiliation(s)
- Theophile Franzino
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Hasna Boubakri
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Écologie Microbienne, 69622 Villeurbanne, France
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, Graz 8010, Austria
| | - Danis Abrouk
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Écologie Microbienne, 69622 Villeurbanne, France
| | - Wafa Achouak
- Aix Marseille Université, CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), 13108 Saint-Paul-Lez-Durance, France
| | - Sylvie Reverchon
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - William Nasser
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Feth el Zahar Haichar
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622 Villeurbanne, France
| |
Collapse
|
19
|
Helmann TC, Filiatrault MJ, Stodghill PV. Genome-Wide Identification of Genes Important for Growth of Dickeya dadantii and Dickeya dianthicola in Potato (Solanum tuberosum) Tubers. Front Microbiol 2022; 13:778927. [PMID: 35145503 PMCID: PMC8821946 DOI: 10.3389/fmicb.2022.778927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Dickeya species are causal agents of soft rot diseases in many economically important crops, including soft rot disease of potato (Solanum tuberosum). Using random barcode transposon-site sequencing (RB-TnSeq), we generated genome-wide mutant fitness profiles of Dickeya dadantii 3937, Dickeya dianthicola ME23, and Dickeya dianthicola 67-19 isolates collected after passage through several in vitro and in vivo conditions. Though all three strains are pathogenic on potato, D. dadantii 3937 is a well-characterized model while D. dianthicola strains ME23 and 67-19 are recent isolates. Strain ME23 specifically was identified as a representative strain from a 2014 outbreak on potato. This study generated comparable gene fitness measurements across ecologically relevant conditions for both model and non-model strains. Tubers from the potato cultivars “Atlantic,” “Dark Red Norland,” and “Upstate Abundance” provided highly similar conditions for bacterial growth. Using the homolog detection software PyParanoid, we matched fitness values for orthologous genes in the three bacterial strains. Direct comparison of fitness among the strains highlighted shared and variable traits important for growth. Bacterial growth in minimal medium required many metabolic traits that were also essential for competitive growth in planta, such as amino acid, carbohydrate, and nucleotide biosynthesis. Growth in tubers specifically required the pectin degradation gene kduD. Disruption in three putative DNA-binding proteins had strain-specific effects on competitive fitness in tubers. Though the Soft Rot Pectobacteriaceae can cause disease with little host specificity, it remains to be seen the extent to which strain-level variation impacts virulence.
Collapse
Affiliation(s)
- Tyler C. Helmann
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Melanie J. Filiatrault
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Paul V. Stodghill
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Paul V. Stodghill,
| |
Collapse
|
20
|
Reverchon S, Meyer S, Forquet R, Hommais F, Muskhelishvili G, Nasser W. The nucleoid-associated protein IHF acts as a 'transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Res 2021; 49:776-790. [PMID: 33337488 PMCID: PMC7826290 DOI: 10.1093/nar/gkaa1227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαβ heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Florence Hommais
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
21
|
Czajkowski R, Fikowicz-Krosko J, Maciag T, Rabalski L, Czaplewska P, Jafra S, Richert M, Krychowiak-Maśnicka M, Hugouvieux-Cotte-Pattat N. Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:580330. [PMID: 32983224 PMCID: PMC7492773 DOI: 10.3389/fpls.2020.580330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.
Collapse
Affiliation(s)
- Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Jakub Fikowicz-Krosko
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciag
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Lukasz Rabalski
- Division of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry - Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marta Krychowiak-Maśnicka
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS UMR5240, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| |
Collapse
|
22
|
Lon Protease Is Important for Growth Under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya solani. Int J Mol Sci 2020; 21:ijms21103687. [PMID: 32456249 PMCID: PMC7279449 DOI: 10.3390/ijms21103687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
The Lon protein is a protease implicated in the virulence of many pathogenic bacteria, including some plant pathogens. However, little is known about the role of Lon in bacteria from genus Dickeya. This group of bacteria includes important potato pathogens, with the most aggressive species, D. solani. To determine the importance of Lon for pathogenicity and response to stress conditions of bacteria, we constructed a D. solani Δlon strain. The mutant bacteria showed increased sensitivity to certain stress conditions, in particular osmotic and high-temperature stresses. Furthermore, qPCR analysis showed an increased expression of the lon gene in D. solani under these conditions. The deletion of the lon gene resulted in decreased motility, lower activity of secreted pectinolytic enzymes and finally delayed onset of blackleg symptoms in the potato plants. In the Δlon cells, the altered levels of several proteins, including virulence factors and proteins associated with virulence, were detected by means of Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) analysis. These included components of the type III secretion system and proteins involved in bacterial motility. Our results indicate that Lon protease is important for D. solani to withstand stressful conditions and effectively invade the potato plant.
Collapse
|
23
|
Potrykus M, Decorosi F, Perkowska I, Viti C, Mengoni A, Hugouvieux-Cotte-Pattat N, Lojkowska E. The metabolic shift in highly and weakly virulent Dickeya solani strains is more affected by temperature than by mutations in genes encoding global virulence regulators. FEMS Microbiol Ecol 2020; 96:5739916. [PMID: 32068796 DOI: 10.1093/femsec/fiaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Global warming may shortly increase the risk of disease development on plants. Significant differences in the metabolic activity screened with Phenotype Microarray at 22°C and 28°C were observed between D. solani strains with high and low virulence level. Highly virulent D. solani was characterized by a higher number of metabolized compounds and a faster metabolism and was more tolerant to non-favorable pH and osmolarity. Metabolic phenotyping showed for the first time that the mutation in pecT gene, which encodes a global repressor of virulence, affects several pathways of the basic cell metabolism. PecT mutants had a higher maceration capacity of potato tissue and showed a higher pectinolytic activity than the wild-type strains. On the contrary, mutation in expI gene, which encoded the signaling molecules synthase crucial for quorum sensing, had an insignificant effect on the cell metabolism, although it slightly reduced the potato tissue maceration. The ability to utilize most of the tested compounds was higher at 28°C, while the survival at non-favorable pH and osmolarity was higher at 22°C. These results proved that the temperature of incubation had the most significant impact on the D. solani metabolic profiles.
Collapse
Affiliation(s)
- Marta Potrykus
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.,Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23A, 80-204 Gdansk, Poland
| | - Francesca Decorosi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via della Lastruccia, 10 - 50019 Sesto Fiorentino, Italy
| | - Izabela Perkowska
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via della Lastruccia, 10 - 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano, 6 50019 Sesto Fiorentino, Italy
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiologie Adaptation et Pathogénie, Univ Lyon, CNRS UMR5240, Univ Claude Bernard Lyon 1, INSA de Lyon, F-69622 Villeurbanne, France
| | - Ewa Lojkowska
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
24
|
Yuan X, Zeng Q, Xu J, Severin GB, Zhou X, Waters CM, Sundin GW, Ibekwe AM, Liu F, Yang CH. Tricarboxylic Acid (TCA) Cycle Enzymes and Intermediates Modulate Intracellular Cyclic di-GMP Levels and the Production of Plant Cell Wall-Degrading Enzymes in Soft Rot Pathogen Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:296-307. [PMID: 31851880 PMCID: PMC9354473 DOI: 10.1094/mpmi-07-19-0203-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dickeya dadantii is a plant-pathogenic bacterium that causes soft-rot in a wide range of plants. Although we have previously demonstrated that cyclic bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial secondary messenger, plays a central role in virulence regulation in D. dadantii, the upstream signals that modulate c-di-GMP remain enigmatic. Using a genome-wide transposon mutagenesis approach of a Δhfq mutant strain that has high c-di-GMP and reduced motility, we uncovered transposon mutants that recovered the c-di-GMP-mediated repression on swimming motility. A number of these mutants harbored transposon insertions in genes encoding tricarboxylic acid (TCA) cycle enzymes. Two of these TCA transposon mutants were studied further by generating chromosomal deletions of the fumA gene (encoding fumarase) and the sdhCDAB operon (encoding succinate dehydrogenase). Disruption of the TCA cycle in these deletion mutants resulted in reduced intracellular c-di-GMP and enhanced production of pectate lyases (Pels), a major plant cell wall-degrading enzyme (PCWDE) known to be transcriptionally repressed by c-di-GMP. Consistent with this result, addition of TCA cycle intermediates such as citrate also resulted in increased c-di-GMP levels and decreased production of Pels. Additionally, we found that a diguanylate cyclase GcpA was solely responsible for the observed citrate-mediated modulation of c-di-GMP. Finally, we demonstrated that addition of citrate induced not only an overproduction of GcpA protein but also a concomitant repression of the c-di-GMP-degrading phosphodiesterase EGcpB which, together, resulted in an increase in the intracellular concentration of c-di-GMP. In summary, our report demonstrates that bacterial respiration and respiration metabolites serve as signals for the regulation of c-di-GMP signaling.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, U.S.A
| | - Jingsheng Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Geoffrey B. Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Xiang Zhou
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | | | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University
| | - Abasiofiok M. Ibekwe
- Agricultural Research Service-US Salinity Laboratory, United States Department of Agriculture, Riverside, CA 92507, U.S.A
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|
25
|
Muskhelishvili G, Forquet R, Reverchon S, Meyer S, Nasser W. Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms 2019; 7:microorganisms7120694. [PMID: 31847191 PMCID: PMC6956064 DOI: 10.3390/microorganisms7120694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.
Collapse
Affiliation(s)
| | - Raphaël Forquet
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sam Meyer
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
- Correspondence:
| |
Collapse
|
26
|
Yang YJ, Lin W, Singh RP, Xu Q, Chen Z, Yuan Y, Zou P, Li Y, Zhang C. Genomic, Transcriptomic and Enzymatic Insight into Lignocellulolytic System of a Plant Pathogen Dickeya sp. WS52 to Digest Sweet Pepper and Tomato Stalk. Biomolecules 2019; 9:biom9120753. [PMID: 31756942 PMCID: PMC6995524 DOI: 10.3390/biom9120753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Dickeya sp., a plant pathogen, causing soft rot with strong pectin degradation capacity was taken for the comprehensive analysis of its corresponding biomass degradative system, which has not been analyzed yet. Whole genome sequence analysis of the isolated soft-rotten plant pathogen Dickeya sp. WS52, revealed various coding genes which involved in vegetable stalk degradation-related properties. A total of 122 genes were found to be encoded for putative carbohydrate-active enzymes (CAZy) in Dickeya sp. WS52. The number of pectin degradation-related genes, was higher than that of cellulolytic bacteria as well as other Dickeya spp. strains. The CAZy in Dickeya sp.WS52 contains a complete repertoire of enzymes required for hemicellulose degradation, especially pectinases. In addition, WS52 strain possessed plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Transcriptome analysis revealed that parts of genes encoding lignocellulolytic enzymes were significantly upregulated in the presence of minimal salt medium with vegetable stalks. However, most of the genes were related to lignocellulolytic enzymes, especially pectate lyases and were downregulated due to the slow growth and downregulated secretion systems. The assay of lignocellulolytic enzymes including CMCase and pectinase activities were identified to be more active in vegetable stalk relative to MSM + glucose. However, compared with nutrient LB medium, it needed sufficient nutrient to promote growth and to improve the secretion system. Further identification of enzyme activities of Dickeya sp.WS52 by HPLC confirmed that monosaccharides were produced during degradation of tomato stalk. This identified degradative system is valuable for the application in the lignocellulosic bioenergy industry and animal production.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Wei Lin
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Raghvendra Pratap Singh
- Department of Research & Development, Biotechnology, Uttaranchal University, Dehradun 248007, India
- Correspondence: (R.P.S.); (C.Z.)
| | - Qian Xu
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Zhihou Chen
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
- Correspondence: (R.P.S.); (C.Z.)
| |
Collapse
|
27
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
28
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
29
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
30
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
31
|
Abstract
Bacterial soft rot is a disease complex caused by multiple genera of gram-negative and gram-positive bacteria, with Dickeya and Pectobacterium being the most widely studied soft-rot bacterial pathogens. In addition to soft rot, these bacteria also cause blackleg of potato, foot rot of rice, and bleeding canker of pear. Multiple Dickeya and Pectobacterium species cause the same symptoms on potato, complicating epidemiology and disease resistance studies. The primary pathogen species present in potato-growing regions differs over time and space, further complicating disease management. Genomics technologies are providing new management possibilities, including improved detection and biocontrol methods that may finally allow effective disease management. The recent development of inbred diploid potato lines is also having a major impact on studying soft-rot pathogens because it is now possible to study soft-rot disease in model plant species that produce starchy vegetative storage organs. Together, these new discoveries have changed how we face diseases caused by these pathogens.
Collapse
Affiliation(s)
- Amy O Charkowski
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
32
|
Motyka A, Dzimitrowicz A, Jamroz P, Lojkowska E, Sledz W, Pohl P. Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Biotechnol Bioeng 2018; 115:1581-1593. [PMID: 29457632 DOI: 10.1002/bit.26565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/08/2018] [Indexed: 01/28/2023]
Abstract
Diseases caused by phytopathogenic bacteria are responsible for significant economic losses, and these bacteria spread through diverse pathways including waterways and industrial wastes. It is therefore of high interest to develop potent methods for their eradication. Here, antibacterial properties of direct current atmospheric pressure glow discharge (dc-APGD) generated in contact with flowing bacterial suspensions were examined against five species of phytopathogens. Complete eradication of Clavibacter michiganensis subsp. sepedonicus, Dickeya solani, and Xanthomonas campestris pv. campestris from suspensions of OD600 ≈ 0.1 was observed, while there was at least 3.43 logarithmic reduction in population densities of Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum. Analysis of plasma-chemical parameters of the dc-APGD system revealed its high rotational temperatures of 2,300 ± 100 K and 4,200 ± 200 K, as measured from N2 and OH molecular bands, respectively, electron temperature of 6,050 ± 400 K, vibrational temperature of 4000 ± 300 K, and high electron number density of 1.1 × 1015 cm-1 . In addition, plasma treatment led to formation of numerous reactive species and states in the treated liquid, including reactive nitrogen and oxygen species such as NOx , NH, H2 O2 , O2 , O, and OH. Further examination revealed that bactericidal activity of dc-APGD was primarily due to presence of these reactive species as well as to UVA, UVB, and UVC irradiation generated by the dc-APGD source. Plasma treatment also resulted in an increase in temperature (from 24.2 to 40.2 °C) and pH (from 6.0 to 10.8) of bacterial suspensions, although these changes had minor effects on cell viability. All results suggest that the newly developed dc-APGD-based system can be successfully implemented as a simple, rapid, efficient, and cost-effective disinfection method for liquids originating from different industrial and agricultural settings.
Collapse
Affiliation(s)
- Agata Motyka
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Department of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Anna Dzimitrowicz
- Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Jamroz
- Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Department of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Wojciech Sledz
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Department of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Pawel Pohl
- Faculty of Chemistry, Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
33
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
34
|
Motyka A, Zoledowska S, Sledz W, Lojkowska E. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. N Biotechnol 2017; 39:181-189. [PMID: 28847714 DOI: 10.1016/j.nbt.2017.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Dickeya spp. and Pectobacterium spp. are etiological agents of soft rot on crops, vegetables, and ornamentals. They also cause blackleg on potato. These pectinolytic phytopathogens are responsible for significant economic losses, mostly within the potato production sector. Importantly, there are no methods to eradicate these microorganisms once they have infected plant material. Solely preventive measures remain, including early detection and identification of the pathogens, monitoring of their spread in addition to planting certified seed material tested for latent infections. As proper identification of the causative agent allows for efficient limitation of disease spread, numerous detection and differentiation methods have been developed. Most commonly followed procedures involve: isolation of viable bacterial cells (alternatively post-enrichment) on semi-selective media, identification to species level by PCR (single, multiplex, Real time), serology or fatty acids profiling. Differentiation of the isolates is often accomplished by sequencing the housekeeping genes or molecular fingerprinting. In view of lowering total costs of next-generation sequencing (NGS), a huge amount of generated data reveals subtle differences between strains that have proven to be potentially useful for the establishment of specific novel detection pipelines. Successful implementation of molecular diagnostic methods is exemplified by 20-year studies on the populations of pectinolytic bacteria on potatoes in Poland. The presented work aims to gather the characteristics of Dickeya spp. and Pectobacterium spp. important for the identification process in addition to providing an overview of modern and newly developed specific, rapid, high-throughput and cost-effective screening methods for the detection and identification of these phytopathogens.
Collapse
Affiliation(s)
- Agata Motyka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Sabina Zoledowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Wojciech Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
35
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
36
|
Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:51-92. [PMID: 27571692 DOI: 10.1016/bs.pmbts.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pectinolytic Dickeya spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the Dickeya genus was initially restricted to tropical and subtropical areas, two Dickeya species (D. dianthicola and D. solani) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused by plant cell wall degrading enzymes, mainly pectate lyases (Pels) that cleave the pectin polymer. However, an efficient colonization of the host requires many additional elements including early factors (eg, flagella, lipopolysaccharide, and exopolysaccharide) that allow adhesion of the bacteria and intermediate factors involved in adaptation to new growth conditions encountered in the host (eg, oxidative stress, iron starvation, and toxic compounds). To facilitate this adaptation, Dickeya have developed complex regulatory networks ensuring appropriate expression of virulence genes. This review presents recent advances in our understanding of the signals and genetic circuits impacting the expression of virulence determinants. Special attention is paid to integrated control of virulence functions by variations in the superhelical density of chromosomal DNA, and the global and specific regulators, making the regulation of Dickeya virulence an especially attractive model for those interested in relationships between the chromosomal dynamics and gene regulatory networks.
Collapse
Affiliation(s)
- S Reverchon
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France.
| | - G Muskhelisvili
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| | - W Nasser
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| |
Collapse
|